考试必备-高中数学必修3全套同步练习+单元测试25份合集-含答案

合集下载

(经典)高中数学必修三单元测试题附答案解析

(经典)高中数学必修三单元测试题附答案解析

(数学3必修)第一章:算法初步[基础训练A组]一、选择题1.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.用二分法求方程022=-x的近似根的算法中要用哪种算法结构()A.顺序结构B.条件结构C.循环结构D.以上都用3.将两个数8,17a b==交换,使17,8a b==,下面语句正确一组是 ( )4A D.6,05.当)A6123123452345+++++xxxxx,当x=2时的值的过程中,要经过次乘法运算4①IF-THEN语句;④DO语句;⑤END语句;⑥5.将。

1.把“五进制”数)5(1234转化为“十进制”数,再把它转化为“八进制”数。

2.用秦九韶算法求多项式xxxxxxxxf++++++=234567234567)(当3=x时的值。

3.编写一个程序,输入正方形的边长,输出它的对角线长和面积的值。

4.某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费。

设计一个程序,根据通话时间计算话费。

新课程高中数学训练题组(数学3必修)第一章:算法初步i=1 s=0 WHILE i<=4 s=s*x+1 i=i+1 WENDPRINT sEND[综合训练B 组] 一、选择题1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2.当2=x 时,下面的程序段结果是 ( )A .3B .7C .15D .17 3.利用“直接插入排序法”给8,1,2,3,5,7按从大到小的顺序排序,当插入第四个数3时,实际是插入哪两个数之间 ( ) A .8与1 B .8与2 C .5与2 D .5与1 4.对赋值语句的描述正确的是 ( ) ①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值 A .①②③ B .①②C .②③④D .①②④5.在repeat 语句的一般形式中有“until A ”,其中A 是 ( )A . 循环变量B .循环体C .终止条件D .终止条件为真 6.用冒泡排序法从小到大排列数据13,5,9,10,7,4需要经过( )趟排序才能完成。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

数学必修三全册试卷及答案

数学必修三全册试卷及答案

第I 卷(选择题)一、单选题(60分)1.某班级有名学生,其中有名男生和名女生,随机询问了该班五名男生和五名503020女生在某次数学测验中的成绩,五名男生的成绩分别为, , , , 116124118122,五名女生的成绩分别为, , , , ,下列说法一定正确的120118123123118123是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .103B .185C .31D .41 3.如图,矩形中点位边的中点,若在矩形内部随机取一个点,ABCD E CD ABCD Q 则点取自内部的概率等于( D )Q ABEA .B .C .D . 413132214.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B )A. B. C. D.112310151106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A . 12 B .13 C .23 D .147.将2005x =输入如下图所示的程序框图得结果( A )A .2006B .2005C .0D .2005-8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则C种型号产品抽取的件数为( B )A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )9876A.B.C.D.11.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.22、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据,,…,平均数为6,标准差为2,则数据,,…,的方差x 1x 2x 82x 1−62x 2−62x 8−6为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II 卷(非选择题)3、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数输入自变量x的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是()A.顺序结构B.条件结构C.顺序结构、条件结构D.顺序结构、循环结构2.下列赋值语句正确的是()A.M=a+1 B.a+1=MC.M-1=a D.M-a=13.若十进制数26等于k进制数32,则k等于()A.4 B.5 C.6 D.84.用“辗转相除法”求得360和504的最大公约数是()A.72 B.36 C.24 D.2 5205.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()A.m=0? B.x=0?C.x=1? D.m=1?6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A .S =S *(n +1)B .S =S*x n +1C .S =S * nD .S =S*x n7.已知一个k 进制的数132与十进制的数30相等,那么k 等于( ) A .7或4 B .-7 C .4 D .以上都不对8.用秦九韶算法求多项式:f (x )=12+35 x -8 x 2+79 x 3+6 x 4+5 x 5+3 x 6在x =-4的值时,v 4的值为( )A .-57B .220C .-845D .3 392 9.对于下列算法:如果在运行时,输入2,那么输出的结果是( ) A .2,5 B .2,4 C .2,3 D .2,9 10.下列程序的功能是( ) S =1i =1WHILE S <=10 000 i =i +2S =S*i WEND PRINT i ENDA .求1×2×3×4×…×10 000的值B .求2×4×6×8×…×10 000的值C .求3×5×7×9×…×10 001的值D .求满足1×3×5×…×n >10 000的最小正整数n11.(2015·新课标全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .1412.如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 二、填空题(本大题共4小题,每小题5分,共20分)13.用更相减损术求三个数168,54,264的最大公约数为________. 14.将258化成四进制数是________.15.阅读如图所示的程序框图,运用相应的程序,若输入m 的值为2,则输出的结果i =________.16.下面程序执行后输出的结果是________,若要求画出对应的程序框图,则选择的程序框有________________.T=1S=0WHILE S<=50S=S+1T=T+1WENDPRINT TEND三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)画出函数的程序框图.18.(12分)用“更相减损术”求(1)中两数的最大公约数;用“辗转相除法”求(2)中两数的最大公约数.(1)72,168;(2)98,280.19.(12分)利用秦九韶算法判断函数f(x)=x 5+x 3+x 2-1在[0,2]上是否存在零点.20.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写程序.22.(12分)如图甲所示在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图乙所示的程序框图给出.图甲图乙(1)写出程序框图中①,②,③处应填充的式子;(2)若输出的面积y值为6,则路程x的值为多少?并指出此时点P在正方形的什么位置上.答案1. 答案:C2. 解析:选A根据赋值语句的功能知,A正确.3. 解析:选D由题意知,26=3×k1+2,解得k=8.4. 解析:选A504=360×1+144,360=144×2+72,144=72×2,故最大公约数是72.5. 解析:选D阅读程序易知,判断框内应填m=1?,应选D.6. 解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.7. 解析:选C132(k)=1×k2+3×k+2=k 2+3 k+2=30,即k=-7或k=4.∵k>0,∴k=4.8. 解析:选B f(x)=(((((3 x+5) x+6) x+79) x-8) x+35) x+12,当x=-4时,v0=3;∴v 1=3×(-4)+5=-7;v 2=-7×(-4)+6=34,v 3=34×(-4)+79=-57;v 4=-57×(-4)-8=220.9. 解析:选A输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.10. 解析:选D法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2. 当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最后输出的是计数变量i,而不是累乘变量S.11. 解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.12. 解析:选C由于x=a k,且a>A时,将x值赋给A,因此最后输出的A值是a1,a2,…,a N 中最大的数;由于x=a k,且x<B时,将x值赋给B,因此最后输出的B值是a1,a2,…,a N中最小的数,故选C.13. 解析:为简化运算,先将3个数用2约简为84,27,132.由更相减损术,先求84与27的最大公约数.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.故84与27的最大公约数为3.再求3与132的最大公约数,易知132=3×44,所以3与132的最大公约数就是3.故84,27,132的最大公约数为3;168,54,264的最大公约数为6.答案:614. 解析:利用除4取余法.则258=10 002(4).答案:10 002(4)15. 解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A <B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A<B?是,输出i=4.答案:416. 解析:本题为当型循环语句,可以先用特例循环几次,观察规律可得:S=1,T=2;S=2,T=3;S=3,T=4;…;依此循环下去,S=49,T=50;S=50,T=51;S=51,T=52.终止循环,输出的结果为52.本题使用了输出语句、赋值语句和循环语句,故用如下的程序框:起止框、处理框、判断框、输出框.答案:52起止框、处理框、判断框、输出框17. 解:程序框图如图所示.18. 解:(1)用“更相减损术”168-72=96,96-72=24,72-24=48,48-24=24.∴72与168的最大公约数是24.(2)用“辗转相除法”280=98×2+84,98=84×1+14,84=14×6.∴98与280的最大公约数是14.19. 解:f (0)=-1<0,下面用秦九韶算法求x=2时,多项式f(x)=x 5+x 3+x 2-1的值.多项式变形为f (x)=((((x+0) x+1) x+1) x+0) x-1,v0=1,v 1=1×2+0=2,v 2=2×2+1=5,v 3=5×2+1=11,v 4=11×2+0=22,v 5=22×2-1=43,所以f(2)=43>0,即f (0)·f (2)<0,又函数f (x)在[0,2]上连续,所以函数f(x)=x 5+x 3+x 2-1在[0,2]上存在零点.20. 解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:21. 解:程序框图如图.程序如下. S =0k =1DOS =S +1/(k*(k +1)) k =k +1LOOP UNTIL k >99PRINT S END22. 解:(1)由题意,得y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,故程序框图中①,②,③处应填充的式子分别为:y =2x ,y =8,y =24-2x .(2)若输出的y 值为6,则2x =6或24-2x =6,解得x =3或x =9.当x =3时,此时点P 在正方形的边BC 上,距C 点的距离为1;当x =9时,此时点P 在正方形的边DA 上,距D 点的距离为1.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各选项中的两个变量具有相关关系的是( ) A .长方体的体积与边长 B .大气压强与水的沸点 C .人们着装越鲜艳,经济越景气 D .球的半径与表面积 2.下列说法错误的是( )A .在统计里,最常用的简单随机抽样方法有抽签法和随机数法B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大3.(2016·开封高一检测)某学校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了80人,则n 的值是( )A .193B .192C .191D .1904.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A .2.7岁B .3.1岁C .3.2岁D .4岁5.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )A.y ^=x +1.9B.y ^=1.04x +1.9 C.y ^=0.95x +1.04 D.y ^=1.05x -0.96.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2 700,3 000)的频率为( )A .0.001B .0.1C .0.2D .0.37.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数大于该班女生成绩的平均数8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .1%B .2%C .3%D .5%9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )A .高一的中位数大,高二的平均数大B .高一的平均数大,高二的中位数大C .高一的平均数、中位数都大D .高二的平均数、中位数都大10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.2511.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别分段为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .1812.设矩形的长为a ,宽为b ,若其比满足ba =5-12≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是( ) A .甲批次的总体平均数与标准值更接近 B .乙批次的总体平均数与标准值更接近 C .两个批次总体平均数与标准值接近程度相同 D .两个批次总体平均数与标准值接近程度不能确定 二、填空题(本大题共4小题,每小题5分,共20分)13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.14.在某次测量中得到的A 若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的数字特征(众数、中位数、平均数、方差)对应相同的是________.15.某校开展“爱我母校,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.16.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知一组数据从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.18.(12分)2015年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的摩托车驾驶人员每隔50人询问一次省籍,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?19.(12分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.20.(12分)某零售店近5个月的销售额和利润额资料如下表:(1)(2)用最小二乘法计算利润额y 关于销售额x 的回归直线方程;(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).⎣⎢⎢⎡⎦⎥⎥⎤参考公式:b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x 21.(12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.22.(12分)已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图甲所示的茎叶图.(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量; (2)为了估计池塘中鱼的总重量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图乙是按上述分组方法得到的频率分布直方图的一部分.①估汁池塘中鱼的重量在3千克以上(含3千克)的条数;②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;③在②的条件下估计池塘中鱼的重量的众数及池塘中鱼的总重量.图甲 图乙答 案1. 解析:选C A 、B 、D 均为函数关系,C 是相关关系.2. 解析:选B 平均数不大于最大值,不小于最小值.3. 解析:选B1 000×n200+1 200+1 000=80,解得n =192.4. 解析:选C 分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.5. 解析:选Bx =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回归直线方程过样本点中心(x ,y ),代入验证知,应选B.6. 解析:选D 由直方图可知,所求频率为0.001×300=0.3.7. 解析:选C A 不是分层抽样,因为抽样比不同.B 不是系统抽样,因为是随机询问,抽样间隔未知.C 中五名男生成绩的平均数是x =86+94+88+92+905=90,五名女生成绩的平均数是y =88+93+93+88+935=91,五名男生成绩的方差为s 21=15(16+16+4+4+0)=8,五名女生成绩的方差为s 22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D 中由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.8. 解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.9. 解析:选A 由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.10. 解析:选A 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,∴x =0.2,故中间一组的频数为160×0.2=32,选A.11. 解析:选C 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.12. 解析:选A 甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.13. 解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 答案:乙14. 解析:由s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],可知B 样本数据每个变量增加2,平均数也增加了,但s 2 不变,故方差不变.答案:方差15. 解析:由于需要去掉一个最高分和一个最低分,故需要讨论:①若x ≤4,∵平均分为91,∴总分应为637分.即89+89+92+93+92+91+90+x =637,∴x =1. ②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意,故填1. 答案:116. 解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:7117. 解:由于数据-1,0,4,x,7,14的中位数为5, 所以4+x 2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18. 解:(1)根据题意,因为有相同的间隔,符合系统抽样的特点,所以交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员中 广西籍的有5+20+25+20+30=100(人), 四川籍的有15+10+5+5+5=40(人),设四川籍的驾驶人员应抽取x 名,依题意得5100=x40,解得x =2,即四川籍的应抽取2名. 19. 解:(1)(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000. 20. 解:(1)散点图如图所示,两个变量有线性相关关系.(2)设回归直线方程是y ^=b ^x +a ^. 由题中的数据可知y =3.4,x =6.所以b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=(-3)×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.69+1+1+9=1020=0.5. a ^=y -b ^x =3.4-0.5×6=0.4.所以利润额y 关于销售额x 的回归直线方程为 y ^=0.5x +0.4.(3)由(2)知,当x =4时,y =0.5×4+0.4=2.4,所以当销售额为4千万元时,可以估计该商场的利润额为2.4百万元.21. 解:(1)作出茎叶图:(2)x 甲=18(78+79+81+82+84+88+93+95)=85, x乙=18(75+80+80+83+85+90+92+95)=85. s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.22. 解:(1)根据茎叶图可知,鲤鱼与鲫鱼的平均数目分别为80,20. 由题意知,池塘中鱼的总数目为1 000÷80+202 000=20 000(条),则估计鲤鱼数目为20 000×80100=16 000(条),鲫鱼数目为20 000-16 000=4 000(条).(2)①根据题意,结合直方图可知,池塘中鱼的重量在3千克以上(含3千克)的条数约为20 000×(0.12+0.08+0.04)×0.5=2 400(条).②设第二组鱼的条数为x ,则第三、四组鱼的条数分别为x +7、x +14,则有x +x +7+x +14=100×(1-0.55),解得x =8,故第二、三、四组的频率分别为0.08、0.15、0.22,它们在频率分布直方图中的小矩形的高度分别为0.16,0.30,0.44,据此可将频率分布直方图补充完整(如图).③众数为2.25千克,平均数为0.25×0.04+0.75×0.08+1.25×0.15+…+4.25×0.02=2.02(千克), 所以鱼的总重量为2.02×20 000=40 400(千克).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( ) A .随机事件的概率总在[0,1]内 B .不可能事件的概率不一定为0 C .必然事件的概率一定为1 D .以上均不对2.下列事件中,随机事件的个数为( )①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4 ℃时结冰. A .1 B .2 C .3 D .43.甲、乙、丙三人随意坐一排座位,乙正好坐中间的概率为( ) A.12 B.13 C.14 D.164.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥5.(2016·郑州高一检测)函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0,使得f (x 0)≤0的概率是( ) A.310 B.15 C.25 D.456.如图,在矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.237.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( ) A.16 B.13 C.12 D.238.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=( )A.4πB.1π C .2 D.2π9.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2 有零点的概率为( )A.π4 B .1-π4 C.4π D.4π-1 10.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.91011.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于( )A.12B.23C.13D.2512.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·青岛高一检测)一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为________.14.如图所示,在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值范围是________.16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.18.(12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12. (1)求n 的值;(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.19.(12分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.20.(12分)已知集合Z ={(x ,y )|x ∈[0,2],y ∈[-1,1]}.(1)若x ,y ∈Z ,求x +y ≥0的概率;(2)若x ,y ∈R ,求x +y ≥0的概率.21.(12分)(2015·福建高考)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.22.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.答案1. 解析:选C随机事件的概率总在(0,1)内,不可能事件的概率为0,必然事件的概率为1.2. 解析:选C①在某学校校庆的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.3. 解析:选B甲、乙、丙三人随意坐有6个基本事件,乙正好坐中间,甲、丙坐左右两侧有2个基本事件,故乙正好坐中间的概率为26=1 3.4. 解析:选B因为事件B是表示“三件产品全是次品”,事件C是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.5. 解析:选A由f(x0)≤0,即x20-x0-2≤0,得-1≤x0≤2,其区间长度为3,由x∈[-5,5],区间长度为10,所以所求概率为P=310.6. 解析:选C不妨设矩形的长、宽分别为a、b,于是S矩形=ab,S△ABE=12ab,由几何概型的概率公式可知P =S △ABE S 矩形=12. 7. 解析:选B 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B. 8. 解析:选D 豆子落在正方形EFGH 内是随机的,故可以认为豆子落在正方形EFGH 内任一点是等可能的,属于几何概型.因为圆的半径为1,所以正方形EFGH 的边长是2,则正方形EFGH 的面积是2,又圆的面积是π,所以P (A )=2π. 9. 解析:选B 要使函数有零点,则Δ=(2a )2-4(-b 2+π2)≥0,a 2+b 2≥π2,又-π≤a ≤π,-π≤b ≤π,所以基本事件的范围是2π·2π=4π2,函数有零点所包含的基本事件的范围是4π2-π3.所以所求概率为4π2-π34π2=1-π4.故选B. 10. 解析:选C 设被污损的数字是x ,则x ∈{0,1,2,3,4,5,6,7,8,9}.甲的平均成绩为x 甲=15(88+89+90+91+92)=90,x 乙=15[83+83+87+(90+x )+99]=442+x 5,设甲的平均成绩超过乙的平均成绩为事件A ,则此时有90>442+x 5,解得x <8,则事件A 包含x =0,1,2,3,4,5,6,7,共8个基本事件,则P (A )=810=45. 11. 解析:选B 由古典概型的概率公式得P (A )=16,P (B )=36=12. 又事件A 与B 为互斥事件,由互斥事件的概率和公式得P (A ∪B )=P (A )+P (B )=16+12=23. 12. 解析:选C 由于两串彩灯第一次闪亮相互独立且4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件,即如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是1216=34,故选C. 13. 解析:记“任取一球为白球”为事件A ,“任取一球为黑球”为事件B ,则P (A +B )=P (A)+P (B)。

