中央空调制冷机组余热回收讲义
中央空调制冷机组余热回收讲义

中央空调制冷机组余热回收讲义一.常用的计量单位:1.压力:1〕米制单位:公斤力每平方厘米:Kg / cm²;标准大气压:符号:atm ,海平面大气压力。
换算:1 atm = 760 Kg / cm²。
2). 国际制单位:帕:Pa ( N / m²) ; 1000Pa = 1K Pa ;1000000 Pa = 10 Pa = 1 M Pa单位换算:1 Kg / cm²= 0.1 M Pa = 100 K Pa ;2.热、能、功单位:A.米制单位:卡〔Cal〕:1公斤水温度升1℃所需热能。
1000Cal = 1Kcal (大卡)。
千瓦时:Kwh ;B.国际单位:焦耳〔J〕、千焦耳;3.热流、功率单位:A.米制单位:千卡每小时;Kcal /h;B.国际单位:瓦〔W〕、千瓦〔KW〕;换算:1千瓦〔KW〕= 860 Kcal (大卡)/h ; 1RT = 3.517 Kw4. 制冷系数 = 制冷量÷消耗的功能效比〔COP〕:每耗电1千瓦得到的制冷量。
二.空气调节:空气调节是一门维持室内良好的热环境的技术。
热环境是指室内空气的温度、湿度、空气流动速度、洁净度、新鲜度等。
空调系统的作用是根据使用对象的要求使各参数达到规定的指标。
空调系统的组成五个局部:空气处理设备;冷源和热源;空调风系统;空调水系统;控制、调节装置。
三.提供冷源方式——蒸气压缩式制冷循环:1.原理:液体蒸发时吸收热量,2. 根本概念:1〕液体的沸腾温度〔饱和温度〕随液体所处的压力而变化,压力越低液体的饱和温度也越低;如:1Kg液态R22在0.584Mpa压力时的沸腾温度为5℃KJ/Kg时的沸腾温度为8℃,吸热量〔制冷量〕为198.695 KJ/Kg。
不同液体的沸腾温度与压力、吸热量也各不一样。
因此,只要根据制冷所用液体〔制冷剂〕的热力性质,并创造一定的压力条件,就可获得所要求的低温。
2〕.制冷工质:〔制冷剂、冷媒、雪种〕;常用有:氨〔R717〕、氟里昂等;氟里昂:R11:一氟三氯甲烷R12:二氟二氯甲烷R13:三氟一氯甲烷R22:二氟一氯甲烷R23:三氟甲烷R134a:四氟乙烷;R123:三氟二氯乙烷;3〕.载冷剂:传递冷量的物质,空调一般是用水做载冷剂。
中央空调废热全热回收技术原理

天然科技中央空调废热全热回收技术一、中央空调废热全热回收技术原理:中央空调运用卡诺循环的原理,通过消耗少量的电能做功,把房间内大量的热量转移到室外,在整个过程中遵循热力学第一定律。
因此中央空调散发到室外的热量远远大于其耗电量。
众所周知,夏季空调器在制冷运行的同时,必须通过冷凝向外界散发出大量的冷凝废热,目前绝大部分空调器在设计时并没有将这部分热量加以有效的利用,而是将其直接排放到大气中,如风冷机组铜鼓风扇、水冷机组通过冷却直接向外界排放大量的热量,而因主机的机器效率和电机的功率因素散发出热量大约是制冷量的120%。
因此,热回收技术利用这部分热量来获取热水,实现空调废热再利用的目的,它是在原有空调机组上改进,在中央空调机组上安装一个高效的热回收设备及热泵接驳装置,该装置使高温的冷媒与自来水进行热交换,将排到大气中的废热转变为有用的可再生二次能源,免费制造75-100℃生活热水及供暖功能。
二、中央空调机组节能改造热泵制暖、废热回收制热水系统:1.热回收技术应用于水冷机组,减少原冷凝器的热负荷,使其热交换效率更高;应用风冷机组,使其部分实现水冷化,使其兼具有水冷机组高效率的特性;根据我们的工程经验所有的水冷、风冷机组。
经过热回收改造后,其工作效率都会有如下显著的改善。
2.制冷时降低了冷凝压力,也就是降低压缩机的排气压力,使空调机组耗电量节约10-30%。
3.制冷时降低了冷凝温度,提高机组制冷量。
根据计算:冷却水温度(冷凝温度)每降低1℃:机组制冷量可提高1.3%。
冷凝热回收后,如果冷却水流量不变,冷凝温度可降低3-5℃:可提高机组制冷量4%左右,节电效果明显。
