郭氏数学 八年级下册分式方程应用题
八年级下册数学分式方程应用题及答案
18、我国温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间.
经检验:x=5是原方程的解。
5、解:⑴设4月份销售价为每件x元,则 解,得x=50
经检验:x=50是原方程的解。
⑵4月份销售件数:2000÷50=40(件);每件进价:(2000-800)÷40=30(元)
5月份销售这种纪念品获利:(2000+700)-30×(40+20)=900(元)
答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。
⑵该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?
11、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。
27、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的 ,求甲、乙两个施工队单独完成此项工程各需多少天?
28、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤 m,则得方程为.
八年级下册数学分式方程应用题及答案
八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
8、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?9、、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
八年级下(初二数学)分式(分式的方程及应用题)
八年级下(初二数学)分式(分式的方程及应用题)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式基础练习三 (分式方程及应用题)专题一:分式方程1. 下列方程是分式方程的是( ) A.2513x x =+- B.315226y y -+=-C.212302x x +-= D.81257x x +-=2. 若3x =-是分式方程312axx=-的解,则a 的值为( ) A.95- B. 95C.59D. 59-3. 用换元法把方程222(1)6(1)711x x x x +++=++化为关于y 的方程627y y+=,那么下列换元正确的是( )A.11y x =+ B.211yx =+ C.211x y x +=+D.211x y x +=+ 4. 满足方程:1212x x =--的x 值为( ) A.1 B.2 C.0 D.没有 5. 若关于x 的方程1011m xx x --=--有增根,则m 的值是( ) A.3 B.2 C.1 D.1- 6. 当x = 时,分式32xx -的值是1-; 7. 若关于x 的分式方程4155x ax x=---的增根,那么增根是 , 这时a = . 8. m 时,关于x 的方程223242mx x x x +=--+会产生增根.9. 用换元法解方程2()5()4011x x x x -+=++时,可设1xy x =+,则原方程可化为 . 10. 解方程.215x x =+ 13244x x x -=+--3212x x =+-232x x =+ 12433x x x -=---21233x x x -=---243111x x x -+=-- 133211x x x x +--=-+ 2213211x x x x --=--专题二:分式方程的应用题1.某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为( )A.320320200.5x x -=- B.320320200.5x x-=- C.3203200.520x x -=- D. 3203200.520x x-=- 2.“五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为( ) A.18018032x x -=- B.18018032x x -=+ C.18018032x x-=+ D.18018032x x-=- 3.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务.设原计划每天固沙造林x 公顷,根据题意列方程正确的是( ) A.24024054x x +=+ B.24024054x x -=+ C.24024054x x +=- D.24024054x x -=-4.一项工程,甲. 乙两人合做需m小时完成,甲独做需n小时完成,那么乙独做需_____小时完成.5.甲. 乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲. 乙每天制作的零件数分别为________________.6.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为________________.7.为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x棵,根据题意得方程______ __.8.新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x天,根据题意可列方程.9.小王做90个零件所需要的时间和小李做120个零件所用的时间相同,又知每小时小王与小李两人共做35个机器零件.求小王. 小李每小时各做多少个零件?设小王每小时做x个零件,根据题意可列方程.10.甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲. 乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?11.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.12.2001年底,我国加入WTO,从2002年起,部分汽车的价格便开始大幅度下调.现某种型号的小汽车热销,为了增加产量,某汽车生产厂增加了设备,同时改进了技术,使该厂每小时装配的车辆数比原来提高2,这样装3配40辆汽车所用时间比技术改造前装配30辆汽车所用时间还少2h,那么该厂技术改造后每小时装配多少辆汽车?13.甲. 乙两种涂料的单价比为5:4,将价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,这种涂料的单价为17元.求甲. 乙两种涂料的单价.14. 甲. 乙两打字员,甲每分钟打字数比乙少10个.两人分别打同一份搞件,结果乙完成所需的时间是甲的5,那么甲. 乙两人每分钟打字数分别6是多少?15. 某房地产开发公司原计划建商业场所50000m2,住宅100000m2,由于销售市场发生变化,就将一部分商业场所改建为住宅销售,使两部分面积之比为1:3.那么该公司将多少面积的商业场所改建为住宅销售?请分析题中的等量关系,并列出符合题意的方程.16. 有一项工程,如果甲队单独做,正好在规定日期完工;如果乙队单独做,则比现定日期要多3天才能完成,现在甲. 乙两队合做2天后,再由乙队单独做,正好在规定日期完工,问规定日期是多少天?17. 为了过一个有意义的“六. 一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的1.2倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学?。