高中数学必修3测试题及答案

高中数学必修3测试题及答案

高中数学必修三模块检测试题考试时间:100分钟 满分150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为A .2,4,6,8B .2,6,10,14C .5,10,15,20D .5,8,11,142.观察新生婴儿的体重,其频率分布直方图 如图所示,则新生婴儿体重在(]2700,3000的频率为A .0.001B .0.1C .0.2D .0.33.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为 A .65 B .52 C .61 D .31 4.将十进制下的数72转化为八进制下的数,结果是A. 011 B . 101 C . 110 D .1115.已知地铁的每趟列车停站的时间为1分钟,而每趟列车先后到站之间的时间差为7分钟,那么我们到地铁站坐地铁时,不用等待就可以坐到车的概率为 A .12 B .17 C .14 D .186.执行如下左图所示的程序框图,输出S 的值是 A .32-B .32C .12-D .127.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 8.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1, 点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则 A . p 1<p 2<p 3 B . p 2<p 1<p 3 C . p 1<p 3<p 2 D . p 3<p 1<p 29.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为 A .51B .52C .53 D .5410.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相 同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 A .310 B .15 C . 110 D .1122400 2700 3000 3300 3600 3900 体重0.001 频率/组距11.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为 A .81 B .41 C .43 D .87 12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为A .3B .4C .5D .6 选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是_____. 14.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492, 496, 494, 495, 498, 497, 501, 502, 504, 496, 497, 503, 506, 508, 507,492, 496, 500, 501, 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间 的概率约为____________.15.用“辗转相除法”求得459和357的最大公约数是__________.16.在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本题满分10分) 某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1) 分别估计该市的市民对甲、乙两部门评分的中位数;(2) 分别估计该市的市民对甲、乙两部门的评分高于90的概率.18. (:(1) (2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.19. (本题满分12分) 袋中有大小相同的红、黄两种颜色的球各1个,从中任取1个,有放回地抽取3次,求:(1) 3次全是红球的概率; (2) 3次颜色全相同的概率; (3) 3次颜色不全相同的概率.20. (本题满分12分) 某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.4,飞镖落在靶内的各个点是椭机的且等可能性,.已知圆形靶中四个圆为同心圆,半径分别为40cm 、30cm 、20cm 、10cm ,飞镖落在不同区域的环数如图中标示., (1) 求出这位同学投掷一次中10环数概率; (2) 求出这位同学投掷一次不到9环的概率。