4.在过渡时期不冷不热天气,或冬季气温低时,空调系统转换热泵模式控制系统,进行全热回收供酒店客房制暖及制热水。
制暖时空调机组实现单向耗能,双向输出,在不受影响制暖的同时制造免费的60-100℃生活热水。
5.风冷机组经过节能改造后热水可达到100℃,水冷机组经过节能改造后热水可达到60-80℃。
空调余热回收原理

空调余热回收原理空调系统在工作时会产生大量的余热,这些余热如果能够被有效回收利用,不仅可以节约能源,还能减少对环境的影响。
空调余热回收技术就是一种能够实现这一目标的技术,它通过一系列的工艺和装置,将空调系统产生的余热进行回收和利用,从而提高能源利用效率,降低能源消耗。
首先,空调余热回收原理的核心在于热交换。
在空调系统中,冷凝器和蒸发器是两个重要的部件,它们分别用于散热和吸热。
在工作过程中,冷凝器会产生大量的余热,而蒸发器则需要吸收热量来实现制冷效果。
通过合理设计和布置,可以将冷凝器产生的余热传递给蒸发器,从而减少对外界能源的依赖。
这种热交换的原理是空调余热回收技术的基础。
其次,空调余热回收原理还涉及到余热的储存和利用。
在空调系统中,余热的产生和利用往往是不匹配的,因为产生余热的时间和地点与需要余热的时间和地点并不完全一致。
因此,需要通过储热装置来将余热暂时储存起来,待需要时再进行释放和利用。
这就需要设计合理的储热系统,以确保余热能够在需要时得到有效利用。
最后,空调余热回收原理还需要考虑系统的稳定性和安全性。
在实际应用中,空调系统的稳定性和安全性是至关重要的,任何一点失误都可能导致系统的故障和安全事故。
因此,在设计和应用空调余热回收技术时,需要充分考虑系统的稳定性和安全性,采取相应的措施来确保系统的正常运行和安全使用。
综上所述,空调余热回收原理是一项能够有效节约能源、减少环境污染的重要技术。
通过热交换、余热储存和系统稳定性等方面的考虑,可以实现空调系统余热的有效回收和利用,从而为节能减排做出贡献。
随着科技的不断进步和创新,相信空调余热回收技术将在未来得到更广泛的应用和推广。
中央空调系统热回收应用系统方案详解

单元简介
热回收系统考量
采热回收技术可以节省运行费用,但是需要考虑以下因素: 平均日用热水用量,热水加热量(KWH) 空调冷负荷的最大和最小量 热水温度的需求
以上数据需要在日历上逐日校对,在考虑热回收系统配置时还需 要考虑以下因素: 蓄热水箱的体积成本 各种能源价格
各种应用的温度范围 30 - 35°C 预热生活热水, 其它预热, 游泳池, spa和治疗池
系统设置不同
JoChonnstoOronlNs
15°C
JoChonnstoOronlNs
JoChonnstoOronlNs
15°C
JoChonnstorOonlNs
20°C
JoChonnstorOonlsN
30°C
JoChonnstorOonlsN
30°C
15°C
ON
18°C
32°C
38°C
35°C
35°C
35°C
ON
38°C
ON
热水 38°C
ON
二管制+半封闭产品只能高冷却水温度运行
热水
ON
热回收系统(四管制)
JoChonnsOtoronNls
20°C
JoChonnsOtoronNls
30°C
JoChonnsOtoronNls
30°C
JoChonnsOtoronNls
35°C
35°C
ON
38°C
10-15%热损失
热水需求量计算
宾馆按200L/房间 小变化系数取3(最大时用水量与平均时用水量的比值)
计算示例: ➢ 200个房间,40000L/天@60℃热水 ➢ 尖峰需求5000L/小时 ➢ 生活热水加热量2326KWH
开利热回收培训课件

30
开利全热回收尊贵客户
序号 城市 用户名称 星级 型号 数量 系统特点
1
2 3 28% 4 5
广州
广州 广州 广州 广州 广州 广州 广州 广州 广州 广州
天河城 粤海喜来登酒店
圣丰索菲特大酒店 广州长隆酒店 广州竹丝岗商务楼 广交会威斯汀酒店 广州美维电子有限公司 海珠区国家税务局 高德朱美拉酒店 华侨医院新教学楼 石牌酒店 南方报业传媒大厦
