正、反比例函数的内容特点及教材分析

合集下载

反比例函数教材分析

反比例函数教材分析

第十七章 反比例函数本章内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础. 一、本章特点1.突出反比例函数与现实世界的联系. 2.注重数学思想方法的渗透.二、本章要求 1.知识结构框图2.课程学习目标⑴ 使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式xky =(k 为常数,k≠0),能判断一个给定函数是否为反比例函数. ⑵ 能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.⑶ 能根据图象数形结合地分析并掌握反比例函数xky =(k 为常数,k≠0)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.⑷ 再次经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,进一步体会函数是刻画现实世界中变化规律的重要数学模型. ⑸ 使学生在学习一次函数的基础上,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. 3.课时安排本章共安排了2小节以及2个选学内容,教学时间约需8课时,大体分配如下(仅供参考).17.1 反比例函数 3课时17.2 实际问题与反比例函数 4课时小结 1课时三、对教学的几点建议1.注意做好与已学内容的衔接.2.加强反比例函数与正比例函数的对比.3.把突出函数中蕴涵的重要数学思想作为本章的主要线索. 4.密切反比例函数与现实世界的联系. 5.注意突破知识的难点和重点. 四、具体知识1.反比例函数的概念⑴ xk y =(k ≠0)可以写成1kx y -= (k ≠0)的形式,注意自变量x 的指数为-1,在解决有关自变量指数问题时应特别注意系数k ≠0这一限制条件;⑵ xky = (k ≠0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;⑶ 反比例函数xky =的自变量x≠0,故函数图象与x 轴、y 轴无交点.2.反比例函数的图象在用描点法画反比例函数xky =的图象时,应注意自变量x 的取值不能为0,故x 应从1和-1开始对称取点.3当0k k 21<⋅当0k k 21>⋅ ⑶ 4.反比例函数x ky =⑴ 过双曲线xky =(k ≠0) 所得矩形的面积为k .⑵ 过双曲线xky =(k ≠0) 5.实际问题与反比例函数.⑴ ⑵ 6五、例题 [例1]⑴ 下列函数中,y 是x 的反比例函数的是( )A. y=3xB. y -3=2xC. 3xy=1D. y=x 2⑵ 下列函数中,y 是x 的反比例函数的是( )A.x 41y =B.2x 1y -=C.2x 1y -=D. x 11y +=[例2]⑴ k = 时,函数1k 2k 2x )2k (y -++=是反比例函数.⑵ 如果函数1k 2k2x )2k (y -++=的图象是双曲线,那么k=________.⑶ 如果函数3k k2x )1k (y -++=是反比例函数,且它的图象在第二、四象限内,那么k= . ⑷ 如果函数3k k 2x )1k (y -++=是反比例函数,且y 随x 的增大而减小,那么k= .[例3]⑴ 已知一次函数y=ax+b 的图象经过第一、二、四象限,则函数xaby =的图象位于第________象限.⑵ 已知反比例函数()0k xky ≠=,当0x <时,y 随x 的增大而增大,那么一次函数k kx y -= 的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限⑶ 若反比例函数xky =经过点(-1,2),则一次函数y= -kx+2的图象一定不经过第 象限. ⑷ 已知a·b <0,点P (a ,b )在反比例函数xay =的图象上,则直线b ax y +=不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限⑸ 若P (2,2)和Q (m ,-m 2)是反比例函数xky =图象上的两点,则一次函数y=kx+m的图象经过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限⑹ 已知函数y=k (x -1)和xky -= (k ≠0),它们在同一坐标系内的图象大致是( )[例4]⑴ 在反比例函数()0k xky <=的图象上有两点()11y ,x A ,()22y ,x B ,且0x x 21>>,则21y y -的值为( )A. 正数B. 负数C. 非正数D. 非负数⑵ 在函数x 1a y 2--=(a 为常数)的图象上有三个点)y ,1(1-,)y ,41(2-,)y ,21(3,则函数值1y 、2y 、3y 的大小关系是( )A.2y <3y <1yB.3y <2y <1yC.1y <2y <3yD.3y <1y <2y⑶ 在函数xky =(k>0)的图象上有三点A 1 (x 1,y 1),A 2 (x 2,y 2),A 3 ( x 3,y 3),已知 x 1 < x 2 < 0 < x 3,则下列各式中正确的是( )A. y 1 < y 2 < y 3B. y 3 < y 2 < y 1C. y 2 < y 1< y 3D. y 3 < y 1 < y 2⑷ 下列四个函数中:①x 5y =;②x 5y -=;③x 5y =;④x5y -=.y 随x 的增大而减小的函数有( )A. 0个B. 1个C. 2个D. 3个⑸ 已知反比例函数xky =的图象与直线y=2x 和y=x+1的图象过同一点,则当x >0时,这个反比例函数的函数值y 随x 的增大而 (填“增大”或“减小”)[例5]y O x A y O x B y O x C y O x D⑴ 若成正比例与成反比例,与z1x x 1y ,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定⑵ 若正比例函数y=2x 与反比例函数xky =的图象有一个交点为 (2,m),则m=_____,k=________,它们的另一个交点为 .