北师大版高中数学必修三单元测试题及答案全套

北师大版高中数学必修三单元测试题及答案全套

北师大版高中数学必修三单元测试题及答案全套阶段质量检测(一)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30 C.20 D.122.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是()A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为() A.10组B.9组C.8组D.7组4.(陕西高考)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.145.某大学数学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为() A.80 B.40 C.60 D.206.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[60,70)的汽车辆数为()A.8 B.80 C.65 D.707.已知回归直线斜率的估计值为1.23,样本点的中心为(4,5),则回归方程为()A.y=1.23x+4B.y=1.23x+5C.y=1.23x+0.08D.y=0.08x+1.238.某班的数学考试成绩的平均分为70分,方差为s2.后来发现成绩记录有误,同学甲得80分却误记为50分,同学乙得70分却误记为100分,更正后计算得方差为s21,则s2与s21的大小关系是() A.s2>s21B.s2=s21C.s2<s21D.无法判断9.甲、乙两名同学在5次体育测试中的成绩统计如图的茎叶图所示,若甲、乙两人的平均成绩分别是X甲,X乙,则下列结论正确的是()A.X甲<X乙;乙比甲成绩稳定B.X甲>X乙;甲比乙成绩稳定C.X甲>X乙;乙比甲成绩稳定D.X甲<X乙;甲比乙成绩稳定10.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体平均值为3,中位数为4B.乙地:总体平均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体平均值为2,总体方差为3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上)11.某社区对居民进行2013辽宁全运会知晓情况的分层抽样调查.已知该社区的青年人、中年人和老年人分别有800人、1 600人、1 400人.若在老年人中的抽样人数是70,则在中年人中的抽样人数应该是________.12.13.从某小区抽取10050至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.14.甲、乙两位同学某学科连续五次考试成绩用茎叶图表示,如图所示,则平均数较高的是______,成绩较为稳定的是________.三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)某车间有189名职工,现要按1∶21的比例选质量检查员,采用系统抽样的方式进行,写出抽样过程.16.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况. 17.(12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人; [161,165)4人; [165,169)12人; [169,173)13人;[173,177)12人;[177,181]6人. (1)列出频率分布表; (2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.18.(14分)某学校高一(3)单位:分)统计如下:(1)(2)分别用平均数和中位数分析甲、乙两位同学中,哪位同学成绩较好; (3)又知同班同学丙的最近5分别从平均数、中位数和方差等方面分析甲与丙的成绩谁好谁坏,并说明理由.答 案1. 解析:选B 系统抽样也叫间隔抽样,抽多少个就分成多少组,总数÷组数=间隔数,即k =1 20040=30.2. 解析:选D 由抽样方法的概念知选D.3. 解析:选B 根据列频率分布表的步骤,极差组距=140-5110=8.9,所以分9组.4. 解析:选B 依据系统抽样为等距抽样的特点,分42组,每组20人,区间[481,720]包含25组到36组,每组抽1人,则抽到的人数为12.5. 解析:选B 应抽取三年级的学生人数为200×210=40.6. 解析:选B 时速在[60,70)的汽车频率为0.04×10=0.4,时速在[60,70)的汽车大约有200×0.4=80(辆).7. 解析:选C 回归直线的斜率就是b ,则回归方程为y =1.23x +a ,将(4,5)代入方程得a =0.08.8. 解析:选A 根据方差的计算公式,s 2的算式中含有(50-70)2+(100-70)2,s 21的算式中含有(80-70)2+(70-70)2,而两算式的其他部分完全相同,故易知s 2>s 21.9. 解析:选A ∵甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95, ∴X 甲=78+77+72+86+925=81,X 乙=78+82+88+91+955=86.8,∴X 甲<X 乙.从茎叶图中数据的分布情况看,乙同学的成绩更集中于平均数附近,这说明乙比甲成绩稳定. 10. 解析:选D 根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3.11. 解析:抽取的比例为k =701 400=120,故在中年人中应该抽取的人数为1 600×120=80. 答案:8012. 解析:设回归方程为y =6.5x +a . 由已知,x -=15×(2+4+5+6+8)=5.y -=15×(30+40+60+50+70)=50.∴a =y --6.5x -=50-6.5×5=17.5. ∴y =6.5x +17.5. 答案:y =6.5x +17.513. 解析:(1)根据频率和为1,得(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1,解得x =0.004 4;(2)(0.003 6+0.006 0+0.004 4)×50×100=70. 答案:0.004 4 7014. 解析:甲的平均分为x -=68+69+70+71+725=70,乙的平均分为y -=63+68+69+69+715=68;甲的方差为:s 21=(68-70)2+(69-70)2+(70-70)2+(71-70)2+(72-70)25=2,同理乙的方差为s 22=7.2,故甲的平均分高于乙,甲的成绩比乙稳定.答案:甲 甲15. 解:以随机方式对189名职工编号(比如可直接采用工资表上号码编号),设其分别为1,2,3…,189, 由已知样本容量是总体个数的121,故样本容量为189×121=9(个),将1,2,3,…,189编9段,每段21个号.如1~21为第一段,22~42为第二段,…,169~189为第九段,在第一段1~21个号码中随机抽样产生一个号码,如设为l ,则l ,l +21,l +42,…,l +168就是所产生的9个样本号码,对应的就是质量检查员.16. 解:(1)茎叶图如图所示:(2)x -甲=9+10+11+12+10+206=12,x -乙=8+14+13+10+12+216=13,s 2甲≈13.67,s 2乙≈16.67.因为x -甲<x -乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.17. 解:(1)列出频率分布表:(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74, 所以总体在[165,177)间的比例为74%.18. 解:(1)平均分:x -甲=15×(65+98+94+98+95)=90,x -乙=15×(62+98+99+100+71)=86.甲的中位数是95,乙的中位数是98.(2)从平均分看,甲的平均分高,甲的成绩较好;从中位数看,乙的中位数大,乙的成绩较好. (3)x -丙=15×(80+90+86+99+95)=90,丙的中位数为90.s 2丙=15×[(80-90)2+(90-90)2+(86-90)2+(99-90)2+(95-90)2]=44.4; s 2甲=15×[(65-90)2+(98-90)2+(94-90)2+(98-90)2+(95-90)2]=158.8. 由于两人的平均分相同,所以从平均分看,甲、丙成绩同样好;从中位数看,甲的中位数高,甲的成绩好;从方差看,丙的方差小,丙的成绩较稳定,所以丙的成绩好.阶段质量检测(二)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是( ) A .从北京到海南岛旅游,先坐火车,再坐飞机抵达B .按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C .方程x 2-4=0有两个实根D .求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 2.在用二分法求方程零点的算法中,下列说法正确的是( ) A .这个算法可以求所有的零点B.这个算法可以求任何方程的零点C.这个算法能求所有零点的近似解D.这个算法可以求变号零点近似解3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出SA.1 B.5 C.10 D.554.运行以下程序时,执行循环体的次数是()i=1Doi=i+1i=i*iLoop While i<10输出i.A.2 B.10 C.11 D.85.当a=1,b=3时,执行完下面的语句后x的值是()If a<b Thenx=a+bElsex=a-bEnd If输出x.A.1 B.3 C.4 D.-26.(福建高考)阅读如图所示的程序框图,运行相应的程序,输出的s值等于()A.-3 B.-10 C.0 D.-27.如图给出的是计算1+2+4+…+219的值的一个算法框图,则其中判断框内应填入的是()A .i =19B .i ≥20C .i ≤19D .i ≤208.如图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2,x 2, x >2的值的算法框图,则在①、②和③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2 9.当a =16时,下面的算法输出的结果是( ) If a <10 Then y =2*a Else y =a *a End If 输出 y .A.9B.32C.10D.25610.(重庆高考)执行如下图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.下列程序运行后输出的结果为________.x=5y=-20If x<0Thenx=y-3Elsey=y+3End If输出x-y,y-x12.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.13.已知函数f(x)=|x-3|,下面算法框图表示的是输入x的值,求其相应函数值的算法,请将该算法框图补充完整.其中①处应填________,②处应填________.14.(湖南高考)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)如果直线l与直线l1:x+y-1=0关于y轴对称,设计求直线l的方程的算法.16.(12分)求两底半径分别为6和9,高为14的圆台的表面积,写出该问题的算法.17.(12分)根据下列算法语句画出相应的框图.S=1n=1DoS=S*nn=n+1Loop While S<1 000输出n.18.(14分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式.并写出算法,画出算法框图,写出程序.答案1. 解析:选C 算法是解决某类问题的一系列步骤或程序,C只描述了事实,没有解决问题的步骤.2.解析:选D 二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.3.解析:选D S=0+1+2+3+…+10=55.4.解析:选A 第一次执行循环体:i=1,i=i+1=2,i=i*i=4,i=4<10,成立第二次执行循环体:i=4,i=i+1=5i=i*i=25i=25<10,不成立,退出循环体,共执行了2次.5. 解析:选C ∵1<3,满足a <b ,∴x =1+3=4.6. 解析:选A 由程序框图可知,当k =1时,1<4,s =1,k =2;当k =2时,2<4,s =0,k =3;当k =3时,3<4,s =-3,k =4;当k =4时不满足条件,则输出s =-3.7. 解析:选B 计算S =1+2+4+…+219的值使用的是循环结构,当i ≥20时退出循环体,输出S . 8. 解析:选B 当x >-1不成立时,y =-x ,故①处应填“y =-x ”;当x >-1成立时,若x >2,则y =x 2,即②处应填“y =x 2”,否则y =0,即③处应填“y =0”.9. 解析:选D 该程序是求分段函数y =⎩⎨⎧2a a <10,a 2a ≥10.的函数值.10. 解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行 得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5.11. 解析:当x =5时,y =-20+3=-17所以最后输出的x -y =5-(-17)=22,y -x =-17-5=-22. 答案:22,-2212. 解析:每循环一次时,x 与i 均增加1,直到i >5时为止,所以输出结果为6. 答案:613. 解析:f (x )=|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3.观察算法框图可知,当条件成立时,有y =3-x ,所以①处应填x <3.当条件不成立即x ≥3时,有y =x -3,所以②处应填y =x -3.答案:x <3 y =x -314. 解析:执行程序,i ,x 的取值依次为i =1,x =3.5;i =2,x =2.5;i =3,x =1.5;i =4,x =0.5;结束循环,输出i 的值为4.答案:415. 解:第一步,在l 上任取一点P (x ,y ). 第二步,写出P (x ,y )关于y 轴的对称点P 1(-x ,y ).第三步,由P 1(-x ,y )在直线l 1:x +y -1=0上,知P 1的坐标适合l 1的方程,即-x +y -1=0. 第四步,化简,得l 的方程为x -y +1=0.16. 解:算法如下:1.令r 1=6,r 2=9,h =14(如图).2.计算l =(r 2-r 1)2+h 2.3.计算S 表=πr 21+πr 22+π(r 1+r 2)l .4.输出运算结果S 表. 17. 解:框图如下所示:18. 解:函数关系式如下y =⎩⎪⎨⎪⎧2x , (0≤x ≤4),8, (4<x ≤8),2(12-x ), (8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4. 4.如果8<x ≤12,则使y =2(12-x );否则结束. 5.输出y .算法框图如图所示:算法语句如下:输入x;If x>=0and x<=4Theny=2*xElseIf x<=8 Theny=8ElseIf x<=12 Theny=2*(12-x)End IfEnd IfEnd If输出y.阶段质量检测(三)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有()A.1个B.2个C.3个D.4个2.下列叙述随机事件的频率与概率的关系中,说法正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增多,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( ) A.310 B.112 C.4564 D.384.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是( )A .0.62B .0.38C .0.02D .0.685.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( ) A.13 B.14 C.16 D.1126.(北京高考)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6 D.4-π47.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数记为b ,则直线y =kx +b 不经过第三象限的概率为( )A.29B.13C.49D.598.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π8 9.下列概率模型:①从区间[-10,10]内任取一个数,求取到1的概率;②从区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]内任取一个整数,求取到大于1且小于5的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离正方形的中心不超过1 cm 的概率. 其中是几何概型的个数为( ) A .1 B .2 C .3 D .410.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19B.29C.718D.49二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=________.12.在区间[0,4]上任取一实数a,使方程x2+2x+a=0有实根的概率是________.13.(福建高考)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.14.某射击选手射击一次,击中10环、9环、8环的概率分别为0.3,0.4,0.1,则该射击选手射击一次,击中大于或等于9环的概率是________,击中小于8环的概率是________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)对某班一次测验成绩进行统计,如下表所示:(1)(2)求该班成绩在[61,100]内的概率.16.(12分)设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.17.(12分)为迎接2017全运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩((1)求a,b,c,d(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.18.(14分)有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.答 案1. 解析:选B 由题意可知①③是必然事件,②④是随机事件.2. 解析:选C 由频率与概率关系知C 正确.3. 解析:选D 所有子集共8个;其中含有2个元素的为{a ,b },{a ,c },{b ,c }.4. 解析:选C 其中质量小于4.85 g 包括质量小于4.8 g 和质量在[4.8,4.85)范围内两种情况,所以所求概率为0.32-0.3=0.02.5. 解析:选D 由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112.6. 解析:选D 画草图易知区域D 是边长为2的正方形,到原点的距离大于2的点在以原点为圆心,以2为半径的圆的外部,所以所求事件的概率为P =2×2-14·π·222×2=4-π4.7. 解析:选A 直线y =kx +b 不经过第三象限,即k <0,b >0,总的基本事件个数是3×3=9;k <0,b >0包含的基本事件有(-1,1),(-1,2),共2个,所以直线不经过第三象限的概率是P =29.8. 解析:选B 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.9. 解析:选C ①是,因为区间[-10,10]内有无限多个数,对应数轴上无限多个点,且取到“1”这个数对应的点的概率为0;②是,因为区间[-10,10]和[-1,1]内都有无限多个数可取(无限性),且在这两个区间内每个数被取到的可能性相同(等可能性);③不是,因为区间[-10,10]内的整数只有21个,不满足无限性;④是,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点(无限性),且这两个区域内的任何一个点都有可能被投到(等可能性).10. 解析:选D 首先要弄清楚“心有灵犀”的实质是|a -b |≤1,由于a ,b ∈{1,2,3,4,5,6},则满足要求的事件可能的结果有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得基本事件的总数有36种.因此他们“心有灵犀”的概率为P =1636=49.11. 解析:圆的半径是1,则正方形的边长是2,故正方形EFGH 的面积为(2)2=2.又圆的面积为π,则由几何概型的概率公式,得P (A )=2π.答案:2π12. 解析:当4-4a ≥0即a ≤1时方程有实根,故所求的概率为P =14.答案:1413. 解析:因为0≤a ≤1,由3a -1>0得13<a ≤1,由几何概率公式得,事件“3a -1>0”发生的概率为1-131=23.答案:2314. 解析:设“击中10环”“击中9环”“击中8环”分别为事件A ,B ,C ,则P (A )=0.3,P (B )=0.4,P (C )=0.1,∴P (A +B )=P (A )+P (B )=0.7,P (A +B +C )=P (A )+P (B )+P (C )=0.8, ∴P =1-0.8=0.2. 答案:0.7 0.215. 解:记该班的测试成绩在[100~91),[90~81),[80~71),[70~61)内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[81,100]内的概率是P (A +B )=P (A )+P (B )=0.15+0.25=0.4.(2)该班成绩在[61,100]内的概率是P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=0.15+0.25+0.36+0.17=0.93.16. 解:记A ={硬币落下后与格线没有公共点},在每个最小等边三角形内再作小等边三角形使其三边与原等边三角形三边距离都为1,则新作小等边三角形的边长为2 3.∴P (A )=34×(23)234×(43)2=14.17. 解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1.(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.18. 解:(1)由所给数据可知,一等品零件共有6个,设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35.(2)①设一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共有15种.②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.所以P (B )=615=25.。

