平稳随机过程的谱分析

合集下载

2.2.4 平稳随机过程的相关性分析

2.2.4 平稳随机过程的相关性分析
τ →∞
2 lim RX (τ ) = RX (∞) = mX
证明 : 当 τ → ∞ 时 , X (t )与 X (t + τ )不相关 , 则有 :
τ →∞
lim R X (τ ) = R X ( ∞ ) = lim E [ X ( t ) X ( t + τ )]
τ →∞
2 = lim { E [ X ( t )] ⋅ E [ X (t + τ )]} = m X
17

样本函数x(t)的平均功率: 样本函数x(t)的平均功率: x(t)的平均功率
1 T 2 w = lim ∫−T xT (t) dt T →∞ 2 T 1 1 ∞ 2 = lim ⋅ ∫−∞ XT (ω) dω T →∞ 2 T 2π 1 ∞ 1 2 = lim ∫−∞[T→∞ 2T XT (ω) ]dω 2π


−∞
xT ( t ) e
− jω t
dt =

T
−T
x (t )e
− jω t
dt
1 xT (t ) = 2π
1 T 2 w = lim ∫−T xT (t) dt T →∞ 2 T


−∞
X T (ω )e jωt dω
2
1 ∞ 2 ∫−∞[x(t)] dt = 2π ∫−∞ X (ω) dω
样本函数x(t)的功率谱密度, 样本函数x(t)的功率谱密度, x(t)的功率谱密度 简称样本的功率谱密度。 简称样本的功率谱密度。
x(t), w和 T (ω)取 于 验 结 , 都 有 定 随 性 X 决 试 的 果 带 一 的 机 .
例 : 已知平稳过程 X (t )的自相关函数为 : (1) R X (τ ) = 3e

第二章 平稳随机过程的谱分析

第二章 平稳随机过程的谱分析

u 2T
2T

2015-2-10
u 2T
u 2T
17
《随机信号分析》教学组

2T 1 1 2T S X ( ) lim { 0 d 2T RX ( )e j du T 2T 2
0 2T 1 2T d 2T RX ( )e j du} 2
对 S X ( ) 在X(t)的整个频率范围内积分, 便可得到X(t)的功率。 对于平稳随机过程,有:
1 E[ X ( t )] 2
2
2015-2-10
S X ( )d
14

《随机信号分析》教学组
三、功率谱密度与自相关函数之间的关系
确定信号: x(t ) X ( j) 随机信号:平稳随机过程的自相关函数
率。 2 解: E[ X (t )] E[a 2 cos2 (0t )]
a2 E{ [1 cos(20t 2)]} 2 2 2 a a 22 cos(20t 2 )d 0 2 2
a2 a2 sin(20 t 2 ) 02 2 2 a2 a2 sin 20t 2
S X ( ) 2 RX ( ) cosd
0
RX ( )
2015-2-10

1

0
S X ( ) cos d
19
《随机信号分析》教学组
3.单边功率谱
由于实平稳过程x(t)的自相关函数 RX ( ) 是实偶函数,功率谱密度也一定是实偶函 数。有时我们经常利用只有正频率部分的 单边功率谱。
2T 1 1 2T lim{ d RX ( )e j du} 2T 2 T 2T 2T 1 2T j lim ( 2 T ) R ( ) e d X T 2T 2T 2T lim (1 ) RX ( )e j d T 2T 2T 2T j RX ( )e j d RX ( )e d lim

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析教学大纲

随机信号分析教学大纲

《随机信号分析》教学大纲(Random Signal Analyzing)总学时数:48 ,学分数: 3 其中:实验(上机)学时:0适用专业:通信工程执笔者:党建武(教授/博士)编写日期:2006-04 一、课程的基本要求应掌握随机变量、随机过程、窄带随机过程的基本概念及其统计特性,学会平稳随机过程的谱、随机过程通过线性系统的分析和随机过程通过非线性系统的分析方法。

