第八章位移法
第八章位移法
8
r22
Z2 1
2
M1 图
2 令EI=4
解: n 2
iAB 1.6
iBC 2
iBD iCE 1
50
60 50
60
R1 p
120
R2 P
R1=0 R2=0
r11Z1 r12 Z 2 R1 p 0 r21Z1 r22 Z 2 R2 p 0
M P图
r11 6i
R1 p 24
代入(8-4)式可得
4 Z1 i
4.计算基本未知量
4 Z1 i
(实际为转角 A )
M M1Z1 M P
5.采用叠加法绘最后内力图 3i r11
A B
120
96
A
Z1 1
R1P
C
C
96
M p图
B
160
3i
M1 图
108
4 M BA 3i 96 108kN m i 4 M BC 3i 120 108kN m i
两端固定的情况
M AB 4i A 2i B M BA
一端固定一端铰支情况
6i F AB M AB l 6i F 2i A 4i B AB M BA l
F F M AB M BA ------固端弯矩
A
B
6i Fl M BA 2i A 4i B AB 0 l 8 1 3i 1 F B ( A AB M BA ) 2 l 2i
基本结构
EI
n4
EI
n3
B A
C
D
G
F
n6 E
位移法位移法(精)
2i
4i
24
4i
MP
M1
2i 16
M Z1M1 M P
12kN/m 12kN/m 12kN/m 12kN/m
24
24
EEI I
M反对称 EI
EEII
M反对称
72
72
8
8
EI EI
4
4
ME对I称 M对EI称
20
20
16
32
4 M图
(kN.m)
48
92
52
有这样一种刚架,对其左部,用力法较位移法的未知
反对称
对称
24
24
EI
EI
EI
12kN/m 12kN/m 12kN/m
EI
2EI
EI
M反对称
EI
EI
等代结构
72
X 0
11 1
1P
72 4
11
1 EI
43
3
43
256 3EI
4
M1
MP
1P
96 4 3EI
4
512 EI
4
X1
1P
11
6
r22 EI 2 EI 2 EI
系数δ12为单位位移 Z2 1 所引起的
EI
位移,其性质与由支座转动而引起的
位移相当。故可利用第八章的位移公
M2
式 k Rc 计算,即
12 R1c (8 1) 8
Z2 1
0.5EI 0.5EI
0.25EI
系数r21为单位力 X1 1 所引起的反力矩,可由 M1 图根据结点平衡
第八章位移法new
1)在B结点增加附加转动约束(附加刚臂)( )。
附加转动约束只能阻止刚结点的转动,不能阻止结
点之间的相对线位移。此时产生固端弯矩
M
F。
BC
q
锁A 住
B 0
B
C
q
M
F BA
0,
M
F BC
ql2 。 8
B
M
F BC
C
2)令B结点产生转角
(
B
)。此时AB、BC杆类似
于B端为固端且产生转角 B 的单跨超静定梁。 4
20
三. 固端弯矩
单跨超静定梁在荷载作用下产生的杆端弯矩称为 固端弯矩。固端弯矩以顺时针方向为正,逆时针方向 为负。
1. 两端固定的梁:
q
ql 2 12
A
ql 2 24
l
ql 2 12 FP l 8
B
A
FP
FP l 8
B
FP l
l/2
8
l/2
M
F AB
ql 2 12
,
M
F BA
ql 2 。 12
增加附加链杆:
B EA C
Z1 BH CH
B EA = 有限值 C
Z1 BH
Z2 CH
A
DA
Z3 D
D
Z1 B
Z2 C
C
Z1 B
Z4 BH B
A
C
Z5 CH
Z2
B
BH
E A
D
当BD杆: EI无限大
D
?