八年级下册数学34道分式方程应用题及答案
八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
(word完整版)郭氏数学八年级下册分式方程应用题
分式方程分式方程应用题四步骤1,设未知数一般是问什么就设什么。
如果问题中有两个并列的,则一般设前面那个为x,把后面那个用x来表示(如第4、14、19题)。
如果问题问的量设为x之后题目中其他的量不容易用来表示,则设题目中容易表示其他量的量为x,然后把其他的量用x表示出来即可。
(如第13题要设衬衫的单价而不能设总盈利,设衬衫的单价为x列出方程,求出x,再用x来求出总盈利)2,找等量关系,从而列方程列方程最重要的是找到等量关系,找到什么等于什么之后,用x来表示等号两边的量即可得到方程。
那找等量关系的关键在哪呢?如何一眼看出等量关系呢?其实,非常简单。
那就是找到这个题要达到的结果,那句话就是等量关系,所以找等量关系关键就是找到“题目要达到的那句话”。
这句话一般都就是问题的前面那句话,如果不是,再到其他位置找。
3,解分式方程第一步是去分母。
注意是去分母,而不是通分。
去分母的关键就是方程两边同时乘上所有的分母的最小公倍数。
这样可以直接去掉所有的分母。
第二步就是去括号了,利用乘法分配率化简。
第三步移项。
把所有含x的项移到一边,不含x的项移到另一边。
第四步合并同类项。
第五步把x的系数化为1.第六步:检验。
检验结果是否让方程中的分母为零,为零则无意义。
解方程一定要严格按照以上步骤,每一步都达到每一步的结果。
基本所有的分式方程就用以上五步就可以解出。
不要把一步分成两步,去括号那一步就要去掉所有的括号,而不要分成两步来写,如果你认为要计算的太多一步得不到去括号的结果,那就在演草纸上算,把整个去括号的结果写上去即可。
4、当然,最后写上答案就完成了。
方程应用题的步骤就是以上4个,只要严格按照以上4个步骤,就可以轻松解决所有的方程题!!一定要严格按照步骤做,不要自创步骤,自作聪明。
考试都不会太难,只要做到以上4点,基本是满分了。
郭氏数学直指问题核心、明晰出题意图、按图索骥,解题变成程序,让数学成为最容易得分的学科。
详见郭氏数学官方博客。
八年级下册数学分式方程应用题与答案.doc
WORD格式1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40 分完工;若甲、乙共同整理20 分钟后,乙需要再单独整理 20 分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则20 20 201 解,得 x= 8040 x经检验: x= 80 是原方程的解。
答:乙单独整理需80 分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900 千克和1500 千克,已知第一块试验田每亩收获蔬菜比第二块少300 千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则900 1500解,得 x=450x x 300经检验: x= 450 是原方程的解。
答:第一块试验田每亩收获蔬菜450 千克。
3、甲、乙两地相19 千米,某人从甲地去乙地,先步行7 千米,然后改骑自行车,共用了 2 小时到达乙地。
已知这距个人骑自行车的速度是步行速度的 4 倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米 / 时,则7 19 72 解,得 x= 5x 4x经检验: x= 5 是原方程的解。
进4x=20(千米 / 时)尔答:步行速度千米 / 时,骑自行车的速度是 5 是20千米/时。
4、小兰的妈妈在供销大厦用12.50 元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销18.40 元钱,买的瓶数比第一次买的大厦每瓶便宜0.2 元,因此,当第二次买酸奶时,便到百货商场去买,结果用去瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则12.518.400.2 解,得 x=5x 3x15经检验: x= 5 是原方程的解。
答:她第一次在供销大厦买了 5 瓶酸奶。
5、某商店经销一种纪念品,4 月份的营业额2000 元,为扩大销售, 5 月份该商店对这种纪念品打九折销售,结果销为售量增加20 件,营业额增加700 元。
(含答案)八年级下册分式方程的应用练习30题应用题(精选)
分式方程的应用练习30题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则:120204020=++x解得:x =80经检验,x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则:3001500900+=x x 解得:x =450经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解得:x =5经检验:x =5是原方程的解。
所以,骑自行车的速度为:4x =20(千米/时)答:步行速度是5千米/时,骑自行车 的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.5元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.4元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:设她第一次在供销大厦买了x 瓶酸奶,则:12.518.40.23(1)5x x =++ 解得:x =5经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
(1)求这种纪念品4月份的销售价格。
八年级下册数学34道分式方程应用题及答案
八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
八年级下册数学34道分式方程应用题及答案