⑶ 已知反比例函数x m y 2=的图象经过点()8,2--,反比例函数xmy =的图象在第二、四象限,求m 的值.⑷ 已知一次函数y=x+m 与反比例函数x1m y +=(m ≠-1)的图象在第一象限内的交点为P (x 0,3). (1) 求x 0的值;(2) 求一次函数和反比例函数的解析式.[例6] ⑴ 将32x =代入反比例函数x 1y -=得函数值记为y 2,再将x = y 2+1y 2005=_________. ⑵ 两个反比例函数x 3y =,x 6y =在第一象限内 的图象如图所示,点P 1,P 2,P 3,…,P 2005在反比例函数x6y =图象上,它们的横坐标 分别是x 1,x 2,x 3,…,x 2005,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线,与x 3y =的图象交点依次是Q 1(x 1,y 1), Q 2Q [例7]⑴ x A. C. ⑵ 如图,A ,B 是函数x1y =的图象上关于原点对称的任意两点, AC ∥y 轴,BC ∥x 轴,△ABC 的面积S A.S=1 B.1<S <2 C.S=2⑶ 如图,Rt △AOB 的顶点A 在双曲线xm y =, 且S △AOB =3,求m 的值.⑷ 已知函数x4y =的图象和两条直线y=x ,y=2x 在第一象限内分别相交于P 1和P 2两点,过P 1分别作x 轴、y 轴的垂线P 1Q 1,P 1R 1,垂足分别为Q 1,R 1,过P 2分别作x 轴、y 轴的垂线P 2Q 2,P 2R 2,垂足分别为Q 2,R 2,求矩形OQ 1P 1R 1和OQ 2P 2R 2的周长,并比较它们的大小.⑸ 如图,正比例函数y=kx (k >0)和反比例函数1y =的图象相交于A 、C 两点,过A 作x 轴垂线交x 轴于B ⑹ 如图在Rt △ABO 中,顶点A AB ⊥x 轴于B 且S △ABO =23.①求这两个函数的解析式;②求直线与双曲线的两个交点例7⑷ ⑺ 如图,已知正方形OABC 点B 在函数x k y =(k >0,x >上任意一点,过P 分别作x 设矩形OEPF 在正方形OABC ① 求B 点坐标和k 的值;② 当29S =时,求点P ③ 写出S 关于m [例8]⑴ 近视眼镜的度数y (度)0.25米,则眼镜度数y⑵ 甲、乙两地相距100千米,一辆汽车从甲地开往乙地,求汽车离开甲地所用的时间y (时)与汽车的平均速度x (千米/时)之间的函数关系式,并写出自变量的取值范围,画出图象的草图. ⑶ 平行四边形的面积不变,那么它的底与高的函数关系是( )A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数 ⑷ 某气球内充满了一定质量的气体,当温度不变时,气球内的气压P (千帕)是气球的体积V(米3)的反比例函数,其图 象如图所示 (千帕是一种压强单位). ① 求出这个函数的解析式;② 当气球的体积为0.8立方米时,气球内的气压是多少 千帕?③ 当气球内的气压大于144千帕时,气球将爆炸,为了 安全起见,气球的体积应不小于多少立方米?⑸ 为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每 立方米的含药量为6毫克. 请根据题中所提供的信息解答 下列问题:① 药物燃烧时y 关于x 的函数关系式为__________ ___,自变量x 的取值范围是____________ ___;药物燃 烧后y 关于x 的函数关系式为_________________.② 研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? [例9]⑴ 若函数y=k 1x (k 1≠0)和函数xk y 2=(k 2 ≠0)在同一坐标系内的图象没有公共点,则k 1和k 2( )A. 互为倒数B. 符号相同C. 绝对值相等D. 符号相反 ⑵ 如图,一次函数y=kx+b 的图象与反比例数xm y =的图象交于A 、B 两点:A (-2,1),B (1,n). ① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数 的值的x 的取值范围. ⑶ 如图所示,已知一次函数y=kx+b (k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数xmy = (m ≠0)yyO xBA的图象在第一象限交于C 点,CD 垂直于x若OA=OB=OD=1.① 求点A 、B 、D 的坐标;② 求一次函数和反比例函数的解析式.⑷ 如图,一次函数b ax y +=的图象与反比例函数xk y =的图象交于第一象限C ,D 两点,坐标轴交于A 、B 点,连结OC ,OD (O 是坐标原点).① 利用图中条件,求反比例函数的解析式和m ② 双曲线上是否存在一点P ,使得△POC 和△POD 面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.⑸ 不解方程,判断下列方程解的个数. ① 0x 4x 1=+ ②0x 4x1=-。