12
§8-2 等截面直杆的刚度(转角位移)方程
08第八章_位移法
第八章位移法本章的问题:A.什么是位移法的基本未知量?B.为什么求内力时可采用刚度的相对值,而求位移时则需采用刚度的真值?C.在力法和位移法中,各以什么方式来满足平衡条件和变形连续条件?D.位移法的基本体系和基本结构有什么不同?它们各自在位移法的计算过程中起什么作用?E.直接平衡法和典型方程法有何异同?F.力法和位移法的优缺点?G.在位移法中如何运用结构的对称性?§8-1位移法概述对图8-1所示单跨梁,象力法[例题7-4]-[例题 7-6]那样进行求解,从而可建立表8-1所示杆端内力。
需要指出的是,对于斜杆除表中所示弯矩、剪力外,还有轴力。
由位移引起的杆端内力称为“形常数”(shape constant)。
由“广义荷载”产生的杆端内力称为“载常数”(load constant),其中外荷载产生的杆端内力称为固端内力(internal force of fixed-end)。
杆端内力的符号及正、负规定见第3章。
两端固定一固一铰一固一定向图8-1 位移法基本单跨梁示意图*P。
P 。
P 有了表8-1,则图8-2 所示的两端固定单跨梁,利用形、载常数和叠加原理可得杆端内力。
例如A 端杆端弯矩为F4322122646ABAB M l EI lEI l EI l EI M ++-+=∆∆∆∆ (a ) A 端杆端剪力为图8-2单跨梁杆段位移和荷载作用AB3∆4∆2∆1∆FQ 42332213Q 612612AB AB F l EI l EI l EI l EI F ++-+=∆∆∆∆ (b )式(a )和式(b )中FAB M 和F Q AB F 为荷载引起的固端弯矩和固端剪力。
同理,也可叠加得到B 端的杆端内力BA M 和BA F Q 。
这些将杆端位移和杆端内力联系起来的式子,称为两端固定单跨梁的转角位移方程(slope-deflection equation )或刚度方程(stiffness equation )。
结构力学第8章位移法
结构力学第8章位移法位移法是结构力学中一种常用的分析方法。
它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。
位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。
位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。
位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。
2.应用边界条件。
根据边界条件,确定结构的支座的位移和转角值。
支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。
3.构建位移方程组。
将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。
位移方程组是未知反力系数的线性方程组。
4.解位移方程组。
通过解位移方程组,求解未知反力系数。
可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。
5.求解反力和应力分布。
通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。
这些反力和应力分布可以进一步用于结构的设计和评估。
位移法的优点是适用范围广泛,适合复杂结构的分析。
它可以处理线性和非线性的结构,包括静力学和动力学的分析。
同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。
然而,位移法也存在一些限制。
首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。
其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。
此外,位移法在处理大变形和非线性结构时可能会遭遇困难。
综上所述,位移法是结构力学中一种重要的分析方法。
它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。
然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。
结构力学上第8章 位移法
(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B
位移法
F B 端为铰支座固端弯矩 M AB 由上式得: F M BA F F 铰 支 M AB M AB (c) 2 B 端为滑动支座:q B FQBA 0
P M A 0 FQBAl M AB M BA M A 0
把式(a) 、(b)代入上式,得:
D F F P 6iq A 12i M AB M BA M A P M AB M BA M A l FQBA 0 l l F F P 6iq Al M ABl M BAl M A l 1 l F F P D q Al ( M AB M BA M A ) (d) 12i 2 12i
§8-3 无侧移刚架的计算
1、无侧移刚架基本未知量的判定:
其位移法基本未知量数目
结构上刚结点的独立角位移数 等于结构上的自由刚结点数 。
(a)
1 D E 2 C F
A
(b)
B
D
EA=
C
1 C
B
1 A
2 B
A
(c)
(d)
说明:
1)强调位移法基本未知量是结 构中自由结点上的独立结点位移。 结点上的独立角位移是自由刚结 点上的角位移。
(2) B 端为铰支座
式(8-5)中
M BA 0
,得:
D M AB 4iq A 2iq B 6i L D 0 2iq A 4iq B 6i L
整理上式得:
M AB
D 3iABq A 3i L
(8-9)
(3) B 端为滑动支座
代入(8-5)式,得:
D 1 qA 式(8-6)中 q B FQAB FQBA 0 ,得: L 2
(8-10)
第8章 位移法1
A
EI
EI
B
l/2 P
l/2
C
2. AB杆:相当于一端固定一 端铰支梁在支座A处发生转 角 。 MAB=3i
3. AC杆:相当于两端固 定梁在支座A处发生转角 及荷载共同作用。
MAC=4i+Pl/8 MCA=2i-Pl/8
由上述分析可知,如果能求出 ,则各杆 的内力就可求出。所以可把转角 作为基 本未知量。 4. 如何求 ?