二、课程内容和学时分配1、概率论随机变量、概率分布、数字特征、极限定理(8学时)。

2、随机过程随机过程的基本概念及其统计特性、平衡随机过程、复随机过程、正态随机过程、Poisson和Markov过程(8学时)。

3、平稳随机过程的谱分析功率谱密度、功率谱密度与自相关函数之间的关系、联合平衡随机过程的互谱密度、自噪声(8学时)。

4、随机信号通过线性系统的分析随机信号通过连续时间系统的分析、随机信号通过离散时间系统的分析、白噪声通过线系统的分析、线性系统输出端随机信号的概率分布(8学时)。

5、窄带随机过程Hilbdrt变换、窄带随机过程的表示方法,窄带高斯随机过程的包络和相位的概率密度,窄带高斯过程包络平方的概率密度(8学时)。

6、随机信号通过非线性系统的分析矩函数求法、直接法、特征函数法、非线性变换的包线法、非线性系统输出端信噪比的计算(8学时)。

三、与其它课程的关系本课程是在先修了概率论、信号与系统两门基础课之后开设的一门理论性很强的专业基础课,该门课程是学生理解与通信专业有关的专业课程的基础,也是学习“信号处理”、“信号检测与估值”和“通信原理”等后续课程的基础。

四、教材与参考书目主要参考书:1、朱华、黄辉宁等,随机信号分析,北京理工大学出版社,19902、A.帕普斯:概率、随机变量、随机过程,保铮等译,西北电讯工程学院,1986。

原名:A papoulis: probability, Random V ariables and stochastic processes, MC Graw-Hill, Inc 1984。

随机过程-平稳过程

随机过程-平稳过程

FX () S() , d X


随机过程——西安电子科技大学数学系 冯海林
对平稳时间序列有相类似的结果.
设X={Xn, n=0, ±1, ±2,…}是平稳时间序列,则其 相关函数可以表示为 1 jm R(m) X e dFX (), m 0, 1, () 2
1 t T s( )s( )d T t
只与 有关系.
所以X是平稳过程.
随机过程——西安电子科技大学数学系 冯海林
例2 对复随机过程 Z t=Xt +jYt 若mZ(t)是复常数, RZ(t,t+τ )=RZ(τ ),则称 Z={Zt, -∞<t<+ ∞}为复平稳过程. 设Ak和ω k分别是实随机变量和实常数(k=1,2…,n),
随机过程西安电子科技大学数学系冯海林平稳过程的谱分解平稳过程的谱分解随机过程西安电子科技大学数学系冯海林平稳过程的谱分解定理551是均方连续的平稳过程则其相关函数可以表示为上非负有界单调不减右连续且f随机过程西安电子科技大学数学系冯海林所以f是某个随机变量w的特征函数即存在分布函数g随机过程西安电子科技大学数学系冯海林随机过程西安电子科技大学数学系冯海林称函数f为平稳过程x相关函数的谱展开式或谱分解式
k 1
E[Ak ]=0时,上式与t无关.
随机过程——西安电子科技大学数学系 冯海林
R(t , t ) E[Zt Z t ] Z E[ Ak e jk t Ak e jk ( t ) ]
k 1 k 1 n n
= E[ Ak Al ]e j (l k )t e jl

Zt Ak e
k 1
n
jk t

随机信号的谱分析

随机信号的谱分析

单边功率谱
单边功率谱——实平稳过程的谱密度 SX () 是偶函数,
因而可将负的频率范围内的值折算到正频率范围内。
FX
()
2 lim T
1 T
E
T 0
X
(t) eitd t
2
,
0
0 ,
0
FX () 20G,X () ,
0 0
GX()
FX()
平稳随机序列的功率谱
对于平稳随机序列X (n),若它的自相关函数RX (m) 满足
[解]
GX
()
2
ea
0
cos(0
) cos() d
ea
0
[cos(0
)
cos(0
)
]d
a
a
a2 ( 0 )2 a2 ( 0 )2
例3 设随机序列X(n) = W(n) +W(n-1),其中W(n)是高斯随
机序列,mW=0, RW(m)=2(m),求X(n)的均值、自相关 函数和谱密度 GX () .
若 X (t) 和 Y (t)相互正交,则
RW ( ) RX ( ) RY ( )
GW () GX () GY ()
[例4] 如图所示X (t) 是平稳过程,过程Y (t)= X (t)+ X (tT)
也是平稳的,求Y (t) 的功率谱。
X (t)
[解]
Y (t)
延迟T
RY (t, t ) E[Y (t)Y (t )] E{[ X (t) X (t T )][ X (t ) X (t T )]} 2RX ( ) RX ( T ) RX ( T )
GX
() e j
d
N0