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD ­A 1B 1C 1D 1中随机取点,则点落在四棱锥O ­ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ­ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。

高中数学必修三_练习题包含答案资料全

高中数学必修三_练习题包含答案资料全

必修三测试题参考公式:1. 回归直线方程方程: ,其中 , .2.样本方差: 一、填空1. 在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4)A .(1)(2)B .(1)(3)C .(2)(4)D .zs (2)(3)2 下列给变量赋值的语句正确的是(A )3=a (B )a +1=a (C )a =b =c =3 (D )a =2b +1 3.某程序框图如下所示,若输出的S=41,则判断框应填( )A .i >3?B .i >4?C .i >5?D .i >6?4.图4中程序运行后输出的结果为( ).A .7B .8C .9D .10(第3题) (第4题)5阅读题5程序,如果输入x =-2,则输出结果y 为( ).(A )3+π (B )3-π (C )π-5 (D )-π-56.有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶7.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A.21B.31 C.41 D.52 Input x if x <0 theny =32x π+elseif x >0 then y =52x π-+elsey =0end if end if print y(第5题)8.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( ) A.92% B.24% C.56% D.76%9.袋分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( ) A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.恰有一个白球;一个白球一个黑球 D.至少有一个白球;红、黑球各一个 10.某算法的程序框图如右所示,该程序框图的功能是( ).A .求输出a,b,c 三数的最大数B .求输出a,b,c 三数的最小数C .将a,b,c 按从小到大排列D .将a,b,c 按从大到小排列二、填空11.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则这三种型号的轿车应依次抽取 、 、 辆.12.将十进制的数253转为四进制的数应为 (4)13.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为 .14. 某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元哈销售量y 件之间的一组数据如下所示:价格x 9 9.5 10 10.5 11 销售量y1110865由散点图可知,y 与x 之间有较好的线性相关关系,其线性回归方程是:=-3.2x+,则= . 三 简单题15、(1)用辗转相除法求840与1764的最大公约数.(2)用九韶算法计算函数34532)(34=-++=x x x x x f 当时的函数值。

高中数学必修3各章节知识点梳理及测试题(附加答案).doc

高中数学必修3各章节知识点梳理及测试题(附加答案).doc

高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点 :(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可 .(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题 .(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决 .1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能表示一个算法的起始和结束,是任何流程图起止框不可少的。

表示一个算法输入和输出的信息,可用在算输入、输出框法中任何需要输入、输出的位置。

赋值、计算,算法中处理数据需要的算式、处理框公式等分别写在不同的用以处理数据的处理框内。

判断某一条件是否成立,成立时在出口处标判断框明“是”或“ Y”;不成立时标明“否”或“ N”。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

第二章统计2.1.1简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

(word版)(经典)高中数学必修三单元测试题附答案解析

(word版)(经典)高中数学必修三单元测试题附答案解析

成龙教育〔数学3必修〕第二章:统计[根底训练A组]一、选择题110生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,b,.名工人某天生产同一零件,a中位数为众数为c,那么有()A.a b c B.b c aC.c a b D.c b a2.以下说法错误的选项是()A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.B.C.3D.34.要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的()A.平均数B.方差C.众数D.频率分布5.要从已编号〔1:60〕的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每局部选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是〔〕A.5,10,15,20,25,30B.3,13,23,33,43,53C.1,2,3,4,5,6D.2,4,8,16,32,486.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013x141513129第三组的频数和频率分别是() A.14和B.和14C.1和D.1和1 14314二、填空题1.为了了解参加运动会的2000名运发动的年龄情况,从中抽取100名运发动;就这个问题,以下说法中正确的有;2000名运发动是总体;②每个运发动是个体;③所抽取的100名运发动是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运发动被抽到的概率相等。

2.经问卷调查,某班学生对摄影分别执“喜欢〞、“不喜欢〞和“一般〞三种态度,其中执“一般〞态度的比“不喜欢〞态度的多12人,按分层抽样方法从全班选出局部学生座谈摄影,如果选出的2位“喜欢〞摄影的同学、1位“不喜欢〞摄影的同学和3位执“一般〞态度的同学,那么全班学生中“喜欢〞摄影的比全班人数的一半还多人。

最新高中数学: 必修3整套练习一课一练及答案(90页)

最新高中数学: 必修3整套练习一课一练及答案(90页)

第一章 算法初步1.1算法与程序框图1.1.1算法的概念[自我认知]:1.下面的结论正确的是 ( ).A. 一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C. 完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是 ( ). A.算法只能用自然语言来描述 B.算法只能用图形方式来表示 C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征 ( ) A.抽象性 B.精确性 C.有穷性 D.唯一性4.算法的有穷性是指 ( ) A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 ( ) A.S1洗脸刷牙、S2刷水壶 、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是 ( ) A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x -=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步: ①计算22c a b =+;②输入直角三角形两直角边长a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 ( ) A.①②③ B.②③① C.①③② D.②①③[课后练习]:8.若()f x 在区间[],a b 内单调,且()()0f a f b <,则()f x 在区间[],a b 内 ( )班次 姓名A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.11.写出1×2×3×4×5×6的一个算法.12.写出按从小到大的顺序重新排列,,x y z三个数值的算法.1.1.2程序框图[自我认知]:1.算法的三种基本结构是()班次姓名A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构 C.顺序结构、分支结构、流程结构 D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是 ( )A.矩形框 B.菱形框 D.圆形框 D.椭圆形框 3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为 ( )A.⑴3n ≥1000 ? ⑵3n <1000 ? B. ⑴3n ≤1000 ? ⑵3n ≥1000 ? C. ⑴3n <1000 ? ⑵3n ≥1000 ? D. ⑴3n <1000 ? ⑵3n <1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( )A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是 ( ) A.求输出,,a b c 三数的最大数 B.求输出,,a b c 三数的最小数 C.将,,a b c 按从小到大排列 D.将,,a b c 按从大到小排列开始1n =输出n1n n =+结束开始1n =输出n1n n =+结束是 是否否 ⑴⑵6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是( )A.0m =?B.0x = ?C.1x = ?D.1m =?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构8.已知函数()2121x f x x ⎧-=⎨-⎩ (0)(0)x x ≥<,设计一个求函数值的算法,并画出其程序框图1.1.2程序框图(第二课时)[课后练习]:1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____. 2.如图⑵程序框图箭头a 指向①处时,输出 s=__________. 箭头a 指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填 . A 、i ≥10? B 、i ≥11? C 、i ≤11? D 、i ≥12?开始 输入,,a b ca >b ?是a b =否a >c ?输出a结束 a c =是开始输入xm x =除以2的余数输出“x 是偶数”是输出“x 是奇数”否结束第5题图第6题图否 班次 姓名4.如图(3)程序框图箭头b 指向①处时,输出 s=__________. 箭头b 指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

高中数学必修三各章节同步练习题(附答案解析)

高中数学必修三各章节同步练习题(附答案解析)