2
基本体系
r11 4i 6i R1P
2i
M1
q
ql 2 / 8 ql 2 / 8
MP
2 ql / 20 位移法求解过程 :
Z1 ql 2 / 80i
M M 1 Z1 M P
q 1)确定基本体系和基本未知量 2)建立位移法方程 3)作单位弯矩图和荷载弯矩图 4)求系数和自由项 ql2 / 40 M 5)解方程 6)作弯矩图
M AB
3i F 3i A AB M AB l
(三)一端固定一端定向杆的转角位移方程
A
B A
P
B
F M BA
A
A
M AB i A M BA -i A
B i
M
F AB
M AB i A M
F AB F BA
M BA i A M
二.单跨超静定梁的形常数与载常数
ql2/8
q D A
C 4i B 3i A 2i
D
C
B
M1图
3) 画出单位弯矩图和荷载弯矩图 4) 求各系数
MP图
5) 画出弯矩图
2 r11 8i R1P ql / 8 R1P ql2 Z1 r11 64i
第8章 位移法
第8章 位移法§8-1 概述§8-2 等截面直杆的转角位移方程§8-3 位移法的基本未知量和基本结构§8-4 位移法的典型方程及计算步骤§8-5 直接由平衡条件建立位移法基本方程§8-6 对称性的应用2021-5-1212021-5-12 1§8-1 位移法的基本概念内力对于线弹性结构位移位移内力两种方法的基本区别之一,在于基本未知量的选取不同:力法是以多余未知力(支反力或内力)为基本未知量,而位移法则是以结点的独立位移(角位移或线位移)为基本未知量。
用位移法分析结构时,先将结构拆分成单个的杆件,进行杆件受力分析(建立杆件的转角位移方程);再将杆件组装成原结构,利用结点和截面平衡条件建立位移法方程,解出结点位移,再由转角位移方程求出内力。
2021-5-121一、引例1. 确定基本位移未知量图a所示两跨常刚度连续梁,抗弯刚度为EI。
忽略二杆的轴向变形,B结点不会发生线位移,而仅会产生角位移,设此角位移为Z1。
因B结点刚结两梁段于B端,从而保证两梁段在B端有相同的角位移,均为Z1。
2021-5-1212. 分列各组成杆的转角位移方程AB和BC二杆在B端具有相同的角位移和零线位移后,因此可将二杆在B端处分开,单独分析。
2021-5-1211)AB杆2)BC杆2021-5-1213. 通过B结点的平衡条件求出Z1由B结点的平衡可得2021-5-1214. 将Z1代回转角位移方程,求出各杆端弯矩2021-5-1212021-5-121二、其他示例(a) 若略去受弯直杆的轴向变形,并不计由于弯曲而引起杆段两端的接近,则可认为三杆长度不变,因而结点A没有线位移,而只有角位移。
对整个结构来说,求解的关键就是如何确定基本未知量q A的值。
2021-5-1212021-5-121三、位移法计算原理思路小结1. 把结构在非支座结点处拆开,将各杆视为相应的单跨超静定梁。
第8章 位移法
§8-1 概述
基本方法——力法、位移法
结构:外因→内力~位移——恒具有一定关系 力 法: 内力 → 位移 位移法:位移 → 内力
基本未知量 力法——多余未知力 位移法——结点位移(线位移,转角位移)
基本概念:(以刚架为例)
n=2 (超静定次数) 忽略轴向变形,
结点位移
Z1(角位移,无线位移) 变形协调条件
§8-2 等截面直杆的转角位移方程
单跨超静定梁——由杆端位移及荷载求杆端力 两端固定等截面梁(两端约束杆) 杆AB有杆端位移φA、φB、ΔAB, 只考虑相对线位移ΔAB
弦转角βAB = ΔAB∕l 顺时针为(+)
求杆端力 ——力法求支座移动引起的内力
11x1 12 x2 1 A 21x1 22 x2 2 B
1、基本未知量的确定 刚架 —— 除结点角位移外还有结点线位移 假定 ①理想刚结点,铰结点 ②忽略轴力产生的轴向变形 ③小变形(直杆弯曲两端距离不变) 角位移数=刚结点数
固定端角位移=0 铰结点、铰支座处杆端转角不独立
线位移数=独立的结点线位移数
a.观察——φ、Δ
b.独立线位移数——几何构造分析方法确定: (1)将所有刚结点(包括固定支座)变铰结点 (2)铰结体系的自由度数=独立的线位移数
