直线与圆的位置关系 优秀教案
《直线与圆的位置关系》教案
《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
直线与圆的位置关系》教学设计-优质教案
2.5直线与圆的位置关系(1)教学目标1.经历探索直线与圆的位置关系的过程;2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系.教学重点用“圆心到直线的距离与圆半径之间的数量关系”来描述“直线与圆的位置关系”的方法.教学难点直线和圆相切:“直线和圆有唯一公共点”的含义.教学过程(教师)学生活动设计思路情境引入1.我们已经学习过点和圆的位置关系,请同学们回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)2.观察三幅太阳升起的照片,地平线与太阳经历了哪些位置关系?通过这个自然现象,你猜想直线和圆的位置关系有哪几种?1.先让每个学生回忆思考,然后全班交流.2.引导学生将整个日出过程演示一下,从而猜想直线和圆的位置关系有哪几种?如果学生回答不完整,让其他同学补充说明,并带着疑问和兴趣探究今天的知识.通过学生熟悉的问题入手,既能复习旧知,同时也通过类比,激发学生的兴趣,导入新课.例题讲解例1 在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2;(2)r=22;(3)r=3.1.先让学生独立思考,然后让学生板演,最后学生点评.(强调:过点C作AB的垂线.)知识点的综合运用,进一步培养学生分析问题的能力.例2 已知:如图示,∠AOB=300,M为OB上一点,以M为圆心,5cm长为半径作圆,若M在OB上运动,问:①当OM满足时,⊙M与OA相离?②当OM满足时,⊙M与OA相切?③当OM满足时,⊙M与OA相交?2.先让学生独立思考,然后让学生板演,最后学生点评.本题难度不大,主要是让学生学会如何判断直线与圆的位置关系,寻找d与r的大小关系.练一练1.已知⊙O的直径为10cm,点O到直线l的距离为d:(1)若直线l与⊙O相切,则d=____;(2)若d=4cm,则直线l与⊙O有学生先独立思考并完成,然后集体反馈.巩固所学知识.MBOA·_____个公共点;(3)若d=6cm,则直线l与⊙O的位置关系是________.2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.拓展提升在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,思考:随着r的变化,⊙A与坐标轴交点的变化情况.学生先独立思考,然后自己完成,最后小组交流.拓展学生思维,渗透分类思想.总结1.这节课你有哪些收获和困惑?2.直线与圆的位置关系中的d与点和圆的位置关系中的d,两者有何区别与联系?各抒己见.培养学生归纳、口头表达能力.课后作业课本P65第1、2.独立完成.进一步复习巩固所学知识.。
直线和圆的位置关系优秀教案
直线和圆的位置关系【课时安排】4课时【第一课时】【教学目标】一、教学知识点。
理解直线与圆有相交、相切、相离三种位置关系。
二、能力训练要求。
1.经历探索直线与圆位置关系的过程,培养学生的探索能力。
2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化。
三、情感与价值观要求。
1.通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
【教学重点】1.经历探索直线与圆位置关系的过程。
2.理解直线与圆的三种位置关系。
【教学难点】经历探索:直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系。
【教学方法】教师指导学生探索法。
【教学过程】一、创设问题情境,引入新课。
[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?[生]圆是平面上到定点的距离等于定长的所有点组成的图形。
即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径。
因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外。
也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内。
[师]本节课我们将类比地学习直线和圆的位置关系。
二、新课讲解。
(一)复习点到直线的距离的定义。
[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离。
如图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离。
(二)探索直线与圆的三种位置关系。