反比例函数教案及教学反思

反比例函数教案及教学反思

一、教案设计1.1 教学目标:(1) 知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

(2) 过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,提高学生解决问题的能力。

(3) 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学规律的欲望,培养学生的团队合作精神。

1.2 教学内容:(1) 反比例函数的概念:反比例函数是指形如y = k/x (k为常数,k≠0) 的函数。

(2) 反比例函数的性质:反比例函数的图像是一条通过原点的曲线,称为双曲线。

当k>0时,双曲线在第一、三象限;当k<0时,双曲线在第二、四象限。

(3) 反比例函数的应用:解决实际问题,如计算面积、速度、浓度等。

1.3 教学重点与难点:(1) 重点:反比例函数的概念和性质。

(2) 难点:反比例函数的应用。

1.4 教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生解决问题的能力。

1.5 教学过程:(1) 导入:通过生活中的实例,引导学生思考反比例关系,激发学生的学习兴趣。

(2) 讲解:讲解反比例函数的概念,引导学生观察、分析反比例函数的性质。

(3) 实践:让学生通过实际问题,运用反比例函数解决问题,巩固所学知识。

(5) 作业:布置相关练习题,巩固所学知识。

二、教学反思2.1 教学效果:通过本节课的教学,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

2.2 教学亮点:(1) 采用问题驱动法,引导学生主动探究,提高学生解决问题的能力。

(2) 结合生活中的实例,让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣。

2.3 改进措施:(1) 在实践环节,可以增加一些具有挑战性的问题,让学生在解决问题的过程中,进一步提高反比例函数的应用能力。

(2) 在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

新人教版九年级下册第二十六章“反比例函数”教材分析简介

新人教版九年级下册第二十六章“反比例函数”教材分析简介

重点难点
重点
反比例函数的概念、图像和性质 ;反比例函数在实际问题中的应 用。
难点
理解反比例函数的本质特征;掌 握反比例函数图像的绘制方法; 灵活运用反比例函数解决实际问 题。
03
教学方法与手段
教学方法
激活学生的前知
通过回顾和讨论学生已经 学过的相关概念和技能, 为学习反比例函数打下基 础。
教学策略多样化
02
03
反比例函数的性质
通过探究反比例函数的增减性、 对称性、取值范围等性质,进一 步加深对反比例函数的理解。
04
02
知识结构与特点
知识结构
反比例函数的概念和性质
01
包括反比例函数的定义、图像、单调性等基本性质。
反比例函数的应用
02
涉及实际问题中反比例关系的建立、模型的构建和问题的解决