第四章 平稳随机过程的谱分析

第四章 平稳随机过程的谱分析

1 2
S
X
(
)e
j
d
自相关函数和功率谱密度皆为偶函数
若随机过程X t是平稳的,自相关函数绝对可积,则自相关函数
jt
ddt
1
2
XX
()
x(t)e jt dtd
1
2
X
X
()X
* X
()d
1
2
X
X
()
2d
4.1、平稳随机过程的功率谱密度 ❖功率谱
功率型信号:能量无限、平均功率有限的信号
P lim 1 T s(t) 2 dt T 2T T 其能谱不存在,而功率谱存在
持续时间无限长的信号一般能量无限
4.1、平稳随机过程的功率谱密度
❖如何计算随机信号的平均功率?
2)时域计算方法
任一样本函数的平均功率为
W
lim
T
1 2T
T x2(t, )dt
T
随机过程的平均功率为
W
E[W
]
lim
T
1 2T
T E{X 2(t)}dt
T
若为各态历经过程:
W =W
4.1、平稳随机过程的功率谱密度 ❖如何计算随机信号的平均功率?
2020/5/20
6
4.1、平稳随机过程的功率谱密度
❖傅立叶变换
则 x(t)的傅立叶变换为:
X () x(t)e jt dt
其反变换为:
x(t) 1 X ()e jt d
2
频谱密度存在的条件为:
频谱密度
x(t)dt
2020/5/即20 信号为绝对可积信号
包含:振幅谱 相位谱
求各样本函数功率谱密度的统计平均

随机过程5.4 平稳过程的谱分析简介

随机过程5.4 平稳过程的谱分析简介

1) S(ω)为实值非负函数,即
S() S() 0.
2)又若{X(t), t∈R}是实过程, 则S(ω)是偶 函数. 证 1) S() lim 1 E[ F(,T ) 2 ] S() 0;
T 2T
2) 实平稳过程的相关函数是偶函数, 由(5) 式可得
S() R()e jd R()e jd
2T T
2 2T
成立.
上式两边求均值再取极限, 左端为
lim
T
E

1 2T
T
X
2
(t
)dt

T

(4)
电子科技大学
称为平稳过程X(t) 的平均功率.
若(4)中的积分与求均值可交换顺序, 则
1
lim T 2T
T
E{
T
X (t )
2 }dt

E[
X (t )

RX
(
)

1
2

e

jt
dFX
(
),
R
称为平稳过程相关函数的谱展式.
定义5.4.1 称FX(ω)为过程{X(t),t∈T}的谱函
数,若存在SX (ω),使
FX () SX (1 )d1, R
电子科技大学
称SX(ω)为过程的谱密度. 利用特征函数和分布函数之间的关系,可
S() R()e jd, (5)
R()
1 2ຫໍສະໝຸດ S ()ejd,(6)
平稳过程的相关函数与功率谱密度构成一
对Fourier变换.
注 (6) 式称为相关函数的谱分解式.
推论1 {X(t), t∈R}是平稳过程, 则其谱密 度S(ω) 满足