[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的。
如大家请观察课本中的三副照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系。
《直线和圆的位置关系》教学教案设计.doc
24.2.2直线和圆的位置关系(一)学习目标:1、知识与技能:使学生理解直线和圆的位置关系;初步掌握直线和圆的位置关系的数量关系。
2、过程与方法:通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
3、情感与价值观:在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以互相转化的。
重点:使学生正确理解直线和圆的位置关系。
难点:圆心到直线的距离和圆的半径大小关系的理解。
教学过程:一、回顾旧知师:我们已经学习了点和圆,同学们想一想点和圆有哪几种位置关系?生:点在圆外、点在圆上、点在圆内。
师:怎样判断点和圆的位置关系?生:根据点到圆心的距离与圆半径大小来判断。
当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内。
二、创设情境师:我们知道了点和圆有三种位置关系,那么直线和圆有几种位置关系呢?今天我们就来研究这个问题。
“24.2.2直线和圆的位置关系(一)”教师板书课题。
三、探索新知师:下面老师先画一个圆。
师:我们把直尺的边缘看作一条直线,任意移动直尺。
同学们想一想,这一过程中直线和圆的公共点可能有多少个?生:直线和圆公共点可能有0个,1个,2个。
教师画出图形并标出公共点。
师:根据公共点的个数,我们把直线和圆位置关系分成三种,即没有公共点叫相离,唯一公共点叫相切,两个公共点叫相交。
教师板书定义。
师:我们知道要判断点和圆的位置关系可以根据点到圆心的距离与半径的大小来判断,那么要判断直线和圆的位置关系可不可以用类似的方法呢?下面请一位同学画出圆心到直线的距离d?师:看图形你发现了什么?生:我发现了直线与圆相离时,d>r;相切时,d=r;相交时,d<r。
教师板书上述数量关系。
师:这是已知了直线与圆的位置关系,得出对应的数量关系,反过来,如果已知数量关系,可不可以得出对应的位置关系呢?用这种数量关系来判断直线与圆的位置关系,关键是要知道d和r,然后比较d与r大小,从而确定位置关系。
直线与圆的位置关系 —— 初中数学第六册教案
直线与圆的位置关系——初中数学第六册教案一、教学目标1.让学生掌握直线与圆的位置关系的判定方法。
2.培养学生运用圆的性质解决实际问题的能力。
3.培养学生的空间想象能力和逻辑思维能力。
二、教学重难点1.重点:直线与圆的位置关系的判定方法。
2.难点:运用直线与圆的位置关系解决实际问题。
三、教学过程(一)导入1.回顾圆的基本概念,如圆的定义、圆的性质等。
2.提问:同学们,我们在学习圆的过程中,有没有发现圆与其他图形(如直线)有特殊的联系方式呢?(二)探究直线与圆的位置关系1.让学生观察教材中的例题,引导学生发现直线与圆的位置关系。
3.引导学生探究每种情况下直线与圆的位置关系的特点。
(三)判定直线与圆的位置关系1.介绍直线与圆的位置关系的判定方法。
2.通过例题讲解,让学生掌握判定方法。
3.学生独立完成练习题,巩固所学知识。
(四)应用直线与圆的位置关系解决问题1.出示实际问题,如:已知圆的半径和圆心,求直线与圆的位置关系。
2.引导学生运用直线与圆的位置关系解决问题。
3.学生分组讨论,分享解题思路和方法。
(五)课堂小结1.回顾本节课所学内容,让学生复述直线与圆的位置关系及其判定方法。
2.提问:同学们,你们能举例说明直线与圆的位置关系在实际生活中的应用吗?(六)课后作业1.完成教材中的课后习题,巩固所学知识。
2.选取一道实际问题,运用直线与圆的位置关系解决问题。
四、教学反思1.本节课通过引导学生观察、讨论、练习,让学生掌握了直线与圆的位置关系及其判定方法。
2.在教学过程中,注意培养学生的空间想象能力和逻辑思维能力。
3.课后作业的设计既有助于巩固所学知识,又能够让学生将所学知识应用于实际生活。
五、教学资源1.教材:初中数学第六册2.辅助资料:直线与圆的位置关系的相关例题、练习题、实际问题等。
六、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言积极性等。
2.作业完成情况:检查学生作业的正确率、解题思路等。
3.实际应用:关注学生在解决实际问题时的表现,了解学生的实际应用能力。
直线与圆的位置关系 优秀教案
直线与圆的位置关系【教材分析】本节课的内容是平面解析几何的基础知识,是对前面所学直线与圆的方程的进一步应用。
而解决问题的主要方法是解析法。
解析法不仅是定量判断直线与圆的位置关系的方法,更为后续研究直线与圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。