八年级数学下分式方程应用练习去买,结果用去元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了1、甲、乙两人准备整理一批新到的实验器械,甲独自整理需要几瓶酸奶40 分竣工;若甲、乙共同整理 20 分钟后,乙需要再独自整理20 分才能竣工。
问:乙独自整理需多少分钟竣工5、某商铺经销一种纪念品, 4 月份的营业额为 2000 元,为扩大销售, 5 月份该商铺对这类纪念品打九折销售,结果销售量增添20 件,营业额增添 700 元。
2、有两块面积相同的试验田,分别收获蔬菜⑴求这类纪念品 4 月份的销售价钱。
900 千克和 1500 千克,已知第一块试验⑵若 4 月份销售这类纪念品赢利800 元,问: 5 月份销售这类纪念品赢利多少元田每亩收获蔬菜比第二块少300 千克,求第一块试验田每亩收获蔬菜多少千克3、甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,而后改骑自行车,共用了 2 小时抵达乙地。
已知这个人骑自行车的速度是步行速度的 4 倍。
求步行的速6、一个分数的分母比分子大7,假如把此分数的分子加17,分母减 4,所得新分数是度和骑自行车的速度。
原分数的倒数,求原分数。
4、小兰的妈妈在供销大厦用元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶廉价元,所以,当第二次买酸奶时,便到百货商场7、某一项工程在招标时,接到甲、乙两个工程队的招标书,施工一天,需付甲工程队1 / 10款万元,乙工程队款万元,工程领导小组依据甲、乙两队的招标书测算,可有三种施拨11000元资本购进该品种苹果,但此次的进价比试销时的进价每千克多了元,购进工方案:苹果数目是试销时的 2 倍。
⑴试销时该品种苹果的进价是每千克多少元方案一:甲队独自达成这项工程恰巧按期达成;⑵假如商场将该品种苹果按每千克7 元的订价销售,当大多数苹果售出后,余下的 400 方案二:乙队独自达成这项工程要比规定日期多用 5 天;千克按订价的七折售完,那么商场在这两次苹果销售中共盈余多少元方案三:若甲、乙两队合做 4 天,余下的工程由乙队独自达成,也正好按期达成。
初二分式方程应用题及答案
初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。
现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。
设甲乙两个车间合作完成这批零件
需要\( x \)天。
根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。
答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。
八年级下册数学34道分式方程应用题及答案
八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工.问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0。
2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18。
40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元.⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1。
1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数.8、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
初二八年级数学下册分式方程应用题训练题含答案
分式方程应用题一、单选题(共4题;共8分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B.C. D.3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.4.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣个物件,则可列方程为()A. B. C. D.二、填空题(共2题;共2分)5.某班学生从学校出发前往科技馆参观,学校距离科技馆15km,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是________km/h.6.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为________ km/h.三、计算题(共1题;共10分)7.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,己知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?四、解答题(共11题;共55分)8.列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?9.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.10.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?11.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.12.甲、乙两人每小时共做个零件,甲做个零件所用的时间与乙做个零件所用的时间相等.甲、乙两人每小时各做多少个零件?13.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.14.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.15.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.17.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?18.为建国70周年献礼,某灯具厂计划加工9000套彩灯。
八年级数学下册分式方程应用题专题训练(答案)(K12教育文档)
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣ =10,解得:x=15,经检验,x=15是方程的解,
3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋价格
甲
乙
进价(元/双)
m
m﹣20
售价(元/双)
240
160
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,
解得:y=23,∴3y﹣5=64.