图8-7 M1:r11=3i + 3i=6i MP: R1P=96-120=-24kN∙m Z1=-R1P/r11=4kN∙m/i M=MP+Z1M1
无侧移刚架: 【题9-9】2个转角位移 (对称性利用——1个转角位移)
例:(图8-9) (a)有侧移结构
计算步骤 (1)基本未知量 z1(φ1)、z2(Δ2) 刚结点——附加刚臂(只约束转动,不约束移动) 结点——附加支座链杆(独立线位移方向)
位移法
示。基本结构的变形与原结构是相同的,要使它们受力也相同,则
基本结构在荷载与Z1、Z2的共同作用下,附加联系(含附加刚臂及附 加链杆)处的反力矩及反力应为零(因为原结构不存在这些约束),假 设附加刚臂处的反力矩为 R1,附加链杆处的反力为R2,则
R1 0 R2 0
(a)
设由Z1、Z2及荷载引起的附加刚臂上的反力矩为R11、R12、R1P,
“附加链杆”阻止结点的移动。位移法中的基本未知量用Z表示,
这是一个广义的位移,并用“ ⌒”及“→”分别表示原结点处
的角位移、线位移的方向,加在附加刚臂及附加链杆处,以保证 基本结构与原结构变形是一致的,如图8-5(c)、(f)。 对于图8-7(a)所示刚架,刚结点E、G的转角为基本未知量,分别 用Z1、Z2表示,铰结点处的竖向线位移也是一个基本未知量用Z3 表示,基本结构为图8-7(b)。图8-7(c)所示刚架,F为一组合结点, 即BF、EF杆在F处为刚结,该结构
(8-4)
式(8-3)称为图8-4(a)所示单跨梁的转角位移方程。式(8-3)还 可由式(8-1)推出,由MBA=0可得(荷载项单独考虑)
2i A 4i B
6i AB 0 l
(a)
B
1 3 ( A ab ) 2 l
将(a)式代入式(8-1)第一式可得
M AB 4i A 2i[ 3i A 1 3 6i ( A AB )] AB 2 l l
l
独立的角位移数目也就是刚结点的数目。图8-5(d)所示刚架,
E为铰结点,汇交于E结点的三根杆件各杆端转角由上节可
知不是独立的,故该刚架,
。 n 2, n 1.
l
独立的线位移数目,对于较复杂的结构无法直接观察而得,可采
第8章位移法
9 Fl 22 Fl 2 Z1 , Z2 552 i 552 i
结构的最后弯矩图可由叠加法绘制: M
M1Z1 M 2 Z 2 M P
内力图校核同力法,略。
§8-4 位移法的典型方程及计算步骤
位移法计算步骤
(1)确定基本未知量:独立的结点角位移和线位移,加入附加
§8-6 对称性的利用
绘弯矩图d、e、g。
6 EI r11 10m r12 r21
112EI r22 1000m 3 6EI 100m 2
R1P 100kN m R2P 60kN
232.7kN m 2 Z1 EI 解得 660.4kN m 3 Z2 EI
图a所示刚架,结点角位移数目=4(注意结点2)
结点线位移数目=2
加上4个刚臂,两根支座链杆,可得基本结构如图b。
§8-3 位移法的基本未知量和基本结构
图a所示刚架,结点线位移数目=2
图b所示刚架,结点角位移数目=2 结点线位移数目=2
§8-4 位移法的典型方程及计算步骤
图a所示连续梁(EI为常数),只有一个独立结点角位移Z1。在结点B 加一附加刚臂得到基本结构。令基本结构发生与原结构相同的角位移Z1,二 者的位移完全一致了。
典型方程
主系数:主斜线上的系数rii,或称为主反力,恒为正值。 副系数:其他系数rij,或称为副反力,可为正、负或零。 rij= rji。 每个系数都是单位位移引起的反力或反力矩→结构的刚度系数; 位移法典型方程→结构的刚度方程;位移法→刚度法。
§8-4 位移法的典型方程及计算步骤
例8-1 试用位移法求图a所示阶梯形变截面梁的弯矩图。E=常数。
第8章位移法
(4)解方程求基本未知量。将系数和自由项代入位移法方程,得
解方程得
(5)绘内力图。由 叠加绘出最后M图,如图(f)所示。
(6)校核,在图(f)中取结点1为隔离体,验算是否满足 的平衡条件。由
可知计算无误。
题8-5试用位移法计算图(a)所示刚架,并绘制弯矩图。
(6)校核。在图(e)中取结点1为隔离体,验算是否满足平衡条件。由
可知计算无误。