【教学目标】1.知识与技能目标:理解直线与圆三种位置关系。
掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法。
2.能力目标:通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考,自主探究,动手实践,合作交流的学习方式。
强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力。
3.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神。
【教学重难点】本节课的内容是在学生初中了解了直线和圆位置关系的判断方法之后,利用直线和圆的方程的再研究。
情境的改变必然导致研究思路的变化,本节课主要是研究利用解析法来判断直线和圆的位置关系,研究问题的思想方法学生不熟悉。
新课程《标准》要求,教学中应强调对基本概念和基本思想方法的理解和掌握,并能灵活应用所学知识解决实际问题,根据本节课的教学内容和学生认知结构特征,重点确定为:用解析法研究直线与圆的位置关系。
难点确定为学生体会和理解解析法解决几何问题的数学思想。
【教学方法】丰富学生的学习方式,改进学生从学习方法是高中教学课程追求的理念。
学生的数学学习不应只限于概念,结论和方法的记忆,模仿和接受。
本节课主要是如何判断直线与圆的位置关系,学习过程中,要使学生理解判断方法,并会灵活应用,要鼓励学生积极参与教学活动,包括思维的参与和行为的参与,既要有教师的讲授和指导,也要有学生的自主探究与合作交流。
因此,本设计主要采用的教学方法是引导发现法,结合本课的教学内容与学生实际,整体思路是:创设情境→自主探究→合作交流→得出结论→理解应用→提高能力。
5.1直线与圆的位置关系 一等奖创新教案_1
5.1直线与圆的位置关系一等奖创新教案《直线与圆的位置关系》教学设计一、教学目标:1.知识目标:掌握判断直线与圆的位置关系的两种方法;解决与位置关系相关的问题,如,弦长、切线方程等;2.能力目标:能够几何问题代数化,代数问题几何化;3.情感目标:形成“数学是相互联系、统一的整体”的数学观。
二、教学重点、难点:重点:掌握几何法和解析法判断直线与圆的位置关系难点:灵活运用“数形结合”来解决直线与圆的位置关系三、教学方法探究式教学法、讲练结合、情景教学四、学情分析通过初中的学习,直线与圆的位置关系已有感性认识,学生已经知道直线与圆有三种位置关系,并且从直线与圆的直观感受上,学生已经懂得“利用直线与圆的交点的个数及圆心到直线的距离与圆的半径的大小比较”来研究直线与圆的位置关系。
高中要求学生能够利用直线与圆的方程,定量来进行判断,解决问题的主要方法是解析法,而解析法的思想方法学生不熟悉。
本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系。
五、教学过程1.情景导入借用“大漠孤烟直,长河落日圆”引出日落情景,把太阳比做圆,地平面作为水平线,引出本节课题内容:直线与圆的三种位置关系。
2. 引入课题引导探究:通过几何画图,观察直线与圆的位置关系,进而引出判断直线与圆的位置关系。
(1)直线与圆的位置关系圆与直线的交点个数:几何判定法:(1)直线与圆__相交__,有两个公共点;设r为圆的半径,d为圆心到直线的距离:(2)直线与圆__相切__,只有一个公共点;(1)d>r 圆与直线__相离__;(3)直线与圆__相离__,没有公共点.(2)d=r 圆与直线__相切__;(3)d0 直线与圆__相交__;(2)Δ=0 直线与圆__相切__;(3)Δ。
直线与圆的位置关系教案(2篇)
直线与圆的位置关系教案(2篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!直线与圆的位置关系教案(2篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
九年级数学上册《直线和圆的位置关系》教案、教学设计
(一)教学重难点
1.理解并掌握直线与圆的三种位置关系及其判定方法;
2.运用点到直线的距离公式解决直线与圆位置关系的相关问题;
3.培养学生的空间想象能力和几何思维能力。
(二)教学设想
1.创设情境,导入新课
通过展示实际生活中与直线和圆位置关系相关的图片,如太阳在地平线上升起、投篮时的抛物线等,引发学生对本节课主题的兴趣,激发学生的学习热情。
3.培养学生严谨、细致的学习态度,使学生认识到数学在生活中的广泛应用;
4.通过对直线与圆位置关系的学习,使学生感受到几何图形的美,培养学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何知识基础,对圆的基本概念和性质有了初步的了解。在此基础上,学生对直线与圆的位置关系这一章节内容的学习,既是对已有知识的巩固,也是对几何图形认识和空间想象能力的提升。然而,学生在解决具体问题时可能会遇到以下困难:对直线与圆位置关系的判定不够熟练,对相关定理的理解不够深入,以及在运用点到直线的距离公式时计算不准确等。因此,在教学过程中,教师应关注学生的个体差异,因材施教,鼓励学生积极参与,帮助学生克服困难,提高解决问题的能力。同时,注重激发学生的学习兴趣,培养学生的几何思维和空间想象能力,为后续几何知识的学习打下坚实基础。