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析_第三章_平稳随机过程的谱分析

随机信号分析_第三章_平稳随机过程的谱分析

A RX (t , t ) e j d


说明如果A<RX(t,t+τ)>绝对可积,那自 相关函数的时间平均与功率谱密度是傅 里叶变换对。
对于平稳随机过程,由于: A<RX(t,t+τ)>= A<RX(τ)>= RX(τ) 所以: j S X ( ) RX ( )e d
S X ( ) R X ( )e
0

j
d
0
Ae e


j
d Ae
e
j
d
1 1 A[ ] j j 2 A 2 2
例3.4 P203 设随机相位信号X(t)=Acos(ω0t+θ), 其中A, ω0为常数; θ为随机相位,在(0, 2π)均匀分布。可以计算初其自相关函 数RX(τ)=[A2cos (ω0τ)]/2, 求X(t)的功率谱 密度。 解:引入δ函数。 1 1 j ()e d 2 2
3.2.1 功率谱密度的性质
1. 功率谱密度的非负性。即: SX(ω)>=0 2. 功率谱密度是ω的实函数。即: SX(ω)= SX(ω)
3. 对于实随机过程来讲,功率谱密度是ω 的偶函数。即: SX(ω)= SX(-ω) 4. 功率谱密度可积。即:



S X ( )d
3.2.2 谱分解定理
满足上述条件的x(t)的傅利叶变换为:
Fx ( ) x(t )e


jt
dt
称为x(t)的频谱。为一复数,有 Fx(ω)= Fx(-ω)
Fx(ω)的傅利叶反变换为:
1 x(t ) 2

实验二平稳随机过程的谱分析

实验二平稳随机过程的谱分析

实验二平稳随机过程的谱分析谱分析是对平稳随机过程的频率特性进行研究的一种方法。

它通过分析随机过程在不同频率下的能量分布,可以揭示出随机过程的主要频率成分和其相应的能量。

在实验二中,我们将以一个平稳随机过程为例,详细介绍谱分析的方法和步骤,并通过具体的实例来说明如何进行谱分析。

首先,我们需要明确谱密度函数的概念。

谱密度函数描述了随机过程在各个频率上的能量分布,其定义为随机过程在单位频率范围内的功率谱与单位频率之比。

一般地,谱密度函数可以通过傅里叶变换和自相关函数计算得到。

接下来,我们需要计算随机过程的自相关函数。

自相关函数反映了随机过程在不同时刻之间的相关性,其定义为随机过程在不同时刻的取值之积的期望。

通过计算自相关函数,我们可以得到随机过程的自相关系数和自相关函数的性质。

然后,我们可以通过自相关函数计算随机过程的功率谱密度函数。

功率谱密度函数描述了随机过程在各个频率上的能量分布,其定义为自相关函数的傅里叶变换。

通过计算功率谱密度函数,我们可以得到随机过程的频谱特性。

在进行谱分析时,我们需要选择适当的算法和工具进行计算。

常见的算法包括周期图法、Welch法和傅里叶变换法。

周期图法是一种通过周期图对随机过程进行频谱分析的方法,其步骤包括选择窗函数、计算周期图和计算功率谱密度函数。

Welch法是一种通过分段计算随机过程的频谱的方法,其步骤包括选择窗函数、选择段数、计算每一段的频谱并对它们求平均。

傅里叶变换法是一种通过对随机过程进行傅里叶变换得到频谱的方法,其步骤包括对随机过程进行傅里叶变换和计算功率谱密度函数。

最后,我们可以通过绘制频谱图来直观地表示随机过程的频谱特性。

频谱图是将频率作为横坐标、功率谱密度函数的取值作为纵坐标,以直方图或曲线的形式展示出来。

通过观察频谱图,我们可以得到随机过程的主要频率成分和其相应的能量。

综上所述,谱分析是一种揭示平稳随机过程频率特性的重要方法。

通过计算自相关函数和功率谱密度函数,并绘制频谱图,可以得到平稳随机过程的主要频率成分和其相应的能量,进而对随机过程进行频域分析。

随机波浪及工程应用第一章

随机波浪及工程应用第一章

F 1 2 0 ei0t F ei0t 2 0

若0 0
F 1 2 F k 2 k

F b cos 0t
b F{e it eit } 2
S (f) (m2 s)
理 论 谱 实 测 谱
0.00300
0.00200
0.00100
0.00000 0 0.4 0.8
f (Hz)
1.2
1.6
Longuet-Higgins (1957) 建议的谱宽参数
mrf f r S f df
0
mr S d
r 0