反比例函数与一次函数的综合应用
采用讲解、示范、小组讨 论、案例分析等多种教学 方法,以适应不同学生的 学习需求。
引导学生主动探究
鼓励学生提出问题、解决 问题,培养他们的探究精 神和自主学习能力。
教学手段
多媒体辅助教学
利用投影仪、电脑等多媒体设备,展 示反比例函数的图像、性质等,使教 学更加直观、生动。
小组合作与交流
组织学生进行小组合作学习和交流, 促进彼此之间的思维碰撞和知识共享 。
新人教版九年级下册第二 十六章“反比例函数”教
材分析简介
汇报人:XXX 2024-01-27
目录
• 教材背景与目标 • 知识结构与特点 • 教学方法与手段 • 学情分析与应对策略 • 评价方式与标准 • 资源开发与利用 • 教师发展与学生成长
01
教材背景与目标

第二十六章反比例函数教材分析

第二十六章反比例函数教材分析

第二十六章反比例函数一、教材分析本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题。

反比例函数是最基本的函数之一,是学习后续各类函数的基础。

它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。

函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二教科书内容分析(一)本章知识结构框图(二)教科书内容分析26.1 反比例函数3课时26.2 实际问题与反比例函数4课时数学活动小结 1课时 1本章的主要内容是反比例函数,教科书从几个学生熟悉的实际问题出发,引进反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识。

第17.1节的内容是反比例函数的概念、图象和性质。

反比例函数(为常数,)的图象分布在两个象限,当时,图象分布在一、三象限,随的增大(减小)而减小(增大);当时,图象分布在二、四象限,随的增大(减小)而增大(减小)。

第17.2节的内容是如何利用反比例函数解决现实世界的实际问题,以及如何用反比例函数解释现实世界中的一些现象。

本章主要涉及到如下的4个现实世界中的反比例函数模型:当圆柱体的体积V一定时,圆柱的底面积是高(深度)的反比例函数:;当工程总量一定时,做工时间是做工速度的反比例函数:;在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数:;电压一定,输出功率是电路中电阻的反比例函数:。

此外,本章还安排了两个选学内容:第17.1节的“信息技术应用”中安排了“探索反比例函数的性质”,第17.1节的“阅读与思考”中安排了“生活中的反比例关系”。

正反比例函数的内容特点及教材分析

正反比例函数的内容特点及教材分析

正、反比例函数的内容特点及教材分析第一部分:初中函数内容的知识框架结构1.函数在初中数学知识体系中的地位和作用函数是初中数学中的重要内容之一,它是从现实世界中抽象出来的,是从数量关系的角度刻画事物运动变化规律的工具。

函数知识渗透在初中数学的许多内容中,它又与物理、化学等学科知识密切相关。

同时函数本身也是一种重要的数学思想,运用函数的思想和方法,可以加深对一些代数问题的理解。

2.初中学习函数的意义和要求初中学习函数的意义是初步感受现实世界中除了确定的一些量——常量外,还有不少的量——变量,初步知道两个变量之间存在的关系,能利用这些关系来研究它们之间的一些基本性质。

初中学习函数的要求是理解函数的意义,理解正比例函数、反比例函数、一次函数和二次函数的概念,能画出它们的图像,并根据图像知道它们的一些基本性质。

3.教材内容安排的方式及要求所体现的思想函数内容在初中教材中主要分布在八年级和九年级中,八年级第一学期学习函数的概念,研究两个最简单的函数——正比例函数和反比例函数的有关图像和性质;八年级第二学期学习一次函数的有关图像和性质;九年级第一学期学习二次函数的有关图像和性质,九年级第二学期在拓展II中进一步对二次函数进行深入的研究。

这样首先出示基本概念,然后由易到难研究一些特殊函数的编排方式符合学生的认知规律,帮助学生充分理解函数的基本思想。

4.高中函数教学的介绍课程标准中指出:在初中学习函数的基础上,进一步理解函数是变量之间相互依赖关系的反映;学习用集合与对应的语言刻画函数,再从直观到解析、从具体到抽象,研究函数的性质,并能从解析的角度理解有关性质。