2.自主探究,合作交流
教师提供丰富的学习资源,引导学生自主探究直线与圆的位置关系,鼓励学生进行合作交流,共同发现并总结判定方法。在此过程中,教师应及时给予指导,帮助学生解决遇到的问题。
3.精讲精练,突破重难点
针对直线与圆位置关系的重难点,教师通过典型例题的讲解与分析,帮助学生掌握判定方法和解题技巧。同时,设计有针对性的课堂练习,巩固学生对知识点的理解。
在总结归纳环节,教师引导学生回顾本节课所学知识,总结直线与圆的位置关系及其判定方法。同时,教师强调点到直线的距离公式在实际问题中的应用,以及如何运用所学知识解决生活中的几何问题。此外,教师还关注学生的情感态度与价值观培养,让学生认识到几何在生活中的重要作用,激发他们学习数学的兴趣。
直线与圆的位置关系优质课教学设计
直线与圆的位置关系教学设计一、教学目标:1、理解直线和圆的三种位置关系,掌握其判定方法和性质。
2、通过直线和圆的位置关系的探究,知道类比及数形结合的数学思想。
二、教学重点:直线和圆的位置关系的判定方法和性质。
三、教学难点:直线和圆的三种位置关系的研究及运用。
四、探究过程:1、在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系几种?2、请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?3、如何根据基本概念来判断直线与圆的位置关系?根据直线与圆的公共点的个数当直线与圆没有公共点时,直线与圆( )当直线与圆有1个公共点时,直线与圆( )当直线与圆有2个公共点时,直线与圆( )当堂练习1、看图判断直线l与⊙O的位置关系?4、想一想:当直线与圆相离、相切、相交时,圆心到直线的距离d与半径r有何关系呢?(请同学们用观察或量一量的方法得出结论并在组内交流)直线与圆的位置关系(数量特征)(1)直线与圆相离 d> r(2)直线与圆相切⇔d= r(3)直线与圆相交⇔d< r当堂练习2、已知圆的半径为6cm,设直线和圆心的距离为d:(1)若d=4cm ,则直线与圆, 直线与圆有____个公共点。
(2)若d=6cm ,则直线与圆______, 直线与圆有____个公共点。
(3)若d=8cm ,则直线与圆______, 直线与圆有____个公共点。
当堂练习3、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d ,根据条件填写d的范围: (1)若AB和⊙O相离, 则 ;(2)若AB和⊙O相切, 则 ;(3)若AB和⊙O相交,则 .典例精析例1 如图,∠C=30°,O为BC上一点,且CO=6cm,以O为圆心,r为半径的圆与直线CA 有怎样的位置关系?为什么?(1)r=2.5cm (2)r=3cm (3)r=5cm当堂练习4、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,(1)当r = __________时,⊙C与直线AB相切。
直线与圆位置关系优秀教案
练习1判断下列命题是否正确.(投影打出)
(1)经过半径外端的直线是圆的切线
(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.
(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.
采取学生抢答的形式进行,并要求说明理由,教师给予及时肯定或纠正.
判定一条直线是圆的切线,有三种方法:
(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线.
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.
图(1)中直线l经过半径外端,但不与半径垂直;
图(2)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
最后引导学生分析,定理实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端,并且垂直于这条半径的直线是圆的切线”这种形式.因此,定理不必另加证明.
课前预习自主探究交流展示
课前准备
圆规小黑板
教学过程
教学步骤
教师活动
学生活动
设计意图
复习提问
导入新课
探究新知
感悟收获
自我检测
布置作业
一、从学生已有的知识结构提出问题
1.投影打出直线与圆的三种位置关系.(图7-102)
根据图7-102,请学生回答以下问题
(1)在图7-102中,图(1)、图(2)、图(3)中的直线l分别和⊙O是什么关系?