全热回收机组的产热量
Q冷量+Q输入功率=Q热量+Q损耗
28%
150RT螺杆机组制热工况——
一边产冷、一边产热
33%
Cooling Capacity: Heating Capacity: Total Unit Power:
423 571 164
kW kW kW
蒸发器进出水温度: 12/7℃ 冷凝器进出水温度: 50/60℃
32
中央空调冷水机组 热回收及应用
by 俸崇杰
Company restricted information
0
议题
1)冷水机组热回收概述、分类、比较
28%
2)全热回收机组技术特点 3)全热回收系统应用
33%
39%
Company restricted information
1
冷水机组热回收概念
在制冷时,压缩机排出高温、高压制冷剂 气体
Company restricted information
25
全热回收系统_热带气候
冬季冷却塔吸热、散冷
28% 33%
39%
Company restricted information
26
全热回收系统_江河/湖泊/海水
制冷系统中的能量回收与利用

制冷系统中的能量回收与利用随着科技的飞速进步,制冷系统的应用范围越来越广泛。
从日常生活中的冰箱、空调到工业生产中的制冷设备,制冷系统已经成为不可缺少的一部分。
然而,在制冷系统运行的过程中,能量的浪费也是一个常见的问题。
为了有效利用能源,减少浪费,制冷系统中的能量回收与利用逐渐成为研究的热点。
1. 制冷系统中的能量浪费在制冷系统中,压缩机是电耗最大的设备之一,并且在压缩过程中会产生大量的热量,导致能源的浪费。
此外,制冷过程中也会有大量的废热和废气产生,也会导致能量的浪费。
因此,如何回收这些能量,实现能量的再利用,已经成为制冷系统研究的重点。
2. 能量回收与利用的方式在制冷系统中,能量回收与利用的方式主要包括以下几种:(1)废热回收利用:在制冷系统中,制热器会产生大量的废热,通过采用热回收器等设备,将废热回收用于加热或供暖,可以有效减少能量的浪费。
(2)废气回收利用:在制冷系统中,压缩机运转时会产生废气,通过采用废气回收装置将废气回收利用用于加热或驱动发电机,可以使废气的能量得到充分利用。
(3)制冷小二次利用:在制冷系统中,制冷剂的温度降低,而环境温度却不变。
因此,可以采用制冷小二次利用的方式,利用制冷剂的低温度进行冷水制造或空气制冷,进一步提高能量利用效率。
3. 能量回收与利用的优势能量回收与利用在制冷系统中具有以下优势:(1)节能减排:通过能量回收与利用,可以有效减少能源的浪费,节约电费,降低企业的负担,同时也能够减少二氧化碳等有害气体的排放。
(2)环保节能:制冷系统中的能量浪费,也是对环境的一种污染。
通过能量回收与利用,可以减少对环境的影响,使制冷系统成为一种真正的绿色环保设备。
(3)成本降低:能量回收与利用可以将废热、废气等废弃物利用起来,降低企业的采购成本,提高了设备的经济效益。
4. 总结制冷系统中的能量回收与利用,是一项新兴的研究领域。
通过废热回收利用、废气回收利用、制冷小二次利用等方式,可以将制冷系统中的能量浪费降到最低限度,实现绿色环保和可持续发展。
中央空调余热回收技术

中央空调余热回收技术适用场所:宾馆、酒店、度假村、桑拿、医院等既需要制冷又需要热水的单位节能率:100%一、中央空调余热回收中央空调余热回收主要有2个特点,其一是,废热利用,获得免费热水;其二是提高原机组工作效率,延长机组使用寿命。
在中央空调冷水机组的系统里,有冷冻水、冷媒(氟利昂)、冷却水三个循环系统,冷冻水、冷媒、冷却水都是热的载体,它们的作用都是传输热,一般传热都是一般的压缩机的出口处,随着冷媒的不同,气体冷媒的温度在80-95摄氏度之间,而冷凝器的饱和温度侧为42摄氏度左右,可见在压缩机和冷凝器之间用余热回收热水装置取出一部分热量将冷媒温度降低20-40摄氏度,则既可利用这部分热量又可减少原冷凝器的热负荷,使其热交换效率更高。