答:该商场购进甲种牛奶64件,乙种牛奶23件.
8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1。2倍,数量比第一批多了10支.
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为八年级数学下册分式方程应用题专题训练(答案)(word版可编辑修改)的全部内容。
八年级下册数学分式方程应用题包括
精选文档1、甲、乙两人准备整理一批新到的实验器械,甲独自整理需要 40 分竣工;若甲、乙共同整理20 分钟后,乙需要再单独整理 20 分才能竣工。
问:乙独自整理需多少分钟竣工?解:设乙独自整理需x 分钟竣工,则20 20 201 解,得 x = 8040x经查验: x = 80 是原方程的解。
答:乙独自整理需80 分钟竣工。
2、有两块面积相同的试验田,分别收获蔬菜900 千克和 1500 千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则900 1500 解,得 x = 450xx300经查验: x = 450 是原方程的解。
答:第一块试验田每亩收获蔬菜 450 千克。
3、甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,而后改骑自行车,共用了2 小时抵达乙地。
已知这个人骑自行车的速度是步行速度的4 倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米 /时,则7 19 7解,得 x = 5x24x经查验: x = 5 是原方程的解。
进尔 4x = 20(千米 /时)答:步行速度是5 千米 /时,骑自行车的速度是 20 千米 /时。
4、小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百货商场食品自选室发现,相同的酸奶,这里要比供销大厦每瓶廉价 0.2 元,所以,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱,买的瓶数比第一次买的瓶 数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则0.2 解,得 x = 5x3x15经查验: x = 5 是原方程的解。
答:她第一次在供销大厦买了5 瓶酸奶。
5、某商铺经销一种纪念品, 4 月份的营业额为 2000 元,为扩大销售, 5 月份该商铺对这类纪念品打九折销售,结果销售量增添 20 件,营业额增添 700 元。
初中八年级下册数学分式方程应用题包括
1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要 40 分完工;假设甲、乙共同整理20 分钟后,乙需要再单独整理 20 分才能完工。
问:乙单独整理需多少分钟完工? 解:设乙单独整理需 x 分钟完工,那么20 20 201解,得 x = 8040x经检验: x = 80 是原方程的解。
答:乙单独整理需 80 分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜 900 千克和 1500 千克,第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,那么 900 1500 解,得 x = 450xx300经检验: x = 450 是原方程的解。
答:第一块试验田每亩收获蔬菜 450 千克。
3、甲、乙两地相距19 千米,某人从甲地去乙地,先步行 7 千米,然后改骑自行车,共用了2 小时到达乙地。
这个人骑自行车的速度是步行速度的4 倍。
求步行的速度和骑自行车的速度。
解:设步行速度是 x 千米 /时,那么7 19 7解,得 x = 5x24x经检验: x = 5 是原方程的解。
进尔 4x = 20〔千米 /时〕答:步行速度是 5 千米 /时,骑自行车的速度是 20 千米 /时。
4、小兰的妈妈在供销大厦用 12.50 元买了假设干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶廉价 0.2 元,因此,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱,买的瓶数比第一次买的瓶 数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,那么0.2 解,得 x = 5x 3x15经检验: x = 5 是原方程的解。
答:她第一次在供销大厦买了5 瓶酸奶。
5、某商店经销一种纪念品, 4 月份的营业额为 2000 元,为扩大销售, 5 月份该商店对这种纪念品打九折销售,结果销售量增加 20 件,营业额增加 700 元。
八年级数学下册(第十六章 分式方程)应用练习题 试题
轧东卡州北占业市传业学校临沭县第三初级八年级数学下册<第十六章 分式方程>应用练习题〔〕 教一.行程问题 〔1〕“……相等〞解决策略:根据的相等条件列方程,如甲时间=乙时间1、某化肥厂方案每天生产x 吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原方案生产120吨的时间相等,列出方程:2、在“125 大地震〞灾民安置工作中,某企业接到一批生产甲种板材240002m 和乙种板材120002m 的任务.该企业安排140人生产这两种板材,每人每天能生产甲种板材30 2m 或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务? 解:设3、2特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原方案多200顶,现在生产3000顶帐篷所用的时间与原方案生产2000顶的时间相同。