直线与圆位置关系教案
直线与圆位置关系教案【篇一:直线与圆的位置关系(教案)】《直线与圆的位置关系》的教学设计一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书a版数学②第四章第二节“直线与圆的位置关系”第一课时。
二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。
用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。
三、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题; 2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想; 3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。
四、教学重点、难点、关键:(1)重点:用坐标法判断直线与圆的位置关系(2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解(3)关键:展现数与形的关系,启发学生思考、探索。
五、教学方法与手段:1.教学方法:探究式教学法2。
教学手段:多媒体、实物投影仪六、教学过程:1.创设情境,提出问题教师利用多媒体展示如下问题:问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km处,受到影响的范围是半径长为30km 的圆形区域,已知港口位于台风中心正北50km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。
设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。
2.切入主题,提出课题(1)由学生将问题数学建模,展示平面几何解决方法,得出结论。
《直线和圆的位置关系》教学设计
《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。
教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。
《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
3.6直线与圆的位置关系(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直线与圆位置关系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.培养学生的数学运算能力,掌握直线与圆位置关系的相关计算方法,并能运用这些方法解决实际问题。
5.培养学生的合作交流能力,通过小组讨论、合作探究直线与圆的位置关系,提高沟通能力和团队协作精神。
三、教学难点与重点
1.教学重点
(1)直线与圆的位置关系:理解并掌握相离、相切和相交三种位置关系的判定方法及其性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直线与圆位置关系的基本概念。直线与圆的位置关系包括相离、相切和相交三种情况。这些关系在几何图形的研究和实际应用中具有非常重要的意义。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆形花坛周围的道路设计,了解直线与圆在实际中的应用,以及如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对直线与圆的位置关系这一章节表现出浓厚的兴趣。通过引入日常生活中的实例,他们能够更好地理解抽象的几何概念。在讲授理论部分时,我注意到有些学生对于切线的判定方法掌握得不够扎实,这需要我在今后的教学中进一步强调和巩固。
在实践活动中,学生们分组讨论和实验操作的过程十分积极,他们能够将所学的理论知识应用到解决实际问题中。不过,我也观察到在小组讨论时,部分学生过于依赖同伴,缺乏独立思考的能力。因此,我会在后续的教学中注重培养学生的独立思考能力,鼓励他们大胆表达自己的观点。
直线和圆的位置关系 优秀教学设计(教案)
5.已知⊙O 的半径为3,点 A 在直线 l 上,点 A 到⊙O 的圆心 O 的距离为3,则 l 与⊙O 的位置关 系为 。 A.相离 B.相切 C.相交 D.相交或相切 6.如图:AB=8是大圆⊙O 的弦,大圆半径为 R=5,则 以 O 为圆心,半径为3的小圆与 AB 所在直线的位 置关系是( ) A 相离 B 相切 C 相交 D 都有可能
通过上面问题我们我们容易得到: 直线 l 和⊙O 相交 d<r 直线 l 和⊙O 相切 d=r 直线 l 和⊙O 相离 d>r 总结:判断直线与圆的位置关系有两种方法: 1. 直线与圆公共点的个数; 2. 直线与圆心的距离 d 与半径的大小关系 填表:略 四.随堂练习: 1.圆的直径是13cm ,如果直线与圆心的距离分别 是, (1) 4.5cm ;(2) 6.5cm ; (3) 8cm. 那么直线和圆分别是什么位置关系?有几个公共 点? 2.如图,直线 l 与⊙O 相交与 A,B 两点,点 O 到 直线 l 距离为3,AB=8。 (1)求⊙O 的直径; (2) ⊙O 的半径满足什么条件时,它与直线 l 相离?
此时学生已经 到了疲劳期, 学习情趣减 弱,为了再次 提起学生兴奋 点采用游戏的 形式来巩固检 测知识
3.已知直线 l 与⊙O 相切,若圆心 O 到直线的距 离是5,则⊙O 的半径是_________ 4. 如图:∠AOB = 30°,M 是 OB 上的一点,且 OM =5 cm 以 M 为圆心,以 2.5 cm 为半径的圆与 直线 OA 有怎样的关系?