余热利用热水装置可以制备45-70摄氏度的热水供客房、洗衣房及其它需要热水的地方使用。
目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。
如果把这部分热量利用起来,则可以实现单项能耗(正常制冷时的耗电量),双项输出(制冷和生活热水),大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。
二、中央空调余热回收的特点1.热回收量大。
在一般空调使用工况下,在水温需示为30-60摄氏度时,右回收热量为制冷量的30%-80%:水温需求为55-60摄氏度时,可回收热量为制冷量的30%。
2.保护环境。
由于利用废热提供了所需的热水,大大减少了供热锅炉向大气排放CO2气体,从而减少了使地球大气候变暖的温室效应。
同时直接减少了向大气的废热排放量。
3.提高空调机组效率,节省机组用电量。
空调机组压缩机的一部分热量经过回收器吸收以后,原冷凝器的热负荷减少,热交换效率提高,空调机组的效率提高,耗电量也将显著减少,同时,由于采用热回收技术,机组的负荷减少,使用寿命延长。
4.体积小,重量轻。
热回收器可直接安装在中央空调机组上,无需占用建筑面积。
空调余热回收的原理和利用

空调余热回收的原理和利用概述空调余热回收是一种利用空调系统产生的热量进行再利用的技术。
通过回收空调系统中的余热,可以提高能源利用效率,减少能源消耗,降低环境污染。
本文将详细介绍空调余热回收的原理和利用相关的基本原理。
空调系统的工作原理在介绍空调余热回收的原理之前,我们先了解一下空调系统的工作原理。
空调系统主要由压缩机、蒸发器、冷凝器和膨胀阀等组成。
1.压缩机:将低温低压的制冷剂气体吸入,通过压缩提高其温度和压力。
2.蒸发器:将高温高压的制冷剂气体进入蒸发器,与室内空气进行热交换,制冷剂吸收室内空气中的热量,从而使室内空气温度下降。
3.冷凝器:将经过蒸发器后的制冷剂气体进入冷凝器,与外部空气进行热交换,制冷剂释放热量,从而使制冷剂气体冷却并凝结成液体。
4.膨胀阀:控制制冷剂液体流量和压力,使其进入蒸发器继续循环。
空调余热回收的原理空调系统在制冷过程中产生了大量的余热,这些热量通常被排放到室外,造成能源的浪费。
而空调余热回收技术就是利用这些余热,将其再利用起来。
空调余热回收的原理可以分为两个方面:1.空气热回收:室内空调系统通过蒸发器将室内空气中的热量吸收,然后通过冷凝器将热量释放到室外空气中。
在这个过程中,冷凝器与蒸发器之间形成了一个热交换的闭环。
而空调余热回收技术就是将冷凝器释放出的热量再次回收利用,通过热交换的方式将其传递给其他需要热量的设备或系统,如暖气系统、热水系统等。
2.水热回收:空调系统在冷凝器中产生的热量可以用来加热水。
空调系统可以通过热交换器将冷凝器释放的热量传递给水,从而将水加热。
这样可以实现热水的供应,避免了额外的能源消耗。
空调余热回收的利用方式空调余热回收的利用方式多种多样,根据具体的需求和场景选择不同的方式进行利用。
以下是几种常见的空调余热回收利用方式:1.暖气系统:将空调系统产生的余热通过热交换器传递给暖气系统,从而实现室内供暖。
这种方式可以减少供暖系统的能源消耗,提高能源利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中央空调制冷机组余热回收讲义
一.常用的计量单位:
1.压力:
1)米制单位:公斤力每平方厘米:Kg / cm²;
标准大气压:符号:atm ,海平面大气压力。
换算:1 atm = 760 mmHg = 101.325 KPa = 0.98 Kg / cm²。
2). 国际制单位:帕:Pa ( N / m²) ; 1000Pa = 1K Pa ;
1000000 Pa = 10 Pa = 1 M Pa