现在该企业每天能生产多少顶帐篷?解:设4、A,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30千克,A 型机器人搬运900千克所用的时间与B 型机器人搬运600千克所用的时间相等,两种机器人每小时分别搬运多少化工原料? 解:设5、某工厂现在平均每天比原方案多生产50台机器,现在生产600台机器所用的时间与原方案生产450台机器所用的时间相同,现在平均每天生产多少台机器? 解:设6改良玉米品种后,迎春村玉米平均每公顷增加产量a 吨,原来产m 吨玉米的一块土地,现在的总产量增加了20吨,原来和现在玉米的平均每公顷产量各是多少? 解:设〔2〕“……比……多……常数〞 解决策略:t 慢-t 快=常数1、为帮助灾区人民重建家园,某校学生积极捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元,求第一次捐款的人数?解:设2、A,B两地相距40千米,甲骑自行车从A地出发1小时后,乙也从A地出发,用相当于甲的倍的速度追赶甲,当追到B地时,甲比乙先到20分钟,求甲,乙两人的速度。
八年级下册数学分式方程应用题及答案
八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。
7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
8、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?9、、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程分式方程应用题四步骤1,设未知数一般是问什么就设什么。
如果问题中有两个并列的,则一般设前面那个为x,把后面那个用x来表示(如第4、14、19题)。
如果问题问的量设为x之后题目中其他的量不容易用来表示,则设题目中容易表示其他量的量为x,然后把其他的量用x表示出来即可。
(如第13题要设衬衫的单价而不能设总盈利,设衬衫的单价为x列出方程,求出x,再用x来求出总盈利)2,找等量关系,从而列方程列方程最重要的是找到等量关系,找到什么等于什么之后,用x来表示等号两边的量即可得到方程。
那找等量关系的关键在哪呢?如何一眼看出等量关系呢?其实,非常简单。
那就是找到这个题要达到的结果,那句话就是等量关系,所以找等量关系关键就是找到“题目要达到的那句话”。
这句话一般都就是问题的前面那句话,如果不是,再到其他位置找。
3,解分式方程第一步是去分母。
注意是去分母,而不是通分。
去分母的关键就是方程两边同时乘上所有的分母的最小公倍数。
这样可以直接去掉所有的分母。
第二步就是去括号了,利用乘法分配率化简。
第三步移项。
把所有含x的项移到一边,不含x的项移到另一边。
第四步合并同类项。
第五步把x的系数化为1.第六步:检验。
检验结果是否让方程中的分母为零,为零则无意义。
解方程一定要严格按照以上步骤,每一步都达到每一步的结果。
基本所有的分式方程就用以上五步就可以解出。
不要把一步分成两步,去括号那一步就要去掉所有的括号,而不要分成两步来写,如果你认为要计算的太多一步得不到去括号的结果,那就在演草纸上算,把整个去括号的结果写上去即可。
4、当然,最后写上答案就完成了。
方程应用题的步骤就是以上4个,只要严格按照以上4个步骤,就可以轻松解决所有的方程题!!一定要严格按照步骤做,不要自创步骤,自作聪明。
考试都不会太难,只要做到以上4点,基本是满分了。
郭氏数学直指问题核心、明晰出题意图、按图索骥,解题变成程序,让数学成为最容易得分的学科。
详见郭氏数学官方博客。
郭老师每月收1名一对一学生,保证大幅度提升成绩,基础差的经过一段时间也可以提分到90-100。
试讲免费。
例题:1、 某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)思路:第一步:设进价为x 元,第二步,找等量关系。
这个题要的那句话就是“从而使超市销售这种计算器的利润提高了5%”。
可知等号的一边是原来的利润,另一边是后来的利润提高5%。
再利用利润的公式得出方程式。
第三步:解方程 第四步:写答案解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x xx---⨯+=⨯-%%%%%. 5分解这个方程,得40x =. 8分 经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分 2、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?分析:第一步:本题有两个问题,是相关的,设其中一个为x ,把另一个量用x 来表示即可。
第二步:找等量关系。
这个题要的那句话就是“第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时”,则方程一边是第五次提速后的时间减去第六次提速后的时间另一边是871第三步:解方程第四步:写答案解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x1500-401500+x =871去分母,整理得:x 2+40x -32000=0, 解之,得:x 1=160,x 2=-200经检验,x 1=160,x 2=-200都是原方程的解, 但x 2=-200<0,不合题意,舍去.∴x =160,x +40=2003、 甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度. 思路:第一步:由于提速后的速度比提速前大,所以设提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时。
只是写答案时千万别忘了你要求的是提速后的速度,是3.2x 。
第二步:找等量关系。