探究(类比点与圆的位置关系)当公共点个数不 好判断怎么办?直线与圆的位置关系能否像点与 圆的位置关系一样进行数量分析? 如果圆的半径为 r,圆心到直线的距离为 d 二者 满足怎么样关系的时,分别有直线与圆的三种关
直线与圆的位置关系教案
直线与圆的位置关系教案教学目标:1.知道直线与圆的位置关系有三种情况:相离、相切、相交。
2.掌握判断直线与圆的位置关系的方法。
3.能够综合运用所学知识解决直线与圆的位置关系问题。
教学重点:1.直线与圆的位置关系的判断方法。
2.解决直线与圆的位置关系问题的能力。
教学难点:1.判断直线与圆的位置关系。
2.综合运用所学知识解决直线与圆的位置关系问题。
教学过程:一、导入(5分钟)老师出示一张图片,图片上有一条直线与一个圆相交,并让学生观察并回答:直线与圆的位置关系有哪些可能的情况?二、讲授(15分钟)1.老师引入“直线与圆的位置关系”的概念,并给出三种可能的情况:相离、相切、相交。
2.介绍判断直线与圆的位置关系的方法:a.直线与圆相离的情况下,直线与圆的最短距离大于圆的半径。
b.直线与圆相切的情况下,直线与圆的最短距离等于圆的半径。
c.直线与圆相交的情况下,直线与圆的最短距离小于圆的半径。
3.通过示例讲解判断直线与圆的位置关系的方法。
三、练习(20分钟)1.团队合作练习:将学生分成若干小组,给出不同的直线与圆的示例,让学生判断直线与圆的位置关系,并在白板上写出自己的判断结果。
2.小组讨论与展示:每个小组轮流讲解和展示自己的判断结果,并给出相应的理由。
3.整体讨论与总结:老师引导学生就判断直线与圆的位置关系时遇到的问题进行讨论,并总结判断方法和解决问题的关键。
四、拓展(15分钟)1.引导学生思考更复杂的问题:在平面直角坐标系中,如何判断直线与圆的位置关系?2.给出示例并指导解决问题:通过求直线与圆的方程,将问题转化成代数方程求解。
五、讲评(10分钟)1.对学生在练习环节中的表现给予评价和点评。
2.解答学生提出的疑问,帮助学生理解和掌握直线与圆的位置关系。
六、小结(5分钟)老师对本节课的内容进行小结,并指导学生合理复习巩固相关知识。
教学反思:本节课通过引入问题、讲解相关概念、示例分析和练习等环节,使学生逐步理解和掌握直线与圆的位置关系的判断方法。
直线和圆的位置关系优秀教案
直线与圆的位置关系教案设计一、教案背景面向学生:中学□√小学□学科:数学课时:1课时学生课前准备:一、学生自学课本。
二、找一找现实生活中的直线与圆位置关系的实例二、教学课题直线与圆的位置关系知识目标:使学生理解直线和圆的三种位置关系,掌握其判定方法和性质能力目标:通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力情感目标:使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点三、教材分析本节学习的主要内容是,直线与圆的位置关系第一课时的知识。
这节课是学习切线的性质和判定的前提。
这一章,是对圆的有关性质、与圆有关的位置关系的系统研究。
在圆的位置关系中,直线与圆的位置关系是比较重要的一部分。
圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。
而本节的内容在学习点与圆的位置关系之后进行,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。
四、教学方法教学中以探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。
这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。
五、教学过程(一)情境导入同学们在电视上看过海上日出的情景吗?下面请同学们欣赏一段视频(播放海上日出视频)学生思考:如果我们从数学的角度看到的是怎样几何图形?请同学们猜想并动手画一画。
学生画一画,然后,导入新课,这就是今天我们要学习的直线与圆的位置关系。
(二)自主学习:提出问题(让学生带着问题去看课本,自主学习):(1)、概括直线与圆的有哪几种位置关系?(2)、你是怎样区分这几种位置关系的?(3)、如何用语言描述三种位置关系?让学生先阅读课本内容,自己归纳以上三个问题。
《直线和圆的位置关系》优秀教学设计精选全文
可编辑修改精选全文完整版《直线和圆的位置关系》优秀教学设计《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。
《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。
2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。