高中数学必修三 1.1.1算法的概念练习新人教A版基础巩固一、选择题1.以下关于算法的说法正确的是( )A.描述算法可以有不同的方式,可用形式语言也可用其它语言B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果[答案] A[解析] 算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,必须确切,只能有唯一结果,而且经过有限步后,必须有结果输出后终止,描述算法可以有不同的语言形式,如自然语言、框图语言及形式语言等.2.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当有效地执行,并得到确定的结果D.一个问题只能设计出一种算法[答案] D[解析] 依据算法的概念及特征逐项排除验证.解:算法的有限性是指包含的步骤是有限的,故A正确;算法的确定性是指每一步都是确定的,故B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故C正确;对于同一个问题可以有不同的算法,故D错误.[点评] 解决有关算法的概念判断题应根据算法的特征进行判断,特别注意能在有限步内求解某类问题,其中的每条规则必须是明确可行的,不能是模棱两可的,对同一个问题可设计不同的算法.3.下列语句中是算法的有( )①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类顼、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个[答案] C[解析] ①中说明了从广州到北京的行程安排,完成任务;②中给出了一元一次方程这一类问题的解决方式;④中给出了求1+2+3+4的一个过程,最终得出结果;对于③,并没有说明如何去算,故①②④是算法,③不是算法.4.计算下列各式中S的值,能设计算法求解的是( )①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n∈N+).A.①②B.①③C.②③D.①②③[答案] B5.阅读下面的算法:第一步,输入两个实数a,b.第二步:若a<b,则交换a,b的值,否则执行第三步.第三步,输出a.这个算法输出的是( )A.a,b中的较大数B.a,b中的较小数C.原来的a的值D.原来的b的值[答案] A[解析] 第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;否则a<b不成立,即a≥b,那么a也是a,b中的较大数.6.阅读下面的四段话,其中不是解决问题的算法的是( )A.求1×2×3的值,先计算1×2=2,再计算2×3=6,最终结果为6B.解一元一次不等的步骤是化标准式、移项、合并同类项、系数化为1C.今天,我上了8节课,真累D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15[答案] C[解析] A,B,D项中,都是解决问题的步骤,则A,B,D项中所叙述的是算法,C项中是说明一个事实,不是算法.二、填空题7.给出下列表述:①利用△ABC 的面积公式S =12ab sin C 计算a =2、b =1、C =60°时三角形的面积;②从江苏昆山到九寨沟旅游可以先乘汽车到上海,再乘飞机到成都,再乘汽车抵达; ③求过M (1,2)与N (-3,5)两点的连线所在的直线方程,可先求直线MN 的斜率,再利用点斜式方程求得;④求三点A (2,2)、B (2,6)、C (4,4)所确定的△ABC 的面积,可先算AB 的长a ,再求AB 的直线方程及点C 到直线AB 的距离h ,最后利用S =12ah 来进行计算.其中是算法的是________.[答案] ②③④[解析] 由算法的含义及特性知②③④是算法,①没有说明计算的步骤,所以①不是算法.8.完成解不等式2x +2<4x -1的算法: 第一步,移项并合并同类项,得________.第二步,在不等式的两边同时除以x 的系数,得________. [答案] -2x <-3 x >32三、解答题9.(2015·江西南昌期末)已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题.[探究] 利用正三角形面积公式S =34l 2(l 为正三角形边长)求值设计. [解析] 第一步,输入a 的值. 第二步,计算l =a3的值.第三步,计算S =34×l 2的值. 第四步,输出S 的值. 10.下面给出一个问题的算法: 第一步,输入x ;第二步,若x ≥4,则执行第三步,否则执行第四步; 第三步,输出2x -1结束; 第四步,输出x 2-2x +3结束. 问:(1)这个算法解决的问题是什么?(2)当输入的x 的值为多少时,输出的数值最小?[解析] (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1x ≥4x 2-2x +3 x <4的函数值的问题.(2)本问的实质是求分段函数最小值的问题. 当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.能力提升一、选择题1.结合下面的算法: 第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2,否则执行第三步. 第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( ) A .-1,0,1 B .-1,1,0 C .1,-1,0 D .0,-1,1[答案] C[解析] 根据x 值与0的关系,选择执行不同的步骤,当x 的值为-1,0,1时,输出的结果应分别为1,-1,0,故选C.2.给出下列算法:第一步,输入正整数n (n >1).第二步,判断n 是否等于2,若n =2,则输出n ;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n . 则输出的n 的值是( ) A .奇数 B .偶数 C .质数 D .合数[答案] C[解析] 根据算法可知n =2时,输出n 的值2;若n =3,输出n 的值3;若n =4,2能整除4,则重新输入n 的值……,故输出的n 的值为质数.3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为( )A .13B .14C .15D .23[答案] C[解析] ①洗锅盛水2分钟、②用锅把水烧开10分钟(同时②洗菜6分钟、③准备面条及佐料2分钟)、⑤煮面条3分钟,共为15分钟.4.已知两个单元分别存放了变量x 和y ,下面描述交换这两个变量的值的算法中正确的为( )A .第一步 把x 的值给y ;第二步 把y 的值给x .B .第一步 把x 的值给t ;第二步 把t 的值给y ;第三步 把y 的值给x .C .第一步 把x 的值给t ;第二步 把y 的值给x ;第三步 把t 的值给y .D .第一步 把y 的值给x ;第二步 把x 的值给t ;第三步 把t 的值给y . [答案] C[解析] 为了达到交换的目的,需要一个中间变量t ,通过t 使两个变量来交换. 第一步 先将x 的值赋给t (这时存放x 的单元可以再利用); 第二步 再将y 的值赋给x (这时存放y 的单元可以再利用); 第三步 最后把t 的值赋给y ,两个变量x 和y 的值便完成了交换.[点评] 这好比有一碗酱油和一碗醋.我们要把这两碗盛装的物品交换过来,需要一个空碗(即t );先把醋(或酱油)倒入空碗,再把酱油(或醋)倒入原来盛醋(或酱油)的碗,最后把倒入空碗中的醋(或酱油)倒入原来盛酱油(或醋)的碗,就完成了交换.二、填空题 5.给出下列算法: 第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步. 第三步,计算y =4-x . 第四步,输出y .当输入x =0时,输出y =________. [答案] 2[解析] 由于x =0>4不成立,故计算y =4-x =2,输出y =2.6.已知点P (x 0,y 0)和直线l :Ax +By +C =0,写出求点到直线距离的一个算法. 有如下步骤:①输入点的坐标x 0,y 0.②计算z 1=Ax 0+By 0+C .③计算z 2=A 2+B 2.④输入直线方程的系数A ,B 和常数C .⑤计算d =|z 1|z 2.⑥输出d 的值.其中正确的顺序为__________________.[答案] ①④②③⑤⑥[解析] (1)算法步骤应先输入相关信息最后输出结果;(2)d =|Ax 0+By 0+C |A 2+B 2,应先将分子、分母求出,再代入公式.三、解答题7.设计一个算法,找出闭区间[20,25]上所有能被3整除的整数. [解析] 第一步,用20除以3,余数不为0,故20不能被3整除; 第二步,用21除以3,余数为0,故21能被3整除; 第三步,用22除以3,余数不为0,故22不能被3整除; 第四步,用23除以3,余数不为0,故23不能被3整除; 第五步,用24除以3,余数为0,故24能被3整除; 第六步,用25除以3,余数不为0,故25不能被3整除; 第七步,指出在闭区间[20,25]上能被3整除的整数为21和24.8.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.[解析] 第一步,人带羊过河. 第二步,人自己返回. 第三步,人带青菜过河. 第四步,人带羊反回. 第五步,人带狼过河. 第六步,人自己返回. 第七步,人带羊过河.高中数学必修三 1.1.2第1课时程序框图、顺序结构练习 新人教A 版基础巩固一、选择题1.程序框图是算法思想的重要表现形式,程序框图中不含( ) A .流程线 B .判断框 C .循环框 D .执行框[答案] C[解析] 程序框图是由程序框和流程线组成.其中程序框包括起止框、、输入输出框、执行框、判断框.这里并没有循环框.2.在程序框图中,算法中间要处理数据或计算,可分别写在不同的( )A.处理框内B.判断框内C.输入、输出框内D.终端框内[答案] A[解析] 由处理框的意义可知,对变量进行赋值,执行计算语句,处理数据,结果的传送都可以放在处理框内,∴选A.3.下列关于程序框的功能描述正确的是( )A.(1)是处理框;(2)是判断框;(3)是终端框;(4)是输入、输出框B.(1)是终端框;(2)是输入、输出框;(3)是处理框;(4)是判断框C.(1)和(3)都是处理框;(2)是判断框;(4)是输入、输出框D.(1)和(3)的功能相同;(2)和(4)的功能相同[答案] B[解析] 根据程序框图的规定,(1)是终端框,(2)是输入、输出框,(3)是处理框,(4)是判断框.4.如图所示程序框图中,其中不含有的程序框是( )A.终端框B.输入、输出框C.判断框D.处理框[答案] C[解析] 含有终端框,输入、输出框和处理框,不含有判断框.5.如图,若输入a=10,则输出a=________( )A.2 B.8C.10 D.6[答案] 8[解析] b=10-8=2,a=10-2=8.6.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为( )A.1 B.3C.1或3 D.0或3[答案] D[解析] 本题实质是解方程a=-a2+4a,解得a=0或a=3.二、填空题7.下面程序框图执行的功能是输入矩形的边长求它的面积,其中执行框中应填的是________.[答案] S=a×b8.如图所示的程序框图,若输出的结果是2,则输入的m=________.[答案] 100[解析] 由于输出的结果是2,则x=2,则lg m=2,故m=100.三、解答题9.如图,是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x=2的含义是什么?(2)图框②中y1=ax+b的含义是什么?(3)图框④中y2=ax+b的含义是什么?(4)该程序框图解决的是怎样的问题?(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.[解析] (1)图框①中x=2表示把2赋值给变量x.(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax +b的值,并把这个值赋给y2.(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.(5)y1=3,即2a+b=3.⑤y2=-2,即-3a+b=-2.⑥由⑤⑥,得a=1,b=1,所以f(x)=x+1.10.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.[分析] 此题只要将半径R、高h代入圆柱的体积公式V=πR2h,最后输出结果即可,所以只用顺序结构就能表达出来.[解析]算法如下:第一步,输入R,h,第二步,计算V=πR2h.第三步,输出V.程序框图如图所示.能力提升一、选择题1.对终端框叙述正确的是( )A.表示一个算法的起始和结束,程序框是B.表示一个算法输入和输出的信息,程序框是C.表示一个算法的起始和结束,程序框是D.表示一个算法输入和输出的信息,程序框是[答案] C2.阅读右图所示程序框图.若输入的x=3,则输出的y的值为( )A.24 B.25C.30 D.40[答案] D3.如图所示的程序框图是已知直角三角形两直角边a,b求斜边c的算法,其中正确的是( )[答案] C[解析] A项中,没有终端框,所以A项不正确;B项中,输入a,b和c=a2+b2顺序颠倒,且程序框错误,所以B项不正确;D项中,赋值框中a2+b2=c错误,应为c=a2+b2,左右两边不能互换,所以D项不正确;很明显C项正确.4.阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是( )A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21[答案] A[解析] 输入21,32,75后,该程序框图的执行过程是:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.二、填空题5.如下图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________.[答案][解析] 变量在计算时应先赋值,这里的a、b,c的值是通过输入语句得到.根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.6.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填________.[答案] S =4-π4a 2[解析] 图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2.因此图1中①处应填入S =4-π4a 2.三、解答题7.已知x =10,y =2,画出计算w =5x +8y 值的程序框图.[解析] 算法如下: 第一步,令x =10,y =2. 第二步,计算w =5x +8y . 第三步,输出w 的值. 其程序框图如图所示.[特别提醒] (1)程序框图中的每一种图形符号都有特定的含义,在画程序框图时不能混用.(2)流程线上不要忘记加方向箭头.如果不画,就难以判断各程序框间的执行次序. 8.已知一个直角三角形的两条直角边长为a 、b ,斜边长为c ,写出它的外接圆和内切圆面积的算法,并画出程序框图.[解析] 算法步骤如下: 第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ),R =c2.第四步,计算内切圆面积S 1=πr 2,外接圆面积S 2=πR 2. 第五步,输出S 1、S 2,结束. 程序框图如图.高中数学必修三 1.1.2第2课时条件结构练习 新人教A 版基础巩固一、选择题1.下列关于条件结构的描述,正确的是( )A .条件结构的出口有两个,这两个出口有时可以同时执行B .条件结构的判断框内的条件是惟一的C .