这个题要的那句话是“从甲站到乙站的时间缩短了11小时” 第三步:解方程 第四步:写答案解:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2xx-=.解这个方程,得80x =. 经检验,80x =是所列方程的根. 80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时.4、 A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?思路:第一步:本题有两个问题,是相关的,设其中一个为x ,把另一个量用x 来表示即可。
一般的都设前面那个为x.第二步:找等量关系。
这个题要的那句话是“结果两队同时完成任务”。
即方程等号两边分别是甲乙两队的时间。
第三步:解方程第四步:写答案解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得18/x=18/(x+1)+3解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根 但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.随堂练习1.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米.2、(2009,齐齐哈尔)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?3.(2009,梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?4、(2009,河池)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?5、(2009,定西)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?6、(2009,福州)整理一批图书,如果由一个人单独做要花60小时。
现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。
假设每个人的工作效率相同,那么先安排整理的人员有多少人?7、(2009,新疆)甲、乙两同学学习计算机打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同.已知甲每分钟比乙每分钟多打12个字,问甲、乙两人每分钟各打多少个字?李明同学是这样解答的:设甲同学打印一篇3 000字的文章需要x分钟,根据题意,得3000240012x x-=(1)解得:50x=.经检验50x=是原方程的解.(2)答:甲同学每分钟打字50个,乙同学每分钟打字38个.(3)(1)请从(1)、(2)、(3)三个步骤说明李明同学的解答过程是否正确,若有不正确的步骤改正过来.(2)请你用直接设未知数列方程的方法解决这个问题.8、(2009,遂宁)某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.⑴求工程队A原来平均每天维修课桌的张数;⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.9、(2009,达州)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?10、(2009南充)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?11、(2009,青岛)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)12、(2009,青海)某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件? (说明:根据销售常识,批发价应该低于销售价)13、(2009,朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.14、(2009,抚顺)由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的23,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元. (1)求4月初猪肉价格下调后每斤多少元? (2)求5、6月份猪肉价格的月平均增长率.“三通”前买台湾苹果的成本价格是今年的2倍同样用10万元采购台湾苹果,今年却比“三通”前多购买了2万公斤15、(2009,江西)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段A B 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)求点B 的坐标和A B 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?16、我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时). 17、(2010广东河池非课改,8分)某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.S (米)t (分) BO3 60015 (第21题)A18、(2010广西南宁课改,10分)南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数) (2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于...70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少..