题8-3试用位移法计算图(ห้องสมุดไป่ตู้)所示刚架,并绘制内力图。
题8-3图
解:(1)形成基本结构。此刚架的基本未知量为结点1的角位移 ,基本结构如图(b)所示。
(2)列出位移法方程
(3)求系数和自由项。绘出 和荷载作用在基本结构上的弯矩图,如图(c)、(d)所示。
(4)解方程求基本未知量。将系数和自由项代入位移法方程,得
解方程得
(5)绘弯矩图。由 叠加绘出最后M图,如图(f)所示。
(6)校核心。在图(f)中取结点1为隔离体,有
再取杆12为隔离体,有
可知计算无误。
题8-6试用位移法计算题19。6图(a)所示刚架,并绘出弯矩图。
题8-6图
解:(1)形成基本结构。此刚架的基本未知量为结点1的角位移 和结点1的水平线位移 ,基本结构如图(b)所示。
在图(c)、(d)中分别利用结点的平衡条件计算出系数和自由项如下:
(4)解方程求基本未知量。将系数和自由项代入位移法方程,得
解方程得
(5)绘地内力图。由 叠加绘出最后M图,如图(e)所示。利用杆件和结点的平衡条件可作出 图,分别如图(f)、(g)所示。其中在绘 图时需补充水平方向的变形条件才能求出,即A1杆的伸长量与B1杆的伸长量之和等于零。
第8章_位移法
k11
MP
3i
3
1
k11 4i 3i 7i
4i
将以上两式代入基本方程,得:
kR1111
4i
1
2
3Pl 7i Z1 16 0
1=Z1
Z1=
3i 1
3Pl Z1 112i
3
2i
M1
4、根据叠加原理作最后弯矩图
M M1Z1 MP
3Pl Z1 112i
3Pl 28
1
2
11Pl 56
3
3Pl 56
1
M 2
X2=1 1/l
l 3EI
X1
l 6EI
X2
l
A
l 6EI
X1
l 3EI
X2
l
B
A
fA
X1
fB
令 i EI l 线刚度
X1
4i A
2iB
6i l
X1=1
X2
2i A
4iB
6i l
1
M AB
4i A
2i B
6i l
M BA
2i A
4i B
6i l
M 1
M 2
X2=1
VAB
M AB
M BA l
C
D
C
D
1
C
D
A
B
A
B
1
试确定图示结构的独立线位移数
4
0
3、位移法的基本未知数
n n nl
例:确定结构按位移法求解的基本未知数
n 4 n n nl 4 2 6
nl 2
思考:确定结构按位移法求解的基本未知数
n n nl 6 2 8
第8章 位移法
FQ BA
6i l
A
6i l
B
12i l2
FF Q BA
§8.2
等截面直杆的转角位移方程
(2)一端固定一端铰支的单跨超静定梁
A
M
MAB
A
A
FQAB
q
FP
B
EI
B1
B
(非独立角位移)
FQBA l
M AB
3iA
3i l
M
F AB
M BA 0
FQ AB FQ BA
3i l
A
3i l
A
3i l2 3i l2
σ M1 = M13 + M12 = 0
(a)
σ Fx = Fs13 + Fs24 = 0
(b)
利用转角位移方程(8-2)、(8-3)及
(8-5)
r11Z1 + ⋯ + r1iZi + ⋯ + r1nZn + R1p = 0 ⋯⋯⋯⋯⋯
ri1Z1 + ⋯ + riiZi + ⋯ + rinZn + Rip = 0 ⋯⋯⋯⋯⋯
rn1Z1 + ⋯ + rniZi + ⋯ + rnnZn + Rnp = 0
在上述典型方程中,主斜线上的系数rii称为主系数或主反力;其 他系数rij称为副系数或副反力;Rip称为自由项。系数和自由项的 符号规定是:以与该附加联系所设位移方向一致者为正。主反力
§8.3
位移法的基本未知量和基本结构
用位移法计算超静定结构时,每一根杆件都可以看成是一根单跨 超静定梁,因此位移法的基本结构就是把每一根杆件都暂时变成两 端固定的或一端固定一端铰支的单跨超静定梁。为此,可以在每个 刚结点上假想的加上一个附加刚臂,以阻止刚结点的转动(但不能 阻止结点的移动),同时加上附加支座链杆以阻止结点的线位移。 例如图8-3a所示刚架,在两刚结点1、3处分别加上刚臂,并在结点 3处加上一根水平支座链杆,则原结构的每根杆件就都成为两端固 定或一端固定一端铰支的梁。原结构的基本结构如图8-3所示,它 是单跨超静定梁的组合体。 又如图8-4a所示刚架,其结点角位移数目为4(注意其中结点2也是 刚结点,即杆件62与32在该处刚结),结点线位移数目为2,一共 有6个基本未知量。加上4个刚臂和两根支座链杆后,可得到基本结 构如图8-4b