条件结构根据条件是否成立选择不同的分支执行D .在条件结构的任何一个分支中,只能执行一个语句,而不能是多个 [答案] C2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个[答案] C[解析] 其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可. 3.如图所示的程序框图中,输入x =2,则输出的结果是( )A .1B .2C .3D .4[答案] B[解析] 输入x =2后,该程序框图的执行过程是: 输入x =2,x =2>1成立, y =2+2=2,输出y =2.4.已知a =212 ,b =log33,运算原理如图所示,则输出的值为( )A.22B. 2C.2-12D.2+12[答案] D[解析] 由a =2<b =log33=lg3lg3=2,知a >b 不成立,故输出a +1b =2+12. 5.如下图所示的程序框图,其功能是( ) A .输入a ,b 的值,按从小到大的顺序输出它们的值 B .输入a ,b 的值,按从大到小的顺序输出它们的值 C .求a ,b 的最大值 D .求a ,b 的最小值 [答案] C[解析] 输入a=1,b=2,运行程序框图可得输出2.根据执行过程可知该程序框图的功能是输入a,b的值,输出它们的最大值,即求a,b的最大值.第5题图第6题图6.在佛山市禅城区和南海区打的士收费办法如下:不超过2千米收7元,超过2千米的里程每千米收2.6元,另每车次超过2千米收燃油附加费1元(其他因素不考虑).相应收费系统的程序框图如图所示,则①处应填( )A.y=7+2.6x B.y=8+2.6xC.y=7+2.6(x-2) D.y=8+2.6(x-2)[答案] D[解析] 当行车里程x>2时,费用y=[7+2.6(x-2)]+1=8+2.6(x-2).二、填空题7.读下列流程图填空:(1)流程图(1)的算法功能是________________.(2)流程图(2)的算法功能是________________. (3)流程图(3)的算法功能是________________. (4)流程图(4)的算法功能是________________. [答案] (1)求输入的两个实数a 与b 的和(2)求以输入的两个正数a ,b 为直角边长的直角三角形斜边的长 (3)求输入两数a ,b 的差的绝对值 (4)求函数f (x )=|x -3|+1,即分段函数f (x )=⎩⎪⎨⎪⎧x -2x >34-xx ≤3的函数值8.(2015·广州市)某算法的程序框图如图所示,若输出结果为12,则输入的实数x 的值是________.[答案]2[解析] 当x ≤1时,y =x -1≤0,∵输出结果为12,∴x >1,∴log 2x =12,∴x = 2.三、解答题9.“特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式,某快递公司规定甲、乙两地之间物品的托运费用根据下列方法运算:y =⎩⎪⎨⎪⎧0.53x ,x ≤50,50×0.53+x -50×0.85,x >50,其中y (单位:元)为托运费用,x (单位:千克)为托运物品的重量,试画出计算托运费用y 的程序框图.[解析] 算法程序框图如图所示:10.(2015·聊城高一检测)已知函数y =⎩⎪⎨⎪⎧1+x ,x >0,0,x =0,-x -3,x <0,设计一个算法,输入自变量x 的值,输出对应的函数值.请写出算法步骤,并画出程序框图.[探究] 该函数是分段函数,当x 取不同范围内的值时,函数表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的解析式求函数值,因此函数解析式分为三段,所以判断框需要两个,即进行两次判断.[解析] 算法如下: 第一步,输入自变量x 的值.第二步,判断x >0是否成立,若成立,计算y =1+x ,否则,执行下一步. 第三步,判断x =0是否成立,若成立,令y =0,否则,计算y =-x -3. 第四步,输入y . 程序框图如下图所示.能力提升一、选择题1.(2011·陕西高考)如图中,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( )A .10B .7C .8D .11[答案] C[解析] ∵x 1=6,x 2=9, ∴|x 2-x 1|=3>2,输入x 3, 假设|x 3-x 1|<|x 3-x 2|成立, 即|x 3-6|<|x 3-9|, 解得x 3<7.5, 把x 3赋值给x 2,p =x 1+x 22=x 1+x 32=8.5,解得x 3=11,与x 3<7.5矛盾,舍去; 假设|x 3-x 1|≥|x 3-x 2|成立, 即|x 3-6|≥|x 3-9|, 解得x 3≥7.5, 把x 3赋值给x 1,p =x 1+x 22=x 2+x 32=8.5,解得x 3=8,符合要求.2.(2013·新课标全国Ⅰ)执行如图所示的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5][答案] A[解析] 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <14t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上,函数的值域为[-3,4],即输出的s 属于[-3,4].3.(2015·中山高一检测)执行如图所示的程序框图,若输出的结果是8,则输入的数是( )A .2或-2 2B .22或-2 2C .-2或-2 2D .2或2 2[答案] A[解析] 当x 3=8时x =2,a =4,b =8,b >a ,输出8 当x 2=8时,x =±22,a =8,b =±62,又a >b ,输出8, 所以x =-22,故选A.4.2008年3月1日开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元部分需征税.设全月总收入金额为x 元,前三级税率如下表所示:级数全月应纳税金额x-2000税率1不超过500元的部分5%2超过500至2000元部分10%3超过2000至5000元部分15%………当工资薪金所得不超过4000元,计算个人所得税的一个算法框图如图,则输出①、输出②分别为( )A.0.05x;0.1xB.0.05x;0.15x-250C.0.05x-100;0.1x-200D.0.05x-100;0.1x-225[答案] D[解析] 当2000<x≤2500时,税收y=(x-2000)×5%=0.05x-100,当2500<x≤4000时,税收y=500×5%+(x-2500)×10%=0.1x-225.二、填空题5.(2015·北京东城二模)已知某程序的框图如图,若分别输入的x的值为0,1,2,执行该程序后,输出的y的值分别为a,b,c,则a+b+c=________.[答案] 6[解析] 该程序框图的功能是输入自变量x 的值,输出函数y =⎩⎪⎨⎪⎧x 2,x >1,1,x =1,4x ,x <1对应的函数值,记y =f (x ),则a =f (0)=40=1,b =f (1)=1,c =f (2)=22=4,则a +b +c =6.6.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是________.[答案] {x ∈R |0≤x ≤log 23,或x =2}[解析] 由题意及框图,得⎩⎪⎨⎪⎧-2<x <2,1≤2x≤3或⎩⎪⎨⎪⎧|x |≥2,1≤x +1≤3.解之,得0≤x ≤log 23或x =2.三、解答题7.下面给出了一个算法框图,如图所示.根据该算法框图回答以下问题:(1)该算法框图是为什么问题而设计的?(2)若输入的四个数为5,2,7,22,则最后输出的结果是什么?[解析] (1)“a <b 且a <c 且a <d ”是判断a 是否为最小的数,若成立,则输出a ,此时输出了a ,b ,c ,d 中最小的数;如果不成立,也就是a 不是最小数,从而进入“b <c 且b <d ”,它是判断当a 不是最小数时,b 是否为最小数,若成立,则输出b ,说明此时也是输出了a ,b ,c ,d 中最小的数;如果 不成立,就说明a 与b 都不是最小的数,从而进行“c <d ”,它是判断当a ,b 都不是最小数时,c 是否为最小数,若成立,则输出c ,说明此时输出的是a ,b ,c ,d 中最小的数;若不成立,则输出d ,此时d 是a ,b ,c ,d 中最小的数.故算法的流程图是为“求a ,b ,c ,d 四个数中的最小数并进行输出”而设计的.(2)当输入的四个数分别为5,2,7,22时,最后输出的结果是2.8.(2015·福建厦门模拟)某专家称,中国的通货膨胀率保持在3%左右对中国经济的稳定有利无害,所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情形下,某种品牌的钢琴2010年的价格是10000元,请用程序框图描述这种钢琴今后4年的价格变化情况,并输出4年后钢琴的价格.[解析] 程序框图如下图所示.高中数学必修三 1.1.2第3课时循环结构、程序框图的画法练习新人教A版基础巩固一、选择题1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )A.分支型循环B.直到型循环C.条件型循环D.当型循环[答案] D2.下面关于当型循环结构和直到型循环结构的说法,不正确的是( )A.当型循环结构是先判断后循环,条件成立时执行循环体,条件不成立时结束循环B.直到型循环结构要先执行循环体再判断条件,条件成立时结束循环,条件不成立时执行循环体C.设计程序框图时,两种循环结构可以任选其中的一个,两种结构也可以相互转化D.设计循环结构的程序框图时只能选择这两种结构中的一种,除这两种结构外,再无其他循环结构[答案] D3.阅读如图所示的程序框图,运行相应的程序,输出的s值等于( )A.-3 B.-10C.0 D.-2[解析] 开始:k =1,s =1;1<4,是,s =2×1-1=1;k =2,2<4,是,s =2×1-2=0;k =3,3<4,是,s =2×0-3=-3;k =4,4<4,否,输出s =-3,故选 A.4.执行如图所示的程序框图,则输出的S 值是( ) A .4 B.32 C.23 D .-1[答案] D[解析] S =22-4=-1,i =2;S =22+1=23;i =3;S =22-23=32,i =4,S =22-32=4,i =5;S =22-4=-1,i =6. 5.(2015·北京卷)执行如图所示的程序框图,输出的结果为( ) A .(-2,2) B .(-4,0) C .(-4,-4)D .(0,-8)[解析] 运行程序:x =1,y =1,k =0;s =1-1=0,t =1+1=2,x =0,y =2,k =0+1=1,因为1≥3不满足,s =-2,t =2,x =-2,y =2,k =2,因为2≥3不满足,s =-4,t =0,x =-4,y =0,k =3,因为3≥3满足,输出(-4,0).6.(2014·重庆,理5)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45[答案] C[解析] 该程序框图为循环结构.k =9,s =1时,经判断执行“是”,计算1×99+1=910赋值给s ,然后k 减少1变为8;k =8,s =910时,经判断执行“是”,计算910×88+1=810赋值给s ,然后k 减少1变为7;k =7,s =810时,经判断执行“是”,计算810×77+1=710赋值给s ,然后k 减少1变为6;k =6,s =710,根据输出k 为6,此时应执行“否”.结合选项可知,判断框内应填s >710,故选C.二、填空题7.(2013·湖南高考)执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.[答案] 98.(2015·温州高一检测)若如图所示的程序框图运行结果为S =90,那么判断框中应填入的关于k的条件是________.[答案] k>8?三、解答题9.画出求满足12+22+32+…+n2>20152的最小正整数n的程序框图.[分析] 题中要求满足条件的不等式的最小正整数n,不等式左侧是连续自然数的平方和,故可采用循环结构完成.[解析]10.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.第i次i=1i=2i=3i=4i=5x=2×3i(2)若输出i的值为2,求输入x的取值范围.[解析] (1)第i次i=1i=2i=3i=4i=5x=2×3i61854162486因为162<(2)由输出i的值为2,则程序执行了循环体2次,即⎩⎪⎨⎪⎧3x ≤168,9x >168,解得563<x ≤56,所以输入x 的取值范围是563<x ≤56.能力提升一、选择题1.(2014·福建,理5)阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18B .20C .21D .40[答案] B[解析] 该程序框图为循环结构,由S =0,n =1得S =0+21+1=3,n =1+1=2,判断S =3≥15不成立,执行第二次循环,S =3+22+2=9,n =2+1=3,判断S =9≥15不成立,执行第三次循环,S =9+23+3=20,n =3+1=4,判断S =20≥15成立,输出S =20.故选B.2.(2013·浙江)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7[答案] A[解析] k =1,S =1+1-12=32;k =2,S =1+1-13=53;k =3,S =1+1-14=74;k =4,S =1+1-15=95.输出结果是95,这时k =5>a ,故a =4.3.以下给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A .i <20?B .i >10?C .i <10?D .i ≤10?[答案] D[解析] i =1,S =12;i =2,S =12+14;i =3,S =12+14+16;依次下去:i =10,S =12+14+…+120,故选D. 4.(2015·陕西卷)根据下边的图,当输入x 为2006时,输出的y =( ) A .28 B .10 C .4D .2[答案] B[解析] 初始条件:x =2006;第1次运行:x =2004;第2次运行:x =2002;第3次运行:x =2000;……;第1003次运行:x =0;第1004次运行:x =-2,不满足条件x ≥0?,停止运行,所以输出的y =32+1=10,故选B.二、填空题5.(2014·辽宁,理13)执行下面的程序框图,若输入x =9,则输出y =________.[答案]299[解析] 输入x =9,则y =5,|y -x |=4>1,执行否,x =5,y =113,|y -x |=43>1,执行否,x =113,y =299,|y -x |=49<1,执行是,输出y =299.6.(2014·湖北,理13)设a 是一个各位数都不是0且没有重复数字的三位数,将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.[答案] 495[解析] 不妨取a =815,则I (a )=158,D (a )=851,b =693; 则取a =693,则I (a )=369,D (a )=963,b =594; 则取a =594,则I (a )=459,D (a )=954,b =495; 则取a =495,则I (a )=459,D (a )=954,b =495. 故输出结果b =495. 三、解答题7.以下是某次考试中某班15名同学的数学必修三成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来并画出程序框图.[分析] 用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同。