还需要增加多少万吨,才能符合国家规定的要求?19、(2010辽宁12市课改,8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:20、(2010辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?你们是用9天完成4800米长的大坝加固任务的? 我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天加固的米数.答案:1.解:设引进新设备前平均每天修路x 米. 根据题意,得3026003000600=-+xx .解得x=60.经检验,x=60是原方程的解,且符合题意. 答:引进新设备前平均每天修路60米. 2.解:(1)解:设今年三月份甲种电脑每台售价x 元 100000800001000x x =+解得:4000x =经检验:4000x =是原方程的根,所以甲种电脑今年每台售价4000元. (2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤解得610x ≤≤因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a=-+---=-+-当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利 3.解:(1)设甲队单独完成此项工程需x 天,由题意得13266=+x x解之得15=x经检验,15=x 是原方程的解. 所以甲队单独完成此项工程需15天,乙队单独完成此项工程需15×32=10(天)(2)甲队所得报酬:8000615120000=⨯⨯(元)乙队所得报酬:12000610120000=⨯⨯(元)4.解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得) 11000500020.5x x=⨯+解之,得 x =5经检验,x =5是原方程的解. (2)试销时进苹果的数量为:500010005= (千克)第二次进苹果的数量为:2×1000=2000(千克)盈利为: 2600×7+400×7×0.7-5000-11000=4160(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元. 5.解法1:设第一天捐款x 人,则第二天捐款(x +50)人, 由题意列方程x4800=506000+x .解得 x =200.检验:当x =200时,x (x +50)≠0, ∴ x =200是原方程的解.两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元).答:两天共参加捐款的有450人,人均捐款24元.说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分. 解法2:设人均捐款x 元, 由题意列方程 6000x-4800x=50 .解得 x =24. 以下略.6.解:设先安排整理的人员有x 人,依题意得,2(15)16060xx ++= 解得, x =10.答:先安排整理的人员有10人.7.解:(1)李明同学的解答过程中第③步不正确 ··············································· (3分) 应为:甲每分钟打字300030006050x==(个)乙每分钟打字601248-=(个)答:甲每分钟打字为60个,乙每分钟打字为48个. ······································· (5分) (2)设乙每分钟打字x 个,则甲每分钟打字(12)x +个, 根据题意得:3000240012x x=+ ··········································································· (8分)解得48x =.经检验48x =是原方程的解.甲每分钟打字12481260x +=+=(个) 答:甲每分钟打字为60个,乙每分钟打字为48个 8.解:⑴设C 队原来平均每天维修课桌x 张, 根据题意得:102600600=-xx解这个方程得:x=30经检验x=30是原方程的根且符合题意,2x=60 答:A 队原来平均每天维修课桌60张.⑵设C 队提高工效后平均每天多维修课桌x 张,施工2天时,已维修(60+60+30)×2=300(张),从第3天起还需维修的张数应为(300+360)=600(张) 根据题意得:3(2x+2x+x+150)≤660≤4(2x+2x+x+150) 解这个不等式组得::3≤x ≤14 ∴6≤2x ≤28答:A 队提高工效后平均每天多维修的课桌张数的取值范围是:6≤2x ≤28 9.解:设改进设备后平均每天耗煤x 吨,根据题意,得: 解得x=1 53分经检验,x=1 5符合题意且使分式方程有意义 答:改进设备后平均每天耗煤1 5吨4分10.解:设甲工程队单独完成任务需x 天,则乙工程队单独完成任务需(2)x +天, 依题意得2312x x +=+.化为整式方程得2340x x --=解得1x =-或4x =.检验:当4x =和1x =-时,(2)0x x +≠,11.解:(1)设商场第一次购进x 套运动服,由题意得: 6800032000102xx-=,解这个方程,得200x =.经检验,200x =是所列方程的根.22200200600x x +=⨯+=.所以商场两次共购进这种运动服600套.································································ 5分 (2)设每套运动服的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥, 所以每套运动服的售价至少是200元.12.