用单侧谱表示:
Sxx Rxx
x(t)是实数


0
1

0
Rxx cos( )d
S xx cos( )d

自相关函数特性: Rxx 0 D x t 0 S xx d m0 谱密度函数积分面积等于随机过程的方差
Chapter 2 随机过程的谱分析
2.1 谱密度函数
•平稳的各态历经的随机过程可以用一个样本来代替整体。 •随机的时间过程可以认为是由很多不同频率的简谐波叠 加而成。 •各个简谐波 (波浪:能量)相对于组成波频率的分布 随机过程的频域特性 谱分析 随机过程的时域 频谱
随机过程:以波浪为例
波浪的能量正比于波高的平方gH2/8 {x2(t)}正比于随机过程X(t)的能量
x(t)是实数
S xx
Rxx S xx ei d

1 S 2
xx


随机过程第五章 平稳随机过程

随机过程第五章 平稳随机过程


1,
0,
T st;
其他.
E{Y (s)Y (t)} E{E[Y (s)Y (t) ]}
st
1 P{ T s t } 1 ,
T 对于 t 的其它情形可做类似推理.
电子科技大学
随机二元传输过程是一个平稳过程,记τ=s-t,
其自相关函数为
0,


),
a;
0,
a
RX(t, t+τ)与 t 无关, 故X(t) 是宽平稳过程.
P128例12 泊松过程不是平稳过程,
是平稳增量过程.
电子科技大学
三、两种平稳性的关系
1)严平稳过程不一定是宽平稳的; 因宽平稳过程一定是二阶矩过程,而严平稳 过程未必是二阶矩过程. 2)宽平稳不一定 严平稳;
CX (s,t) RX (s,t) mX 2 RX () mX 2
电子科技大学
注 自协方差函数与自相关函数都仅依赖于t-s.
平稳过程在实际中是常见过程,如
照明电网中电压的波动过程; 电子系统中的随机噪声; 稳定气象条件下海域中一定点处的海浪高度 随时间的变化或随地点的变化(平稳随机场); 卫星图片中相同条件下的灰度水平.
t 0,
随机变量与 随机过程》
其中X0 与N(t)相互独立,且
美 A.帕普
力斯,p303
C C
X0 ~ 1 1 C > 0,
2 2
电子科技大学
讨论{X(t), t≥0}的平稳性.
C
-C
解 因 X (t) X0(1)N(t) , t 0, mX (t) E[X(t)] E(X0 )E[(1)N(t)] 0, t 0

高斯平稳随机过程的功率谱

高斯平稳随机过程的功率谱

高斯平稳随机过程的功率谱
高斯平稳随机过程的功率谱是一个重要的统计特性,用于描述随机过程在频域的特性。

功率谱密度是频率域上信号或者时间序列的功率分布的度量。

对于一个高斯平稳随机过程,它的主要特性包括其均值为常数,自相关函数只与时间间隔有关。

这些特性使得我们可以方便地分析和处理这类随机过程。

平稳随机过程的功率谱密度是其自相关函数的傅里叶变换,这是由维纳-辛钦定理给出的。

高斯平稳随机过程的功率谱具有一些特殊的性质。

例如,它是非负的、实的、并且是偶函数。

此外,功率谱密度是可积的,这意味着在整个频率范围内的功率是有限的。

高斯平稳随机过程的功率谱在分析各种信号和噪声中都有广泛的应用,例如通信系统、控制系统、雷达和声学等领域。

通过对功率谱的分析,我们可以了解信号或噪声在不同频率下的强度分布,从而设计出更有效的信号处理算法和系统。

随机过程Ch7 平稳过程的谱分析

随机过程Ch7 平稳过程的谱分析
2T
=
1 2
lim

4 T
1
T→∞ 2 T
|Fx(ω,T)|2dω
显然上式左边可以看做是x(t)消耗在1Ω电阻上的平均功 率,相应地,称右边的被积函数 lim |Fx(ω,T)|2 T→∞ 2 T 为功率密度. 以上讨论的是普通时间的实质函数的频谱分析,对于随 机过程{X(t),-≦<t<≦}可以作类似的分析.
T→∞ 2 T
E[X2(t)]dt T
T
=lim
T→∞
1 2T
[
T T
a
2
-
a
2
=
a
2
2