数学必修3测试题及答案

数学必修3测试题及答案

数学必修3测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数y=2x+1的斜率是多少?A. 1B. 2C. -1D. -2答案:B3. 已知函数f(x)=x^2-4x+3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:A4. 等差数列的前三项分别是1,3,5,那么第n项的通项公式是?A. 2n-1B. 2n+1C. 2n-3D. 2n+3答案:A5. 求和公式S_n=n/2*(a_1+a_n)中,S_10的值是多少,如果a_1=1,d=2?A. 100B. 110C. 120D. 130答案:C6. 已知集合A={1,2,3},B={2,3,4},那么A∩B等于?A. {1,2,3}B. {2,3}C. {1,2}D. {3,4}答案:B7. 函数y=x^3-3x^2+2的导数是?A. 3x^2-6xB. 3x^2-6x+2C. x^2-6x+2D. x^3-6x+2答案:A8. 已知等比数列的前两项分别是2和6,那么第三项是?A. 18B. 12C. 24D. 36答案:A9. 圆的方程x^2+y^2=25的半径是多少?A. 5B. 25C. √25D. √5答案:A10. 函数y=sin(x)的周期是?A. 2πB. πC. 1D. 2答案:A二、填空题(每题4分,共20分)1. 已知函数f(x)=x^2-6x+8,求f(3)的值。

答案:-12. 等差数列的前n项和公式为S_n=n/2*(a_1+a_n),当n=5,a_1=2,d=3时,S_5的值是。

答案:403. 函数y=cos(x)的值域是。

答案:[-1,1]4. 已知圆心在(2,3),半径为5的圆的方程是。

答案:(x-2)^2+(y-3)^2=255. 函数y=ln(x)的定义域是。

答案:(0,+∞)三、解答题(每题10分,共50分)1. 已知函数f(x)=x^3-6x^2+9x+1,求导数f'(x)。

必修3数学测试题及答案

必修3数学测试题及答案

必修3数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 3a + 2 = 0 \) 和 \( b^2 - 3b + 2 = 0 \),那么 \( a + b \) 的值为:A. 0B. 1C. 3D. -3答案:C3. 函数 \( y = x^2 - 4x + 4 \) 的顶点坐标是:A. (2, 0)B. (2, -4)C. (-2, 4)D. (-2, 0)答案:A4. 计算 \( \int_{0}^{1} x^2 dx \) 的结果是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:C5. 已知 \( \sin(\alpha) = \frac{1}{2} \),那么 \( \cos(\alpha) \) 的值是:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:B6. 函数 \( y = \ln(x) \) 的定义域是:A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)答案:A7. 已知 \( \tan(\theta) = 2 \),则 \( \sin(\theta) \) 的值是:A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{1+4}} \)D. \( \frac{1}{\sqrt{1+4}} \)答案:C8. 计算 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的结果是:A. 1B. 0C. \( \infty \)D. \( -\infty \)答案:A9. 函数 \( y = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是:A. 0B. 1C. -1D. \( \infty \)答案:C10. 已知 \( \cos(\alpha) = \frac{\sqrt{2}}{2} \),那么\( \sin(\alpha) \) 的值是:A. \( \frac{\sqrt{2}}{2} \)B. \( -\frac{\sqrt{2}}{2} \)C. 1D. 0答案:A二、填空题(每题4分,共20分)1. 函数 \( y = x^3 - 3x \) 的导数是 \( y' = \_\_\_\_\_ \)。