(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。
(三)感情目标:1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。
教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。
教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。
(把太阳看做圆,把海平线看做直线。
)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。
)让学生在本子上画出直线与圆三种不同的位置图。
(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。
直线与圆的位置关系 优秀教案
【教学难点】直线与圆的方程的应用。
【教法学法】为了实现上述教学目标,本节课采取以下教学方法
(1)恰当的利用多媒体课件,通过学生身边的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动额层层深入,站在学生思维的最近发展区上启发诱导。
【教学目标】
新课程标准要求是能根据直线与圆的方程判断其位置关系,体会用代数方法处理几何问题的思想,感受形与数的对立与统一。根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:
(1)知识与技能
结合几何直观图形,感受17世纪数学史上的创举-解析几何的诞生。学生能用定义来判断直线与圆的位置关系,会体会“坐标法”用几何法和代数法。中,(2)过程与方法
利用代数方法研究直线和圆的方程。情境的改变必然导致研究思路的变化,本节课主要是研究利用解析法来判断直线和圆的位置关系,研究问题的思想方法学生不熟悉。新课程《标准》要求,教学中应强调对基本概念和基本思想方法的理和掌握,并能灵活应用所学知识解决实际问题,根据本节课的教学内容和学生认知结构特征,我将本节课的教学重点确定为:用解析法研究直线与圆的位置关系。教学难点确定为:灵活地运用“数形结合”、解析法来解决直线与圆的相关问题。从数学文化的宏观认识到微观判断直线与圆位置关系的过渡,体现几何直观和代数运算辩证统一的思想方法中让学生感受数形统一的思维过程。为了突破本节课的难点以层层递进的例题设计为学生的思维搭架子,让学生感受知识的层层分化,从数学思想方法的历史积淀到微观认识,回归到现实生活让学生感受到数学思想方法是历史发展的产物、与现实生活有密切的联系。在教学的过程中要调动学生学习的积极性,让学生在探究学习的过程中体会获取知识的成功,享受学习的乐趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计课题:§4.2.1直线与圆的位置关系(第1课时)
课题: §4.2.1直线与圆的位置关系(第1课时)
【教材分析】
直线与圆的位置关系是必修2第4章第2节第一课时内容,是继直线方程、圆
的方程之后,研究解析几何曲线与曲线之间位置关系的重要课题之一。
从知识体系
上看,它安排在“点和圆的位置关系”之后,“圆与圆的位置关系”之前;从数学
思想方法上看,它运用运动变化的观点揭示了知识的发生过程及相关知识间的联系。
因此,直线与圆的位置关系在圆的一章中起到承上启下的作用。
直线与圆的位置关
系判断的方法、建立过程中蕴涵着诸多的数学思想方法,“坐标法”研究直线与
圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和
直线与圆锥曲线的位置关系等内容的基础。
【学情分析】
(1)知识储备
学生在初中平面几何部分已经学习了直线与圆的位置关系,知道可以利用直线
与圆的交点的个数以及圆心与直线的距离d与半径r的大小,判断直线与圆的位置
关系。
通过数学文化渗透引导学生感受解析几何产生的背景和价值,为学生感受用
代数方法解决几何问题的解析几何思想,为本节课的重点用“坐标法”解决平面解
析几何问题做好铺垫。
(2)心理特征
上课班级为高级中学理科平行班的学生。
根据高级中学已有学生的数学素养和
高一学生的认知特点及心理特征,确定本节课的情感目标为让学生感受数学思想文
化的价值。
引导学生感受源远流长的数学文化背景,体会代数方法解决几何问题的
奇妙,感受代数与几何对立统一的关系。
博大精深的数学文化可以恰如到好处的满
足学生的心理需求,同时在意识领域让学生从数学文化背景中感受古人的智慧,膜
拜古人持之以恒追求知识的精神,可以进一步激发学生对知识的渴望、对伟大数学
家的仰望和敬意。
而高一阶段的学生逻辑思维较初中学生有了大部分的提升,同时
学生的观察能力、想象能力在迅速发展。