sin(2ω0t)]dt
.
2
以上讨论了平稳过程的谱密度,对于平稳随机序列的谱 分析,我们类似地给出以下结果.
平稳过程的谱密度
设{Xn,n=0,±1,±2,…}为平稳随机序列,均值为零.若 τ只取离散值,且相关函数RX(τ)满足 |RX(n)|<≦.当 n ω在[-π,π]上取值时,若 sx(ω)= RX(n)e-inω (△) n 绝对一致收敛,则sx(ω)是[-π,π]上的连续函数, 且对 上式取绝对值再积分,有 |sx(ω)|dω≤ |RX(n)| |e-inω|dω<≦, 故 sx(ω)einωdω存在.于是(△)是以 1 RX(n)= sx(ω)einωdω, n=0,±1,±2,…(△)
T→∞ 2 T
T
1
T
=RX(0). (◇) 由(◇)式和(◇)式看出,平稳过程的平均功率等于该过程 的均方值,或等于它的谱密度在频域上的积分,即 2= 1 S (ω)dω. ψ X
该式是平稳过程X(t)的平均功率的频谱展开式,sX(ω)描 述了各种频率成分所具有的能量大小. 例7.1 设有随机过程X(t)=acos(ω0t+Θ), a,ω0为常数,

随机过程的平稳性分析

随机过程的平稳性分析

随机过程的平稳性分析随机过程是描述随机变量随着时间或空间的变化而产生的一系列随机变量的数学模型。

平稳性是对随机过程中的统计特性进行分析的重要概念之一。

在随机过程中,平稳性是指随机过程的统计特性在时间或空间上的不变性,即该过程在不同时间或空间下具有相似的统计性质。

1. 随机过程的基本概念随机过程可以分为离散随机过程和连续随机过程。

离散随机过程是在离散时间或空间上进行观测和分析的随机过程,而连续随机过程则是在连续时间或空间上进行观测和分析的随机过程。

随机过程的定义需要考虑概率空间、状态空间和时间参数等因素。

2. 平稳性的定义在随机过程中,平稳性通常分为严格平稳和宽平稳两种情况。

严格平稳是指随机过程的联合分布在时间或空间上的任何平移变换下保持不变;而宽平稳是指随机过程的均值函数和自相关函数在时间或空间上保持不变。

平稳性是对随机过程的统计特性做出的基本假设,它能够提供对过程的长期行为和性质的重要认识。

3. 平稳性分析的方法在实际问题中,我们可以通过一系列统计方法和技术来对随机过程的平稳性进行分析。

常用的方法包括自相关函数法、功率谱法、小波分析法等。

这些方法能够帮助我们对随机过程中的平稳性进行定量描述和分析,从而更好地理解随机过程的统计特性。

4. 应用实例随机过程的平稳性分析在实际中具有广泛的应用。

例如,在金融领域,我们可以利用平稳性分析来对金融时间序列数据进行建模和预测;在通信领域,我们可以利用平稳性分析来优化信号处理算法和系统设计。

这些应用实例充分展示了平稳性分析在随机过程中的重要性和实用性。

5. 结论随机过程的平稳性分析是对随机过程统计特性进行深入了解和研究的重要手段。

通过对随机过程的平稳性进行分析,我们可以更好地理解随机过程的规律和性质,为实际问题的解决提供有效的方法和思路。

以上是关于随机过程的平稳性分析的相关内容,希望能对读者有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对过程的样本函数做某些限制,最简单的一种方法
是应用截取函数。
7
二 随机过程的功率谱密度
应用截取函数
x(t ) xT (t ) 0
t T t T
8
xT (t )的傅里叶变换存在 当T为有限值时,
X X (T , ) xT (t )e jt dt