解法一:设第二次采购玩具x 件,则第一次采购玩具(10)x -件,由题意得 1001150102x x+=-整理得 211030000x x -+= 解得 150x =,260x =.经检验150x =,260x =都是原方程的解.当50x =时,每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去;当60x =时,每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.解法二:设第一次采购玩具x 件,则第二次采购玩具(10)x +件,由题意得 1001150210x x +=+整理得 29020000x x -+= 解得 140x =,250x =.经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次购401050+=件,批发价为150503÷=(元)不合题意,舍去;第一次采购50件时,第二次购501060+=件,批发价为15060 2.5÷=(元)符合题意,因此第二次采购玩具60件13.解:设该公司今年到台湾采购苹果的成本价格为x 元/公斤 根据题意列方程得100000100000200002xx+=解得 2.5x =经检验 2.5x =是原方程的根. 当 2.5x =时,25x =答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤. 14.解:(1)设4月初猪肉价格下调后每斤x 元. 根据题意,得6060232x x -=解得10x =经检验,10x =是原方程的解答:4月初猪肉价格下调后每斤10元.(2)设5、6月份猪肉价格的月平均增长率为y . 根据题意,得210(1)14.4y +=解得120.220% 2.2y y ===-,(舍去) 答:5、6月份猪肉价格的月平均增长率为20%. 15.解:(1)解法一:从图象可以看出:父子俩从出发到相遇时花费了15分钟 ············································································· 1分 设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分依题意得:15x+45x =3600. ·································· 2分 解得:x =60.所以两人相遇处离体育馆的距离为 60×15=900米.所以点B 的坐标为(15,900). ··························· 3分 设直线AB 的函数关系式为s =kt+b (k ≠0). ········· 4分 由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,. ∴直线AB 的函数关系式为:1803600S t =-+. 解法二:从图象可以看出:父子俩从出发到相遇花费了15分钟. 设父子俩相遇时,小明走过的路程为x 米. 依题意得:360031515x x -=解得x =900,所以点B 的坐标为(15,900) 以下同解法一.(2)解法一:小明取票后,赶往体育馆的时间为:9005603=⨯小明取票花费的时间为:15+5=20分钟. ∵20<25∴小明能在比赛开始前到达体育馆.解法二:在1803600S t =-+中,令S =0,得01803600t =-+. 解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆.16、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分S (米)t (分)B O3 600 15(第21题)依题意,得29833122xx =⨯+. 5分解这个方程,得14991x =. 8分经检验14991x =是原方程的解. 9分148 1.6491x =≈.答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分17、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=3504分化简得x 2-10x -1200=0 5分 解方程得x 1=40,x 2=-30(不合题意舍去) 6分 经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元. 8分18、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05xx-= 4分解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分 1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x万吨)(2)解:59(120%)70.8⨯+=8分70.870%49.56⨯= 9分 49.563415.56-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.19、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分去分母,得 1200+4200=18x (或18x =5400) 5分 解得 300x =. 6分 检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分 答:该地驻军原来每天加固300米. 8分20、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分根据题意,得 10x +1245x =1 ………………………………… 4分解这个方程,得x =25 ………………………………………6分 经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天.。