函数的基本知识是高中数学的核心内容之一,函数的思想和方法贯穿于高中数学。

第二部分:函数知识内容的教学研究(一)函数内容的知识体系初中学习函数主要是让学生对函数有一个初步的认识,知道生活中的变量关系,能用函数的思想处理一些简单的问题,因此初中函数内容的知识体系是,先介绍函数的概念,然后以两个最简单的函数(正比例函数和反比例函数)作为载体,让学生理解函数的图像与一些性质,再介绍函数常用的三种表示方法,最后再分别研究现实生活中经常遇到的另外两个简单而常用的函数(一次函数和二次函数),使学生对函数有一个较完整的理解,并能进行简单的应用。

反比例函数教材分析 (课堂PPT)

反比例函数教材分析 (课堂PPT)

y1>. y2
20
2.已知点A(-2,y1),B(-1,y2)
都在反比例函数
y
y
k x
4 x
(的k<图0)象上,则y1
与y2的大小关系(从大到小)为
.
y2> y1
21
3都.已在知反点比A例A((函-x21数,,yy11)),,yBBy((x-21xk,4xy,y(2的k)2<且)图0x)象1<上0<,则x2y1
3
本章知识框架:
(数学问题)
现实世界中的 抽象
反比例关系
反比例函数
解 释
实际应用
应用 反比例函数的 图象和性质
(数学问题自身的特点)
4
二、本章的地位和作用:
函数是“数与代数”领域的重要内容
七年级下册第6章“平面直角坐标系”---函数学习的基础 八年级上册第14章“一次函数”---形成研究函数的模式
• 5.进一步理解常量与变量的辨证关系和反映在 函数概念中的运动变化观点,进一步认识数形 结合的思想方法。
10
2011版数学课程标准反比例函数的要求:
1.结合具体情境体会反比例函数的意义,能根据已 知条件确定反比例函数的表达式。
2.能画出反比例函数的图象,能根据图象和表达式
y k k 0
变化x情况。
xy=k(k≠0的常数)的形式
运算的需要 判断的需要
14
xy=k(k≠0的常数)的形式
例1: 反比例函数 y k 的图象经过(2,-1),则k
的值为
;x
例2: 反比例函数 y k 的图象经过点(2,5),若
点(1,n)在反比例函数图x 象上,则n(

A.10
B.5
C.2

关于《反比例函数》的说课稿(精选5篇)

关于《反比例函数》的说课稿(精选5篇)

关于《反比例函数》的说课稿(精选5篇)《反比例函数》说课稿1今天我说课的内容是华东师大版八年级数学下册第十七章反比例函数及其图象。

一、教材分析:本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。

本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析:根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。

在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:(一)知识目标:1、使学生了解反比例函数的概念2、使学生能够根据问题中的条件确定反比例函数的解析式。