x(t )e jt dt
E[ X 2 ( t )] 1 2

S X ( )d

平稳随机过程的均方值有限
S X ( )d


18
二 谱分解定理
1 谱分解
在平稳随机过程中有一大类过程,它们的 功率谱密度为 的有理函数。在实际中,许多 随机过程的功率谱密度都满足这一条件。即使 不满足,也常常可以用有理函数来逼近S X ( ) 。 这时 S X ( ) 可以表示为两个多项式之比,即
a2 E{ [1 cos(20t 2)]} 2 2 2 a a 22 cos(20t 2 )d 0 2 2
a2 a2 sin(20 t 2 ) 02 2 2 a2 a2 sin 20t 2
X (t )不是宽平稳的
13
27
因式分解:
( s 2)(s 2) S X ( s) ( s 1)(s 3)(s 1)(s 3)
jt jt x ( t ) e dt X (T , ) xT (t )e dt T xT (t )e j ( )t dt X X (T ,)
* X

*

* X X (T , ) X X (T , ) X X (T , ) X X (T ,) X X (T ,)
19
S0 ( 2 M c2 M 2 2 M 2 c2 2 c0 ) S X ( ) 2 N d 2 N 2 2 N 2 d 2 2 d 0
M<N
若用复频率s来表示功率谱密度,那么,对 于一个有理函数,总能把它表示成如下的因式 分解形式:
1 A . lim . T 2T
表示时间平均
随机过程的平均功率可以通过对过程的均方值求时间平 均来得到,即对于一般的随机过程(例如,非平稳随机 过程)求平均功率,需要既求时间平均,又求统计平均。 显然,Q不是随机变量。
若平稳
Q A E[ X (t )] E[ X (t )] =R (0)
js
( s 2 4) S X (s) 4 s 10s 2 9
( s 2)(s 2) ( s 1)(s 1)(s 3)(s 3)
-3
-2-10 Nhomakorabea1 2 3
15
3.2平稳随机过程功率谱密度的性质
一 功率谱密度的性质 1 功率谱密度为非负的,即 S X ( ) 0
2
X (T ,) X X (T ,) X X (T , )
* X
2

S X ( ) lim
T
E[ X X (T , ) ] 2T
2
S X () S X ()
17
4 功率谱密度可积,即 S X ( )d 证明:对于平稳随机过程,有:
lim 证明: S X ( ) T E[ X X (T , ) ] 2T
2
2
X X (T , ) 0
S X ( ) 0
2 功率谱密度是 的实函数
16
3 对于实随机过程来说,功率谱密度是 的偶函数, 即 S X () S X () 证明: xT (t ) 是实函数
(1)a2为实数。 解释:因为其它零极点都共轭出现,余下的常 数必为实数。 (2)SX(s)的所有虚部不为0的零点和极点都成复共 轭出现。 解释:因为SX(ω)为实函数,两两共轭的积必为 实函数。
21
根据平稳随机过程的功率谱密度的性质, 可以导出关于 SX(s)的零、极点的如下性质 :
(3) SX(s)的所有零、极点皆为偶重的。 解释:因为SX(ω)为偶函数,所以无ω的奇次项, 所以零、极点皆为偶重的。 ( 4) M< N。 解释:因为SX(ω)可积,则ω→∞,SX(ω)→0, 所以,N>M。 (5) SX(s)在实轴上无极点。 解释:因为SX(ω)非负、实的偶函数。
T 2



X X (T , ) d
9
令T→∞,再取极限,交换求数学期望和积分的次 序:(注意这里由一条样本函数推广到更一般的随 机过程,即下面式子对所有的样本函数均适用)
1 lim T 2T
E[ X X (T , ) ] 1 d T E[ X (t )]dt 2 lim T 2T
25
1 E[ X (t )] S ( s )ds 2j 上式积分路径是沿着 jω 轴,应用留数法时,
2 j j X
要求积分沿着一个闭合围线进行。为此,考虑沿 着左半平面上的一个半径为无穷大的半圆积分。 根据留数定理,不难得出
E[ X 2 (t )] (左半平面内极点的留数 )
SX ( s) a * (s 1* )(s M ) * (s 1* )(s N )
(零极点在s下半平面)