单位换算:1 Kg / cm²= 0.1 M Pa = 100 K Pa ;
2.热、能、功单位:
A.米制单位:卡(Cal):1公斤水温度升1℃所需热能。
1000 Cal = 1 Kcal (大卡)。
千瓦时:Kwh ;
B.国际单位:焦耳(J)、千焦耳;
3.热流、功率单位:
A.米制单位:千卡每小时;Kcal /h;
B.国际单位:瓦(W)、千瓦(KW);
换算:1千瓦(KW)= 860 Kcal (大卡)/h ; 1RT = 3.517 Kw
4. 制冷系数 = 制冷量÷消耗的功
能效比(COP):每耗电1千瓦得到的制冷量。
二.空气调节:
空气调节是一门维持室内良好的热环境的技术。
热环境是指室内空气的温度、湿度、空气流动速度、洁净度、新鲜度等。
空调系统的作用是根据使用对象的要求使各参数达到规定的指标。
空调系统的组成五个部分:空气处理设备;冷源和热源;空调风系统;空调水系统;控制、调节装置。
三.提供冷源方式——蒸气压缩式制冷循环:
1.原理:液体蒸发时吸收热量,
2. 基本概念:
1)液体的沸腾温度(饱和温度)随液体所处的压力而变化,压力越低液体的饱和温度也越低;如:1Kg液态R22在0.584Mpa压力时的沸腾温度为5℃,吸热量(制冷量)为201.246KJ/Kg;在0.64MPa压力时的沸腾温度为8℃,吸热量(制冷量)为198.695 KJ/Kg。
不同液体的沸腾温度与压力、吸热量也各不相同。
因此,只要根据制冷所用液体(制冷剂)的热力性质,并创造一定的压力条件,就可获得所要求的低温。
2).制冷工质:(制冷剂、冷媒、雪种);
常用有:氨(R717)、氟里昂等;
氟里昂:R11:一氟三氯甲烷
R12:二氟二氯甲烷
R13:三氟一氯甲烷
R22:二氟一氯甲烷
R23:三氟甲烷
R134a:四氟乙烷;
R123:三氟二氯乙烷;
3).载冷剂:传递冷量的物质,空调一般是用水做载冷剂。
4).制冷量:单位——千瓦(Kw)、大卡(Kcal)、冷吨(Rt);
1千瓦(Kw)= 860大卡(Kcal);
1 冷吨(Rt)= 3.517 Kw = 3024 Kcal ;
100Rt = 351.7 K w = 30万Kcal
冷吨(美)定义:是以24小时能把1吨(美)=2000磅0℃
水冻成0℃的冰的制冷能力定为制冷能力单位,即RT。
5). 冷凝温度:气体液化时的温度(在一定压力下)。
同一物质冷凝温度是随压力变化而变化。
3.制冷循环的主要设备:
压缩机、冷凝器、膨胀阀、蒸发器四大主件组成。
用人为方法使制冷剂在密闭系统内进行物态(气态、液态)变化,达到连续、稳定提供冷量的一套制冷装置。
制冷循环的各个参数:(制冷剂R22)
制冷工质在蒸发器内参数:气态:压力0.64 Mpa ;温度 8℃;
压缩机出口:气态:压力1.5 Mpa ;温度 85℃;
冷凝器内参数:液态:压力1.5 Mpa ;温度 37℃;
冷却水温度:出口温度: 37 ℃;进口温度: 32 ℃;
冷冻水温度:出口温度: 8 ℃;进口温度: 13 ℃。
由于压缩机机型不同,以上各参数也不尽相同。
1)压缩机:
压缩机分类:活塞式压缩机、螺杆式压缩机、离心式压缩机、涡旋式压缩机等。
2)冷凝器与蒸发器:
一般是卧式壳管式;九十年代研制出板式换热器,已经被一些生产厂家在小型制冷机组上采用。
3)节流膨胀阀:
1)功能:降压
2) 类型:
A.热力膨胀阀:由感温包、膜片等组成。
B.浮球阀:保持蒸发中的液位恒定。
C.电子膨胀阀。
四.制冷机组的节能:
1.制冷机组的热回收:
1)中央空调制冷机组制冷循环:
中央空调制冷机组向空调末端输送8℃左右的冷冻水,在空调末端吸收室内的热量后,水温升高至13℃左右。
冷冻水回到蒸发器,又被冷媒冷却至8℃左右。
冷冻水带回室内的热量被冷媒吸收,冷媒经压缩机压缩,温度升高至58℃~90℃,使冷媒处于过热状态。
进入冷凝器被冷却水冷却至37℃左右,37℃左右冷却水经水泵输送到屋顶冷却塔喷淋冷却,冷却塔风机将热量排到大气中去。