3、使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

4、会用待定系数法确定反比例函数的解析式。

(二)能力目标:培养学生的观察能力,分析能力,独立解决问题的能力。

(三)德育目标:1、向学生渗透数学来源于实践又反过去作用于实践的观点。

2、使学生体会事物是有规律地变化着的观点。

(四)美育目标:通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

三、教学重点,难点。

(一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

(二)教学难点:画反比例函数的图象。

(三)解决方法(1)由分组讨论,积极思考,分析问题,发现结论。

(2)训练,研究,总结。

因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。

人教版初中数学《反比例函数》单元教材教学分析

人教版初中数学《反比例函数》单元教材教学分析
人教版初中数学《反比例函数》单元教材教学分析
学段及学科
初中数学
教材版本
人教版Leabharlann 单元名称《反比例函数》单元教材主题内容与价值作用
反比例函数是本套教材安排的最后一类函数,他描述现实世界中具有反比例变化规律的重要数学模型。它不仅具有丰富的性质,而且在实际中具有广泛的应用。
单元目标
㈠知识与技能:1、结合具体情境体会反比例函数的意义,丰富函数、函数概念的认识和理解;
(1)(2)
(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
活动六、运用新识
补充)例3、当m取什么值时,函数是反比例函数?
活动二、创设情境,导入新课
问题情境(课件展示)
下列问题中,变量间具有函数关系吗如果有,它们的解析式有什么共同特征?
(1)京沪线铁路全程为1463km,某次列车平均速度v(单位:kmh)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;
说明
本节课通过教师的引导、学生的研究,效果比较好。我觉得特别是由问题情境中的三个函数引导得出反比例函数是这节课中教学或学习亮点,学生感触比较深刻,从完成练习来看掌握也比较牢固;通过例题的讲解和学习实践,对定义的掌握也比较好,随堂测试结果:全班共44人,100分(全对)15人,80分(对4题)18人,60分(对3题)8人,40分(对2题2人),觉得相当不错的结果;本节课唯一不足就是内容较多,时间有点紧,有拖堂的情况,下次可作调整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、反比例函数的内容特点及教材分析第一部分:初中函数内容的知识框架结构1.函数在初中数学知识体系中的地位和作用函数是初中数学中的重要内容之一,它是从现实世界中抽象出来的,是从数量关系的角度刻画事物运动变化规律的工具。

函数知识渗透在初中数学的许多内容中,它又与物理、化学等学科知识密切相关。

同时函数本身也是一种重要的数学思想,运用函数的思想和方法,可以加深对一些代数问题的理解。

2.初中学习函数的意义和要求初中学习函数的意义是初步感受现实世界中除了确定的一些量——常量外,还有不少的量——变量,初步知道两个变量之间存在的关系,能利用这些关系来研究它们之间的一些基本性质。

初中学习函数的要求是理解函数的意义,理解正比例函数、反比例函数、一次函数和二次函数的概念,能画出它们的图像,并根据图像知道它们的一些基本性质。

3.教材内容安排的方式及要求所体现的思想函数内容在初中教材中主要分布在八年级和九年级中,八年级第一学期学习函数的概念,研究两个最简单的函数——正比例函数和反比例函数的有关图像和性质;八年级第二学期学习一次函数的有关图像和性质;九年级第一学期学习二次函数的有关图像和性质,九年级第二学期在拓展II中进一步对二次函数进行深入的研究。

这样首先出示基本概念,然后由易到难研究一些特殊函数的编排方式符合学生的认知规律,帮助学生充分理解函数的基本思想。

4.高中函数教学的介绍课程标准中指出:在初中学习函数的基础上,进一步理解函数是变量之间相互依赖关系的反映;学习用集合与对应的语言刻画函数,再从直观到解析、从具体到抽象,研究函数的性质,并能从解析的角度理解有关性质。

函数的基本知识是高中数学的核心内容之一,函数的思想和方法贯穿于高中数学。

第二部分:函数知识内容的教学研究(一)函数内容的知识体系初中学习函数主要是让学生对函数有一个初步的认识,知道生活中的变量关系,能用函数的思想处理一些简单的问题,因此初中函数内容的知识体系是,先介绍函数的概念,然后以两个最简单的函数(正比例函数和反比例函数)作为载体,让学生理解函数的图像与一些性质,再介绍函数常用的三种表示方法,最后再分别研究现实生活中经常遇到的另外两个简单而常用的函数(一次函数和二次函数),使学生对函数有一个较完整的理解,并能进行简单的应用。

(二)函数内容的教材分析及教学注意事项1.函数的相关概念教材分析及教学注意事项(1)函数相关内容的概念框架与知识结构函数的定义域实际问题---变量与常量---函数--- 函数值函数的表示法(2)函数相关内容的教学目标、教学重点及教学难点分析通过身边的事例和生活中的实例,直观地认识变量以及变量之间的相互依赖关系,体会函数的意义,以及函数的三种常用的表示方法和数形结合的思想。