SX ( s) [ S X (s)]*
S X ( s) S ( s) S ( s)
X
2
X
2
此时
1 j E[ X (t )] S X ( s)ds j 2j
22
2 谱分解定理
s ) 分解成两项之积,即: 根据上面的性质,可将S X (
S X ( s) S X ( s) S X ( s)
X
谱分解定理
其中
( s 1 ) ( s M ) S ( s) a (零极点在s上半平面) ( s 1 ) ( s N )
2 T 2
存在
非负
功率Q
S X ( )
1 T 1 2 Q lim E[ X ( t )]dt S X ( )d T T 2T 2
注意: (1)Q为确定性值,不是随机变量。 (2) S X ( )为确定性实函数。
10
两个结论:
1
Q A E[ X 2 ( t )]
1 E[ X ( t )] 2
2
S X ( )d
12
0t ) ,其中a和0 例:设随机过程 X (t ) a cos( ) 皆是实常数, 是服从(0, 2 上均匀分布的随
机变量,求随机过程 X (t ) 的平均功率。 解: E[ X 2 (t )] E[a 2 cos2 (0t )]
2 2 X
1 2 Q 2



S X ( )d
11
S X ( ) lim T
E[ X X (T , ) ]
2
S X ( ) 描述了随机过程X(t)的 功率谱密度: 功率在各个不同频率上的分布。S X ( ) 称为随 机过程X(t)的功率谱密度。
2T
对 S X ( ) 在X(t)的整个频率范围内积分, 便可得到X(t)的功率。 对于平稳随机过程,有:
24
留数定理 设B(s)为复变量s的函数,且其绕原点的简单 闭曲线C反时针方向上和曲线C内部只有几个 极点s=pi
n 1 则: B( s)ds (曲线C内部极点的留数) 2j i 1
一阶留数 二阶留数
[( s p ) B( s )] s p
d [( s p) 2 B( s)] s p ds
2
由(3.1.17)式,用s代 替jω后得
23
3 SX() 为有理函数时的均方值求法
(1)利用 R ( ) E[ X 2 (t )] RX ( ) 0 RX (0)
X
(2)直接利用积分公式
1 E [ X (t )] 2
2



S X ( )d
(3)查表法
(4)留数法
( s a1 )( s a2 M ) S X ( s) a (s b1 )( s b2 N )
2
a≠b
式中,s为复频率,s=σ+jω。aK、bL(K=1,2,…,2M; L=1,2,…,2N)分别表示SX(s)的零、极点。
20
根据平稳随机过程的功率谱密度的性质, 可以导出关于 SX(s)的零、极点的如下性质 :
26
例: 考虑一个广义平稳随机过程X(t),具有功 率谱密度
2 4 S X ( ) 4 10 2 9
求过程的均方值 E[ X 2 (t )] 解:用复频率的方法来求解。 用 = js 代入上式得用复频率 s表示得功 率谱密度:
( s 2 4) S X (s) 4 s 10s 2 9
1 2



X X ( ) d
2




1 [ x(t )] dt 2
2
X () d
2 X
5
2 帕塞瓦等式



1 [ x(t )] dt 2
2
X () d
2 X
—非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则 上式左边代表x(t)在时间(-∞,∞)区间的总能量 (单位阻抗)。因此,等式右边的被积函数 |XX(ω)|2表示了信号x(t)能量按频率分布的情况, 故称|XX(ω)|2为能量谱密度。
T
T
应用帕塞瓦等式
1 2 T x (t )dt 2 X X (T , ) d 1 T 2 1 2 x ( t ) dt X ( T , ) d X T 2T 4T
相关文档
最新文档