《结构力学》第八章-位移法
(5) 按叠加法绘制最后弯矩图。
18
例 8—1 图示刚架的支座A产生了水平位移a、竖向位移b=4a
及转角=a/L,试绘其弯矩图。
L
解:基本未知量 Z 1(结点C转角); C EI
B C Z1
B
基本结构如图示;
2EI
建立位移法典型方程: r11Z1+R1△=0
A Z1
基本结构 A
为计算系数和自由项,作
链为了杆能数简,捷即地为确定原出结结构构的的独独立立线线位
(b)
移位移数数目目(见,可图以b)。
11
2.位移法的基本结构
用位移法计算超静定结构时,每一根杆件都视为一根单跨超静
定梁。因此,位移法的基本结构就是把每一根杆件都暂时变为一根
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
构在荷载等外因和各结点位移共同作用下,各附加联系上的反力矩
或反力均应等于零的条件,建立位移法的基本方程。
(3) 绘出基本结构在各单位结点位移作用下的弯矩图和荷载作
用下(或支座位移、温度变化等其它外因作用下)的弯矩图,由平衡
条件求出各系数和自由项。
(4) 结算典型方程,求出作为基本未知量的各结点位移。
正。
B
B
B′
X2
X3
M1图
1
M
图
2
7
将以上系数和自由项代入典型方程,可解得 X1=
X2=
令
称为杆件的线刚度。此外,用MAB代替X1,用
MBA代替X2,上式可写成
MAB= 4iA+2i B- MBA= 4i B +2i A-
(8—1)
是此两端固定的梁在荷载、温度变化等外因作用下的杆
第八章 位移法
FSBA
转角位移方程(刚度方程) Slope-Deflection (Stiffness) Equation
石铁大 结构力学
Chapter 8 Displacement Method
同理,另两类杆的转角位移方程为 A端固定B端铰支
M AB = 3iϕ A − 3i F ∆AB + M AB l
3i 3i F FSAB = − φ A + 2 ∆ AB + FSAB l l 3i 3i F FSBA = − φ A + 2 ∆ AB + FSBA l l
石铁大 结构力学
Chapter 8 Displacement Method
§8-1 概
EA = ∞ Z1
述(Introduction)
内力计算的关键是 求结点位移Z1
l/2 P l/2
Z1 =
EI
EI
Z1=1
× Z1
Z1
Z1 =
P
P
+
石铁大 结构力学
Chapter 8 Displacement Method
R2P r12
q
M2
4i / l
M1
4i
3i 2i
ql / 8 ql 2 / 8
MP
2
q R1P
3i / l
r11 = 34i / 3l 2
r12 = −4i / l
16 i / 3 l 3 i / l 2
2
r22 r11
3i 4i
r21
3i
R1 P = −3ql 2 / 4 r21 = −4i / l r22 = 10i R2 P = 0
石铁大 结构力学
Chapter 8 Displacement Method
《结构力学》第八章 位移法
位移未知数确定举例
位移未知数确定举例
位移未知数确定举例
位移未知数确定举例
位移未知数确定练习
na 5 nl 2
na 2 nl 2
位移未知数确定练习
na 3 nl 4
na 0 nl 1
位移未知数确定练习
na 3 nl 1
na 3 nl 0
位移未知数确定练习
na 2 nl 3
基本思路
两种解法对比:
典型方程法和力法一样,直接对结构按统 一格式处理。最终结果由迭加得到。
平衡方程法对每杆列转角位移方程,视具 体问题建平衡方程。位移法方程概念清楚, 杆端力在求得位移后代转角位移方程直接可 得。
位移法方程:
两法最终方程都是平衡方程。整理后形式 均为:
K R 0
典型方程法基本概念
有一(A 点
转角,设为
).