整个过程消耗的是电。
2)冷凝热:
冷媒被压缩机压缩后,冷媒携带的热量进入冷凝器,该热量就是冷凝热。
冷凝热包括冷冻水从室内吸收的热量、压缩机电机的发热及冷媒被压缩产生的热量和气体冷媒在管道内高速流动产生摩擦热。
因此,冷凝热大于制冷量,如:活塞机组冷凝热是制冷量的1.3倍;离心机最低也达到1.15倍。
3)冷凝热回收:
A . 制冷机组压缩机排出的冷凝热是通过冷却水带到屋顶冷却塔排到
大气中去。
余热回收技术就是回收冷凝热,在机组压缩机出口处与冷凝器
之间安装一个热回收装置,该装置使高温的气体冷媒与待加热的20℃自
来水进行热交换,将冷媒温度降下来;同时使水温提高到50℃左右。
把
排到大气中去的废热变为有用的热源,替代燃油与电加热酒店生活热水。
同时,冷凝热被吸收后降低冷却水和冷却塔的负荷,也有节电效果。
B
C .确定热水量和水温:
85
40 Q
Q1Q2 Q3
A.可利用热能计算:查制冷剂压焓图,计算出过热状态和饱和状态的焓值。
B.根据可利用的热焓值,计算水的流量和流速。
C.设计热交换器:换热面积、容积、流道形式、口径等。
2.冷凝热回收的几个问题:
(1)对机组的影响:
a. 降低了冷凝压力,也就是降低压缩机的排气压力。
b. 降低了冷凝温度,提高机组制冷量。
根据计算:冷却水温度(冷凝温度)每降低1℃;机组制冷量可提高1.3% 。
冷凝热回收后,如果冷却水流量不变,冷凝温度可降低3~5℃;可提高机组制冷量4 % 左右,节电效果明显。
C.由于在机组冷凝器之前串联一个热采集器,排气管道增加弯头等,排气阻力会有所加大,一般会使压力增加0.3 Kg / cm²(30Kpa),管道设计得好会低于30 Kpa。
(2)不是所有制冷机组都可以进行热回收改造:
如:A. 排气温度低于50℃的机组;
B. 负压机组,冷媒R11。
C.排气管不好接的机组。
如:约克机组;
D.带节能器机组,如:特灵两级、三级压缩离心机组。
这些制冷机组一般都不好进行热回收改造。
(3)热回收发展趋势:
由于余热回收有利于节能,所以国内已经有些设备生产厂家,
制造出带热回收的中央空调制冷机组。
相信在不很长时间里,将会买到既能制冷又能出热水的各种机型的中央空调机组。
五.蓄冷技术:
蓄冷方法有显热蓄冷和相变潜热蓄冷两大类。
显热:物体被加热或冷却时物体只有温度的变化,而无形态变化所得到的(或放出)热量。
潜热:物体的温度不变,仅有状态的变化(相变)时,所吸收(或放出)的热量,
1.蓄冷空调的基本原理:
空
调
换
热
器
2. 冰蓄冷空调:相变潜热蓄冷
冰的相变潜热量是:335.2KJ/Kg;
载冷剂:乙二醇溶液;
3.高温水蓄冷:
在液体冷媒即将进入节流阀之前,利用低温水降低冷媒的温度(从32℃左右降低到12℃~15℃)。
也可以说是把夜间储存的冷量在白天机组运行时带到机组蒸发器里去。
原理:
水冷中央空调制冷机组冷媒(R22)冷凝温度一般在40℃左右,40℃左右的液体冷媒(R22)通过节流阀(亦称膨胀阀)到蒸发器蒸发成气态,吸收冷冻水的热量,产生制冷量。
如果液体冷媒(R22)在进蒸发器之前从40℃降低到10℃,则冷媒(R22)在蒸发器里蒸发成气态,必然吸收更多冷冻水的热量,极大提高了机组的制冷量。
根据理论计算:每降低冷媒(R22)冷凝温度1℃,机组提高制冷量1.8%,则: 30℃×1.8 % = 54 % 。
如果制冷机组使用后半夜的低谷电来运行,把酒店里的消防水池的水(约三、五百吨)降低温度到5℃左右,把冷量储存在消防水池的水里(蓄冷)。
白天用5℃左右消防水来降低冷媒(R22)的温度。
提高机组的制冷量,节约了白天的电。
峰谷电的电价差,就是该项技术的经济效益。
峰谷电的差价一般在0.6—0.7元左右,一台200K w的制冷机组,后半夜运行六小时。
则:每天可节约电价:0.65×200×6 = 780(元),
一个月: 780 × 30 = 2.34(万元)
年效益:2.34×6 = 14 (万元)。