教学目标:①通过实例认识变量与常量,理解变量之间的相互依赖关系,能用运动、变化的观点看待相关数量问题,能从两个变量之间相互联系、相互依赖的角度理解函数的意义。

②知道函数的定义域、函数值等概念,知道符号“y=f(x)”的意义,会根据函数解析式和实际意义求函数的定义域,初步理解自变量的值与函数值之间的对应关系,会根据函数解析式求函数值。

③知道函数的三种表示方法,以及它们的优势与不足,知道函数图像的意义,能借助函数图像的直观性,用语言描述函数的基本性质,体会数形结合思想。

重点难点:理解函数的概念,知道符号“y=f(x)”的意义,会求函数的定义域,能借助图像认识函数的一些基本性质。

(3)教材分析教材分析:①变量、常量通过有关长度的数量关系的实例引入,能使学生更容易理解。

②变量、常量是相对的,是要结合实际问题具体分析,比如在行程问题中的三个量,路程S、速度v和时间t,在匀速运动时存在这样的关系:S=vt,如果假定速度v不变,那么路程S就随时间t的变化而变化,S和t就是变量,v就是常量;如果假定路程S不变,那么时间t就随速度v的变化而变化,v和t就是变量,S是常量。

③例题1通过摄氏度与华氏度的转化,揭示这两个变量之间存在相互依赖的关系,并且这种相互依赖的关系能够用等式——函数解析式表示出来,注意“边款语”,3259+=t F 与3259+=t y 的一致性,即它们所表示的两个变量之间的依赖关系是完全一样的。

④例题2主要通过图像、表格的形式表示两个变量之间的相互依赖关系,为进一步学习函数的表示方法做准备。

此处还要让学生理解函数图像与学生原有的生活经验的一致性,看得懂函数图表中两个变量之间的相互依赖关系。

⑤通过取数字填表操作,使学生理解自变量的取值是有要求的,这个要求就是函数的定义域,每一个函数都有定义域,对于用解析式表示的函数,如果不加说明,那么这个函数的定义域就是使这个函数解析式有意义的一切实数,在初中阶段,我们主要考虑两个方面的问题:分式的分母不能为零,偶次根式的被开方数非负。

例题3就是说明如何根据解析式来求定义域⑥例题4主要说明如何求函数的解析式和如何求函数的定义域,此处的定义域由于有实际的背景,因此不能简单地按照解析式来看,更要关注符合实际意义。

⑦为了进一步研究函数的方便,引入函数的记号y=f(x),这个对学生来讲相当抽象,也不容易理解,因此一定要用一些实例来说明括号内的字母x 表示自变量,f 表示对应法则,即y 随x 的变化而变化的规律,另外再配以例题5求函数值的计算,让学生理解。

⑧通过实例引入了函数的三种表示方法,并说明各种表示方法的优劣,在教学中也要让学生充分理解。

⑨本节通过几个例题,进一步说明如何求函数的解析式和定义域,但此处更要关注的是例题2和例题5,应再一次帮助学生学会如何从函数的图像中获得信息解决问题。

根据以往的经验,从表格中获得有关信息,学生比较容易接受和掌握,但从图像中获得有关信息,是学生学习的一个难点,在教学中要引起足够的重视。

正比例函数教材分析及教学注意事项(1)正比例函数相关内容的概念框架与知识结构正比例正比例函数的图像实际问题--- 正比例函数---正比例函数的性质比例系数(2)正比例函数相关内容的教学目标、教学重点及教学难点分析正比例、正比例函数是我们生活实际中经常遇到的一个数学概念,正比例函数也是最简单的一个函数,通过研究、学习正比例函数的有关知识,使学生初步体会研究函数的方法,以利于继续研究、学习其他一些函数的知识。

教学目标①通过分析现实生活中具有正比例关系的具体事例,引进正比例函数,从而理解正比例函数的概念,初步获得从数量方面把握事物运动变化的规律和事物之间相互联系的体会。