位移法第一种基本思路
利用转角位移 方程可得:
M AD M
M AC
3i
ql 2 8
M AB
4i
FP l 8
M AE
i
FP l 2
在此基础上,由图示结点平衡得 M 0
第一种基本思路
位移法思路(平衡方程法)
以某些结点的位移为基本未知量 将结构拆成若干具有已知力-位移(转角-位移) 关系的单跨梁集合 分析各单跨梁在外因和结点位移共同作用下 的受力 将单跨梁拼装成整体 用平衡条件消除整体和原结构的差别,建立 和位移个数相等的方程 求出基本未知量后,由单跨梁力-位移关系可 得原结构受力
超静定单跨梁的力法结果(3) 载
载 载
1
超静定单跨梁的力法结果(4) 载 形 形 载
超静定单跨梁的力法结果(5) 载 载 载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
EI l
3
l
M 12 1 3i 5 ql 2 Z1 ql l 2 l 8 M 1 3i 3 FQ 21 12 ql 2 Z1 ql l 2 l 8 FQ12
6i 3 Z1 ql 0 l2 8
于是,可得:
M 34 3i 2 Z1 l l M 34 3i FQ 43 2 Z1 l l FQ 34
原结构
基本体系
Z1 Z1 Z1=1 Z1=1
R1 0
R11 Z1
(d)
R1P
(e)
(f)
r11
从另一方面看,根据前面所述,若线位移Z1确实是原结构中的侧 向线位移,则有
q ql2 8
+
MP图
3i l
21 FQ 21 FQ
M1图
3i l
43 FQ 43 FQ
则同样有
R1 0
退出
退出 退出
等效单跨超静定 梁组合体
结点力矩平衡条件
基本方程 静力平衡条件
结构的剪力平衡条件
四、位移法的第二种基本型式----附加约束法 1 无侧移刚架 (a)
只阻止结点转动,不能 阻止结点移动的附加刚臂
(b) Z1 1 R1 FP 2
(a) 1 M 13
M 12
(b) 1
R1 M'12 M'13
图 8 - 14
Z"1 FP M图
l 2
8F Pl 56
F Q图 3
l/2
3
ቤተ መጻሕፍቲ ባይዱ9F Pl 56
4 l
3 183 F l 552 P
4 486 F 552 P
(b)
图 8-4
(a) Z1 2 EA=∞ Z1 4 (b) 2
图 8-6
2 4 3ql 2 16 4
Z'1
q
ql2 8 1
2
D
+ 3ql 16
M A
B
D
M A
B
1 Z"1
Z"1
l
l/2
F P 1
3
1
Z2 1
Z2 i Z1 2
D
(c)
3
Z"1 4
M A
(d)
B
2 F Q21 4 F Q43
l 2
FP
i
Z1
i
l 2
3 l
4
3
C
退出
图 8-2
超静定结构的弯曲变形示意图
独立的未知结点位移?
图 8-3
2
2014-04-19
Z2
(a) 2 EI Z1 1 Z1
1
Z2 i Z1 2
3
2014-04-19
三、位移法的第一种基本型式----直接平衡法
1 无侧移刚架
(a) 2 EI Z1
M 12
Z'1
3FP l 56
M 13
基本未知量
1 Z1
1
(b) 2
Z'1 FP EI (d) 1 M 12 M 13 (c) 3 1 Z"1
1
M12 3iZ1
M 21 0
退出
图 8 - 17
6
2014-04-19
即
R1 R1P R11 0
式中,R1P表示基本结构在荷载单独作用下附加链杆上将产生的反力, R11表示基本结构上附加链杆移动Z1时,附加链杆上产生的反力。根据比 例关系可得
其中, r11是系数,表示基本结构在Z1=1时,附加链杆中的反力; R1P是自由 项,表示基本结构在荷载单独作用下附加链杆上将产生的反力。
3 40 F Pa 1
结点 1的转角 Z1求得后,可按下式叠加作出最后弯矩图。
M Z1M1 M P
FP 2
23 40 F P 1 FP +
FP
17 40 F P
2
1
9 80 F P
2
M1图
M
3 2EI1 a 1
1
0 : r11
6EI1 a
10 EI1 a
3
M
1 0
1
0 : R1P
1 Z1
Z1 EI 2=2EI1 EI1
原结构
2
附加刚臂
基本体系
M1 0
3
M12 M13 0
M
0 1
M13 R1 M12
a
若基本体系的受力情况与原结构相同,因为原结构中结点1上无集 中力偶作用,所以基本体系上附加刚臂的反力矩应为零,即
3 a/2
(c) R1P 1
a/2
退出
图 8-1
超静定刚架
退出
(1) 、什么样的内力,就对应什么的 位移与变形。
(2) 、什么的位移与变形,就对应什么样的内力。 (b) (a) Z'
1
2 EI Z1
1 Z1
1
2
(a) Z' 12
Z1 1
EA=∞
Z1 4
(b)
Z'1 2
l/2
FP EI (d) 1 3 l M 12 M 13 (c)
q
M图 3ql 16
2
+ 3 13ql 16 1 F Q图 3
1
3
1
5ql 16
M图?