这个年龄的学生好奇心强、喜欢表现,注
意力容易分散,教师采用生动形象、形式多样的教学方法使学生广泛的、积极主动
的参与到教学中,引发学生的兴趣,使他们的注意力始终集中在课堂上。
(3) 潜能方面
创设问题情境,激发学生的好奇心,学生对新内容的学习有一定的的兴趣和积极性,但在探究能力和合作交流发展上还不够均衡。
【设计思想】
本节课的内容是数学文化引出解析几何产生的背景和价值,让学生从宏观上感
受古人在利用代数方法解决几何问题时的奇妙与伟大。
借助结合画板直观画出直线
与圆的相交、相离、相切,学生可以直观判断。
从已有的知识,圆心到直线的距离
与圆的半径相比较来研究直线与圆的位置关系,产生认知冲突,恰好符合华罗庚论
数形结合的诗“数与形,本是相倚依,焉能分作两边飞,形少数时难入微,数形结
合百般好”。
看似相切却相离,将激发学生寻求新的办法—“坐标法”。
如何确定
几何画板上定圆的方程和定直线的方程,引导学生建立坐标系。
从而将本节课的重
点突破进行剖析,学生可以从几何与代数角度分析判断直线与圆的位置关系。
并会
选择用最恰当的方法判断直线与圆的位置关系,并能总结出每一种方法的优点与缺点。
利用代数方法研究直线和圆的方程。
情境的改变必然导致研究思路的变化,本
节课主要是研究利用解析法来判断直线和圆的位置关系,研究问题的思想方法学生
不熟悉。
教学难点确定为:灵活地运用“数形结合”、解析法来解决直线与圆的相
关问题。
从数学文化的宏观认识到微观判断直线与圆位置关系的过渡,体现几何直
观和代数运算辩证统一的思想方法中让学生感受数形统一的思维过程。
为了突破本
节课的难点以层层递进的例题设计为学生的思维搭架子,让学生感受知识的层层分化,从数学思想方法的历史积淀到微观认识,回归到现实生活让学生感受到数学思
想方法是历史发展的产物、与现实生活有密切的联系。
在教学的过程中要调动学生
学习的积极性,让学生在探究学习的过程中体会获取知识的成功,享受学习的乐趣。
【教学目标】
新课程标准要求是能根据直线与圆的方程判断其位置关系,体会用代数方法处理几何问题的思想,感受形与数的对立与统一。
根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:
(1)知识与技能
结合几何直观图形,感受17世纪数学史上的创举-解析几何的核心思想。
学生能用定义来判断直线与圆的位置关系,体会“坐标法”解决平面解析几何问题三步曲,体会几何法和代数法求解优越性。
(2)过程与方法
通过解析几何的思想方法渗透,让学生感受代数方法解决几何问题,几何直观解释代数结论的对立统一关系。
(3)情感态度与价值观
数学文化中蕴含的数学思想“坐标法”,让学生深刻的感受到数学思想是历史发展的产物,更坚定了学生学习数学的兴趣。
数学推动17世纪社会的社会、经济的飞跃,也推动现今社会的发展,是学生爱国教育的新视角。
【教学重点】
1、解析几何核心思想“坐标法”的理解,灵活应“代数法”和“几何法”判断直线与圆的位置关系
【教学难点】体会“坐标法”解决平面解析几何问题三步曲的方法,并能灵活进行几何直观与代数运算的转化
【教法学法】为了实现上述教学目标,本节课采取以下教学方法
(1)恰当的利用多媒体课件,通过学生身边的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。
(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动额层层深入,站在学生思维的最近发展区上启发诱导。
(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。
学法上注重以下几点:
(1)让学生从代数和几何两个角度来解决直线与圆的位置关系问题,并体会几何法的优越性;
(2)在用几何法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。
【授课类型】新授课。
【课时安排】2课时。
【教具】多媒体、翻页笔、粉笔。
【教学过程】
情境导入数学思想方法
5分钟
探究用“坐标法”
研究直线与圆的位置关系
12分钟
“知识应用
直线与圆位置关系判断
8分钟
能力提升
综合应用
11分钟课时小结
2分钟
作业布置2
分钟
线CD与圆的位置如图所示,让学生判断。
问题3:观察直线CD与圆的位置关系,如何进行定量分析?
建立平面直角坐标系,把圆心用坐标表示,求出点A到直线的CD的距离d与半径r进行比较。
问题4:还有什么方法可以判断直线与圆的位置关系?
联立直线与圆的方程,消去y,判断∆与0的大小关系,从而得出直线与圆的位置关系。
总结探究:为了解决几何问题进行定量分析,引出“坐标法”解决平面几何问题的三步曲。
(1)建立直角坐标系;(2)代数运算;(3)几何结论。
三、知识应用:。