②能根据条件求正比例函数的解析式,从中体会待定系数法。

③通过画图像的操作实践,体验“描点法”,理解正比例函数的图像是一条经过原点的直线,会画正比例函数的图像。

④借助正比例函数图像的直观性,认识正比例函数的一些基本性质,并能用数学语言进行描述,进而掌握这些基本性质。

重点难点理解正比例函数的概念,初步学会用待定系数法求正比例函数的解析式;知道正比例函数的图像是一条经过原点的直线,并能根据图像掌握正比例函数的一些基本性质。

(3)教材分析教材分析:①通过实例,先引进正比例的概念:如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,为后面引入正比例函数作准备。

②正比例函数的定义是采用形式化的定义,即形如y=kx(k≠0)的函数叫做正比例函数,教材中的表述略有不同。

定义域是根据解析式,x为一切实数。

③例题1主要目的是让学生具体认识正比例函数和它的比例系数,体会正比例函数是由它的比例系数完全确定的,同时复习巩固函数值的概念和求法。

④例题2让学生体验正比例函数的解析式中只有一个系数,因此只要有两个变量的一组对应值就可以确定这个函数的解析式的过程,从而体验重要的数学方法——待定系数法:只要数学模型已知,而其中的一些系数未知,那么就可以采用待定系数法解决问题。

教材中特别在例题后的想一想中直截了当地提出这个问题。

⑤通过画正比例函数y=2x的图像,了解用“描点法”画函数图像的三个步骤:列表、描点、连线,并得到这个函数的图像,再通过画正比例函数y=-2x的图像,归纳得到正比例函数y=kx的图像是一条经过原点和(1,k)的直线。

教师归纳解释时应从纯粹性和完备性两个方面表述,但对学生不作过高要求,只让他们有所认识、有所体验。

⑥例题3是让学生在已知正比例函数图像是一条经过原点的直线的基础上,画正比例函数的图像。

此时应该让学生明白:两点确定一条直线,因此要画一条直线,只需描出两点就可以了,而且其中的一点是坐标原点。

⑦在学会画正比例函数的图像的基础上,来学习正比例函数的有关性质,一定要让学生学会看图,结合图像理解性质。

思考引入就是这个目的,从而得到图像经过的象限和有关正比例函数的增减性,体验数形结合的思想。

另外要给学生交代清楚的是,这些性质反之也成立。

⑧例题4就是利用正比例函数的性质求字母a,让学生熟悉正比例函数性质,比例系数与它的增减性的关系。

⑨例题5是通过一个实例,让学生体验生活中正比例函数的应用,进一步感受到生活中处处有数学,数学来源于生活服务于生活的事实。

同时也让学生主要到具体问题中的函数定义域要根据具体情况来确定,本例尽管解析式是正比例函数y=0.2x的形式,但根据实际意义,定义域是0≤x≤10,因此画出的函数图像是一条线段,它是直线y=0.2x上的一部分。

反比例函数教材分析及教学注意事项(1)反比例函数相关内容的概念框架与知识结构反比例反比例函数的图像实际问题--- 反比例函数---反比例函数的性质比例系数(2)反比例函数相关内容的教学目标、教学重点及教学难点分析反比例、反比例函数也是我们生活实际中经常遇到的一个数学概念,它与正比例函数一样,也是最简单的一个函数之一,通过研究、学习反比例函数的有关知识,使学生进一步体会研究函数的方法,特别是如何画函数的图像,以及如何根据函数的图像掌握函数的性质。

教学目标①通过分析现实生活中具有反比例关系的具体事例,引进反比例函数,从而理解反比例函数的概念,进一步获得从数量方面把握事物运动变化的规律和事物之间相互联系的体会。

②能与正比例函数进行类比,根据条件求反比例函数的解析式,进一步体会待定系数法。

③通过画图像的操作实践,进一步体验“描点法”,理解反比例函数的图像是双曲线,会画反比例函数的图像。

④借助反比例函数图像的直观性,认识反比例函数的一些基本性质,并能用数学语言进行描述,进而掌握这些基本性质。

重点难点在研究反比例函数的有关性质时,能与正比例函数进行类比,运用研究正比例函数的方法研究反比例函数;知道反比例函数的图像是双曲线,研究它的增减性时注意“在每个象限内”这一关键的条件。

(3)教材分析①通过两个实例引出反比例的概念:如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例。

相关文档
最新文档