C C
图 8-7
l
退出
(c) 4
图 8-5
Z"1 (d) 2 F Q21 4 F Q43
退出
3
(3)、 研究思路 (a)以独立的未知结点位移为基本未知量。
二、位移法的基本思路 先离散,后组合。即化整为零,积零为整。 基本未知量:独立的未知结点位移 (变形协调条件) 结构离散成杆件,离散的杆件视为等效的单跨超 离散 静定粱,建立等效单跨超静定粱杆端内力与结点 位移的关系。
(b) 2
Z'1
1
1
2 Z'1
1
1
Z"1
l 2
3F Pl 56
1 27 F l 552 P FP
27 F l 552 P
2
27 F 1 552 P FP +
66 F 552 P
-
FP
l/2
i
Z1
i
60 F l 552 P M图 66 F l 552 P (a)
FP EI (d) 1 3 l M 12 M 13 (c) 3
将上述杆端剪力代入剪力平衡方程可得该结构位移法的基本方程为:
基本未知量
(c) 4 Z"1
结点线位移Z1
Z1 Z1 Z1
位移协调
Z1
M 34 3i Z1 l
(d) 2 F Q21 4 F Q43
ql 3 16i
M 43 0
3
剪力平衡 条件
将所求得的Z1代入各杆端内力计算公式可得:
结点 1的转角
l/2
8F Pl 56
图 8 - 10
M图 9F Pl 56
图 8-9
位移法基本方程
从以上所述可知,对于无侧移刚架,位移法是以独立结点角 位移作为基本未知量,根据结点力矩平衡条件,并利用物理条件、 变形谐调条件建立求解结点位移的方程,首先求出位移。然后利用
退出
7iZ1
FP l 0 8
上述解题过程,主要有两步,第一步将结构离散,将离散后的杆 件等效为相应的单跨超静定梁,分析各根杆件的受力情况,用杆端 位移表示各杆件的杆端力;第二步将各杆件联结起来组成结构,利 用变形谐调条件和平衡条件,建立求解结点位移的方程。 侧移刚架
由上结果即可绘出结构的弯矩图及剪力图。
2 4 3ql 2 16 4
(b)应当以力法的计算结果为基础,即以最简 单的超静定结构计算结果为基础。 (c)任何结构的计算必须满足相应的物理条件、静 力平衡条件、变形协调条件。
按照这种研究思路与策略,便形 成了位移法的基本思路。
退出 退出
EI l
图 8-8
EI l
单跨超静定粱
EI l
(静力平衡条件) 组合 杆件组成结构,进行整体分析,得出基本方程。
P
结点的转角均假设以顺时针 方向为正,反之为负。
1
R1 0
从另一方面看,根据前面所述,若转角Z1确实是原结构中结点1的转 角,则有
2
(d)
R11 1
2
附加刚臂中的反力 矩均假设以顺时针 方向为正。
3
M12 M12
则同样有
M13 M13
固定结点
+
R1 R1P R11
3
放松结点
Z1
FP l 56i
将结点 1的转角Z1代入杆件12、13的杆端弯矩方程即得杆件12、13的杆端弯矩。
转角位移方程求出杆端力,绘制内力图。
2 有侧移刚架
(a) Z1 2 EA=∞ Z1 4 (b) Z'1 2
根据杆端弯矩,可求得杆端剪力分别为:
q
EI=常数
i
1
3i ql 2 M 12 Z1 l 8
r11
于是,可得:
10 EI1 a
R1P
3FP a 16
R11 r11Z1
于是,可得位移法的基本方程为
10 EI1 3 Z1 FP a 0 a 16
Z1
3FP a 2 160 EI 1
r11Z1 R1P 0
(a) Z1=1 4EI1 1 r11 a 2EI 3( a 1 ) (b) 2 3 16 F Pa R1P 1 FP 2 5 32 F Pa