人教B版高中数学必修3同步练习题及答案全册汇编整理

人教B版高中数学必修3同步练习题及答案全册汇编整理

人B版高中数学必修3同步习题目录第1章1.1.1同步练习第1章1.1.2同步练习第1章1.1.3同步练习第1章1.2.1同步练习第1章1.2.2同步练习第1章1.2.3同步练习第1章§1.3同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.1.3同步练习第2章2.1.4同步练习第2章2.2.1同步练习第2章2.2.2同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章章末综合检测第3章3.1.2同步练习第3章3.1.3同步练习第3章3.1.4同步练习第3章3.3.1同步练习第3章3.3.2同步练习第3章§3.2同步练习第3章§3.4同步练习第3章章末综合检测人教B 版必修3同步练习1.有关辗转相除法下列说法正确的是( )A .它和更相减损之术一样是求多项式值的一种方法B .基本步骤是用较大的数m 除以较小的数n 得到除式m =n q +r ,直至r <n 为止C .基本步骤是用较大的数m 除以较小的数n 得到除式m =q n +r(0≤r <n )反复进行,直到r =0为止D .以上说法皆错 答案:C2.在对16和12求最大公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的最大公约数是( ) A .4 B .12 C .16 D .8 答案:A3.用“等值算法”可求得204与85的最大公约数是( ) A .15 B .17 C .51 D .85 解析:选B.由更相减损之术可得.4.秦九韶的算法中有几个一次式,若令v 0=a n ,我们可以得到⎩⎪⎨⎪⎧v 0=a nv k =v k -1x + (k =1,2,…,n ). 答案:a n -k5.用秦九韶算法求多项式f (x )=2+0.35x +1.8x 2-3.66x 3+6x 4-5.2x 5+x 6在x =-1.3的值时,令v 0=a 6;v 1=v 0x +a 5;…;v 6=v 5x +a 0时,v 3的值为________. 答案:-22.445一、选择题1.在等值算法(“更相减损术”)的方法中,其理论依据是( ) A .每次操作所得的两数和前两数具有相同的最小公倍数 B .每次操作所得的两数和前两数具有相同的最大公约数 C .每次操作所得的两数和前两数的最小公倍数不同 D .每次操作所得的两数和前两数的最大公约数不同 答案:B2.我国数学家刘徽采用正多边形面积逐渐逼近圆面积的计算方法来求圆周率π,其算法的特点为( )A .运算速率快B .能计算出π的精确值C .“内外夹逼”D .无限次地分割解析:选C .割圆术用正多边形面积代替圆面积的方法是内外夹逼,能得到π的不足和过剩近似值,其分割次数是有限的.3.使用秦九韶算法求p (x )=a n x n +a n -1x n -1+…+a 1x +a 0在x =x 0时的值时,做加法与乘法的次数分别为( )A .n ,nB .n ,n (n +1)2C .n ,2n +1D .2n +1,n (n +1)2答案:A4.用辗转相除法计算60与48的最大公约数时,需要做的除法次数是( )A.1 B.2C.3 D.4解析:选B.∵60=48×1+12,48=12×4+0,故只需要两步计算.5.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()A.-57 B.220C.-845 D.3392解析:选B.v0=3,v1=3×(-4)+5=-7,v2=-7×(-4)+6=34,v3=34×(-4)+79=-57,v4=-57×(-4)-8=220.6.若int(x)是不超过x的最大整数(如int(4.3)=4,int(4)=4),则下列程序的目的是() x=input(“x=”);y=input(“y=”);m=x;n=y;w hile m/n<>int(m/n)c=m-int(m/n)*n;m=n;n=c;enddisp(n)A.求x,y的最小公倍数B.求x,y的最大公约数C.求x被y整除的商D.求y除以x的余数答案:B二、填空题7.168,56,264的最大公约数为________.解析:法一:采用更相减损之术求解.先求168与56的最大公约数:168-56=112,112-56=56,因此168与56的最大公约数是56.再求56与264的最大公约数:264-56=208,208-56=152,152-56=96, 96-56=40,56-40=16, 40-16=24,24-16=8, 16-8=8,故8是56与264的最大公约数,也就是三个数的最大公约数.法二:采用辗转相除法.先求168与56的最大公约数,∵168=56×3,故168与56的最大公约数是56.再求56与264的最大公约数,∵264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,故56与264的最大公约数是8.因此168,56,264的最大公约数是8.答案:88.用秦九韶算法求f(x)=x3-3x2+2x-11的值时,应把f(x)变形为________.解析:f(x)=x3-3x2+2x-11=(x2-3x+2)x-11=((x-3)x+2)x-11.答案:((x-3)x+2)x-119.已知n次多项式P n(x)=a0x n+a1x n-1+…+a n-1x+a n.如果在一种算法中,计算x k0(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要________次运算.下面给出一种减少运算次数的算法:P0(x)=a0,P k+1(x)=xP k(x)+a k+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要________次运算.解析:计算3(x0)时为P3(x0)=a0x30+a1x20+a2x0+a3,其中x k0需k-1次乘法,∴a n-k·x k0共需k次乘法.上式中运算为3+2+1=6次,另外还有3次加法,共9次.由此产生规律:当计算P10(x0)时有P10(x0)=a0x100+a1x90+…+a10.计算次数为10+9+8+…+1+10=10×(10+1)2+10=65.第2个空中需注意P3(x0)=x0·P2(x0)+a3,P2(x0)=x0·P1(x0)+a2,P1(x0)=x0·P0(x0)+a1.显然P0(x0)为常数不需要计算.∴计算为每次一个乘法运算和一个加法运算,共需3×2=6次.由此运用不完全归纳法知P10(x0)=x0·P9(x0)+a10,P9(x0)=x0·P8(x0)+a9,…,P1(x0)=x0·P0(x0)+a1.其中共有10×2=20个运算过程.答案:6520三、解答题10.用秦九韶算法求多项式函数f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.解:f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,所以v0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v4=262×3+3=789,v5=789×3+2=2369,v6=2369×3+1=7108,v7=7108×3=21324,故x=3时,多项式函数f(x)的值为21324.11.求两正整数m,n(m>n)的最大公约数.写出算法、画出程序框图,并写出程序.解:算法如下:S1输入两个正整数m,n(m>n);S2如果m≠n,则执行S3,否则转到S6;S3将m-n的差赋予r;S4如果r≠n,则执行S5,否则转到S6;S5若n>r,则把n赋予m,把r赋予n,否则把r赋予m,重新执行S2;S6输出最大公约数n.程序框图如图所示.程序如下:才能保证正方体体积最大,且不浪费材料?解:要焊接正方体,就是将两种规格的钢筋裁成长度相等的钢筋条.为了保证不浪费材料,应使每一种规格的钢筋裁剪后无剩余,因此裁剪的长度应是2.4和5.6的公约数;要使正方体的体积最大,亦即棱长最长,就要使正方体的棱长为2.4和5.6的最大公约数.用“等值算法”求得 2.4和 5.6的最大公约数:(2.4,5.6)→(2.4,3.2)→(0.8,2.4)→(0.8,1.6)→(0.8,0.8).因此将正方体的棱长设计为0.8 m时,体积最大且不浪费材料.人教B版必修3同步练习1.下列对算法的理解不正确的是()A.算法有一个共同特点就是对一类问题都有效(而不是个别问题)B.算法要求是一步步执行,每一步都能得到唯一的结果C.算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法D.任何问题都可以用算法来解决解析:选D.算法是解决问题的精确的描述,但是并不是所有问题都有算法,有些问题使用形式化、程序化的刻画是最恰当的.2.算法的有限性是指()A.算法的步骤必须有限B.算法的最后必须包括输出C.算法中每个操作步骤都是可执行的D.以上说法都不正确答案:A3.早上起床到出门需洗脸刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个步骤.下列选项中最好的一种算法为()A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C.S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭的同时听广播D.S1吃饭的同时听广播、S2泡面、S3浇水的同时洗脸刷牙、S4刷水壶解析:选C.经比较可知C最省时,效率最高.4.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法________.(只写编号)答案:③②①⑤④⑥5.求1+3+5+7+9的算法的第一步是1+3得4,第二步是将第一步中运算结果4与5相加得9,第三步是__________________________.答案:将第二步中运算结果9与7相加得16一、选择题1.下列说法正确的是()A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结论C.解决某一个具体问题,算法不同所得的结果不同D.算法执行步骤的次数不可以很大,否则无法实施解析:选B.B项,如判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;而A项,算法不能等同于解法;C项,解决某一个具体问题算法不同所得的结果应该相同,否则算法不正确;D项,算法可以为很多次,但不可以无限次.2.阅读下列算法.S1输入n;S2判断n是否是2,若n=2,则n满足条件;若n>2,则执行S3;S3依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.满足上述条件的数是()A.质数B.奇数C.偶数D.4的倍数解析:选A.由质数的定义知A 正确.3.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y +c 1=0,a 2x +b 2y +c 2=0.在写此方程组解的算法时,需要我们注意的是( ) A .a 1≠0 B .a 2≠0 C .a 1b 1-a 2b 2≠0 D .a 1b 2-a 2b 1≠0解析:选D.由高斯消去法知,方程组是否有解,解的个数是否有限,在于a 1b 2-a 2b 1是否为零.故选D.4.指出下列哪个不是算法( )A .解方程2x -6=0的过程是移项和系数化为1B .从济南到温哥华要先乘火车到北京,再转乘飞机C .解方程2x 2+x -1=0D .利用公式S =πr 2计算半径为3的圆的面积时,计算π×32 答案:C5.下列语句表达中是算法的有( )①利用公式S =12ah 计算底为1,高为2的三角形的面积;②12x >2x +4; ③求M (1,2)与N (-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得. A .①③ B .②③ C .①② D .③解析:选A.算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①③都各表达了一种算法.判断算法的标准是“解决问题的有效步骤或程序”.②只是一个纯数学问题,没有解决问题的步骤,不属于算法的范畴.6.有一堆形状大小相同的珠子,其中只有一粒重量比其他的轻,某同学利用科学的算法,最多两次利用天平找出了这颗最轻的珠子,则这堆珠子最多的粒数是( ) A .4 B .5 C .6 D .7解析:选D.最多是7粒,第一次是天平每边3粒,若平衡,则剩余的为最轻的珠子;若不平衡,则在轻的一边选出两粒,再放在天平的两边,同样就可以得到最轻的珠子,故选D. 二、填空题7.写出解方程2x +3=0的算法步骤: S1____________________________; S2____________________________; S3____________________________. 答案:移项得2x =-3未知数系数化为1,得x =-32输出x =-328.一个算法步骤如下: S1 S 取0,i 取1;S2 如果i ≤10,则执行S3,否则执行S6; S3 计算S +i 并将结果代替S ; S4 用i +2的值代替i ; S5 执行S2; S6 输出S .运行以上步骤输出的结果为S =________.解析:由以上算法可知S =1+3+5+7+9=25. 答案:259.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总成绩和平均成绩的一个算法如下,在①②处应填写________、________. S1 取A =89,B =96,C =99; S2 __①__; S3 __②__;S4 输出计算的结果.答案:计算总分D =A +B +C 计算平均成绩E =D3三、解答题10.设一个球的半径为r (r >0),请写出求以r 为半径的球的表面积的算法. 解:算法如下: S1 输入半径r ;S2 计算表面积S =4πr 2; S3 输出S .11.写出求过点M (-2,-1)、N (2,3)的直线与坐标轴围成的三角形面积的一个算法. 解:算法步骤如下:S1 取x 1=-2,y 1=-1,x 2=2,y 2=3;S2 得直线方程y -y 1y 2-y 1=x -x 1x 2-x 1;S3 令x =0得y 的值m ,从而得直线与y 轴交点的坐标(0,m ); S4 令y =0得x 的值n ,从而得直线与x 轴交点的坐标(n,0);S5 根据三角形面积公式求S =12·|m |·|n |;S6 输出运算结果.12.某快递公司规定甲、乙两地之间物品的托运费用根据下面的方法计算: f =⎩⎪⎨⎪⎧0.53ω, ω≤5050×0.53+(ω-50)×0.85, ω>50 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出计算费用f 的算法. 解:S1 输入物品重量ω;S2 如果ω≤50,那么f =0.53ω,否则f =50×0.53+(ω-50)×0.85; S3 输出物品重量ω和托运费f .人教B版必修3同步练习1.程序框图中的判断框,有一个入口几个出口()A.1B.2C.3 D.4解析:选B.一般有两个出口:“是”与“否”.2.下面的功能中,属于处理框的是()①赋值;②计算;③判断;④输入,输出.A.①②③B.①②C.②③D.①②④解析:选B.处理框的功能是赋值,计算和传送结果.3.下列关于程序框图的说法正确的有()①程序框图只有一个入口,也只有一个出口;②程序框图中的每一部分都应有一条从入口到出口的路径通过它;③程序框图中的循环可以是无尽循环;④连接点是用来连接两个程序框图的.A.①②③B.②③C.①D.①②解析:选D.由框图符号及作用的说明可知③④错误,程序框图中的循环必须是有限循环;连接点是连接同一个程序框图的不同部分.4.如图算法的功能是________.答案:求两个实数a、b的和5.如图算法的功能是(a>0,b>0)________.答案:求以a、b为直角边的直角三角形斜边c的长一、选择题1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()A.连接点B.流程线C.判断框D.处理框答案:B2.符号表示的意义是()A.流程图的开始或结束B.数据的输入或输出C.根据给定条件判断D.赋值执行语句结果的传递解析:选C.掌握每一种框图的功能,能准确地画出框图符号.3.画程序框图需要遵循的规则中,下列说法中错误的是()A.使用标准的框图的符号B.除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的符号之一C.一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果D.在图形符号内描述的语言要非常简练清楚答案:B4.下列关于程序框图的理解中正确的有()①用程序框图表示算法直观、形象,容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的一图胜万言;③在程序框图中,起、止框是任何流程必不可少的;④输入和输出框可用在算法中任何需要输入、输出的位置.A.1个B.2个C.3个D.4个答案:D5.如图程序框图能判断任意输入的数x的奇偶性.其中判断框内的条件是()A.m=0 B.x=0C.x=1 D.m=1答案:D6.如图,写出程序框图描述的算法的运行结果()A .-5B .5C .-1D .-2解析:选A.该算法的功能是求x =-1时,f (x )=⎩⎪⎨⎪⎧2x +1, x ≥03x -2, x <0的函数值,由分段函数的性质知f (-1)=-5. 二、填空题7.如图所示是某一问题的算法的程序框图.此框图反映的算法功能是________.解析:输入x ,x ≥0时输出x ;x <0时输出-x , ∴是计算|x |.答案:计算任意实数x 的绝对值|x | 8.观察程序框图如图所示.若a =5,则输出b =________.解析:因为a =5,所以程序执行“否”,b =52+1=26. 答案:269.(2011年高考陕西卷改编)如图框图,当x 1=6,x 2=9,p =8.5时,x 3等于________.解析:由程序框图可知p =8.5≠6+92, ∴p =x 2+x 32=8.5,∴x 3=8.5×2-9=8. 答案:8 三、解答题10.如图是为解决某个问题而绘制的程序框图,根据该图和下列各小题的条件回答问题.(1)该程序框图解决的问题是什么? (2)框图中x =3的含义是什么?(3)若输出的最终结果是y 1=4,y 2=-3,当x =10时,输出的结果是多少? (4)在(3)的前提下,当输入的x 值为多大时,输出ax +b =0?解:(1)该程序框图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(2)框图中x =3的含义是将3的值赋给变量x . (3)y 1=4,即3a +b =4,① y 2=-3,即-4a +b =-3.② 由①②得a =1,b =1,∴f (x )=x +1.∴当x =10时,10a +b =f (10)=11. (4)令f (x )=x +1=0,知x =-1.∴当输入的值为-1时,输出ax +b =0.11.画出判断两条直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2是否垂直的程序框图. 解:算法如下:S1 输入k 1、k 2的值. S2 计算u =k 1×k 2.S3 若u =-1,则直线l 1与l 2垂直;否则,l 1与l 2不垂直. S4 输出信息“垂直”或“不垂直”. 程序框图如图:12.假设函数f(x)=ax2+bx+c(a≠0)与x轴有公共点,设计一个算法,对多项式ax2+bx +c因式分解并画出程序框图.解:算法如下.S1利用求根公式求得方程ax2+bx+c=0的两个根x1,x2;S2对ax2+bx+c因式分解:ax2+bx+c=a(x-x1)(x-x2).程序框图如图所示.人教B版必修3同步练习1.算法共有三种逻辑结构,即顺序结构、条件分支结构和循环结构,下列说法中正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案:D2.若一个算法的程序框图中有,则表示该算法中一定有下列逻辑结构中的() A.循环结构和条件分支结构B.条件分支结构C.循环结构D.顺序结构和循环结构解析:选B.当有判断框时,一定有条件分支结构.3.下列说法中不正确的是()A.顺序结构是由若干个依次执行的步骤组成,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始,按照一定条件,反复执行某些步骤,故循环结构中一定包含条件分支结构C.循环结构中不一定包含条件分支结构D.用程序框图表示算法,使之更加直观形象,容易理解答案:C4.如图程序框图的运算结果为________.解析:∵a的初值为5,每循环一次,a的值减1,故循环2次.答案:205.已知函数f(x)=|x-3|,程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.答案:x<3y=x-3一、选择题1.任何一个算法都离不开的基本结构为( ) A .逻辑结构 B .条件分支结构 C .循环结构 D .顺序结构解析:选D.任何一个算法都要由开始到结束,故应当都有顺序结构. 2.如图的程序框图表示的算法的功能是( ) A .计算小于100的奇数的连乘积 B .计算从1开始的连续奇数的连乘积C .从1开始的连续奇数的连乘积,当乘积大于100时,计算奇数的个数D .计算1×3×5×…×n ≥100时的最小的n 值 答案:D3.图中所示的是一个算法的框图,S 的表达式为( )A.11+2+3+…+99B.11+2+3+…+100 C.199 D.1100 答案:A4.下列问题的算法适宜用条件结构表示的是( ) A .求点P (2,5)到直线l :3x -2y +1=0的距离 B .由直角三角形的两条直角边求斜边 C .解不等式ax +b >0(a ≠0) D .计算100个数的平均数解析:选C.条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含判断a 的符号,其余选择项中都不含逻辑判断,故选C. 5.下列程序框图中,是循环结构的是( )A.①②B.②③C.③④D.②④解析:选C.循环结构需要重复执行同一操作,故只有③④符合.6.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5C.6 D.7解析:选A.当k=0时,S=0⇒S=1⇒k=1,当S=1时⇒S=1+21=3⇒k=2,当S=3时⇒S=3+23=11<100⇒k=3,当S=11时⇒S=11+211>100,故k=4.二、填空题7.程序框图如图所示,其输出结果是________.解析:根据程序框图可得,a的取值依次为1,3,7,15,31,63,127.答案:1278.有如图所示的框图.则该框图输出的结果是________. 答案:20119.如图程序框图的输出结果为S =132,则判断框中应填________.解析:∵132=11×12,而S =S ×i ,输出结果S =(12-1)×12=11×12,∴判断条件为i ≥11. 答案:i ≥11 三、解答题10.画出求1×2×3×4×5×6×7的程序框图.解:本题可用顺序结构和循环结构来完成,循环结构流程图如图所示.11.设计一个算法,输入x 的值,输出y 的值,其中y =⎩⎪⎨⎪⎧2x -1, x <0x 2+1, 0≤x <1x 3+2x , x ≥1,画出该算法的程序框图.解:程序框图如图所示.最早哪一年生产的轿车超过300万辆?试设计算法并画出相应的程序框图.解:算法如下S1n=2010;S2a=200;S3T=0.05a;S4a=a+T;S5n=n+1;S6若a>300,输出n.否则执行S3.程序框图如图所示.人教B 版必修3同步练习1.在我们写程序时,对于“//”号的说法正确的是( ) A .“//”后面是注释内容,对程序运行起着重要作用B .“//”后面是程序执行的指令,对程序运行起着重要作用C .“//”后面是注释内容,对程序运行不起作用D .“//”后面是程序执行的指令,对程序运行不起作用 答案:C2.下列给出的赋值语句正确的有( ) ①赋值语句3=B ;②赋值语句x +y =0; ③赋值语句A =B =-2;④赋值语句T =T *T . A .0个 B .1个 C .2个 D .3个解析:选B.①赋值语句中“=”号左右两边不能互换,即不能给常量赋值.左边必须是变量,右边必须是表达式,应改为B =3;②赋值语句不能给一个表达式赋值;③一个赋值语句只能给一个变量赋值,不能出现两个或多个“=”;④该语句的功能是将当前的T 平方后再赋给变量T.故选B .3.下列给出的输入、输出语句正确的是( ) ①输入语句input a ;b ;c ②输入语句input x =3 ③输出语句p r int A =4 ④输出语句p r int 20,3*2 A. ①② B.②③ C .③④ D .④解析:选D.①input 语句可以给多个变量赋值,变量之间用“,”隔开;②input 语句中只能是变量,而不能是表达式,③p r int 语句中不用赋值号“=”;④p r int 语句可以输出常量、表达式的值.4.下列程序的运行结果是________. x =0;x =x +1;x =x +2;x =x +3;print (%io (2),x );解析:由赋值语句的作用知x =6. 答案:65.读程序Ⅰ、Ⅱ,若两程序输入值与执行结果均分别相同,则两程序的输入值为________,执行结果为________. 程序Ⅰ: 程序Ⅱ: x =input(“x =”); x =input(“x =”); y =x +2; y =2*x+2 p rint(%io(2),y); p r int(%io(2),y); end end解析:两程序执行结果相同,即求y =x +2与y =2x +2的交点. 答案:0 2一、选择题1.某一程序中先后相邻的两个语句是:x=3*5;x=x+1;那么下列说法中正确的是()①x=3*5的意思是x=3×5=15,此式与算术中的式子是一样的;②x=3*5是将数值15赋给x;③x=3*5也可以写为3*5=x;④该语句程序执行后x的值是16.A. ①③B. ②④C.①④D.②③答案:B2.已知变量a,b已被赋值,要交换a,b的值,下列方法正确的是()A.a=b,b=a B.a=c,b=a,c=bC.a=c,b=a,c=a D.c=a,a=b,b=c解析:选D.利用赋值语句交换a,b的值需引入第三个量c.3.在Sci l ab的文本编辑器中有如下程序:a=input(“chinese”);b=input(“math”);c=input(“fo r eign l anguage”);ave r=(a+b+c)/3其中第一步程序语句的作用为()A.请求将语文成绩的变量输入给aB.请求输入语文成绩,并将它赋值给aC.将表达式input(“chinese”)的值赋给aD.将变量input(“chinese”)的值赋值给表达式a解析:选B.这里应注意输入语句与赋值语句的作用.4.计算机执行下面的程序段后,输出的结果是()a=1;b=3;a=a+b;b=a-b;p r int(%io(2),a,b);A.1,4 B.4,1C.0,0 D.6,0解析:选A.第一步,a=1+3=4;第二步,b=a-b=4-3=1,p r int(%io(2),a,b)输出的顺序为b,a,所以输出b,a应分别为1,4.5.下面程序运行时输出的结果是()A=10;B=-5;C=A+B;A=B+C;B=A+C;C=C+A+B;print(%io(2),A,B,C);A.5,0,10 B.10,5,0C.5,10,0 D.0,10,5解析:选B.执行顺序为C=A+B=10-5=5,A=B+C=-5+5=0,B=A+C=0+5=5,C=C+A+B=5+0+5=10.故最后的结果为A=0,B=5,C=10.6.关于输入语句、输出语句和赋值语句,下列说法中正确的是()A.input语句只能给一个变量赋值B.p r int语句可以在计算机屏幕上输出常量、变量的值和系统信息C.赋值语句就是将赋值号左边的值赋给赋值号右边的变量D.赋值语句不能给变量重复赋值,只能赋一次值答案:B二、填空题7.已知如下程序a=input(“a=”);b=input(“b=”);c=input(“c=”);a=b;b=c;c=a;abc若输入10,20,30,则输出结果为________.解析:由赋值语句的功能知b的值20赋给了a,c的值30赋给了b,赋值后的a=20,又赋给了c.答案:20,30,208.请写出下面运算输出的结果________.a=5;b=3;c=(a+b)/2;d=c*c;print(%io(2),d);解析:语句c=a+b2是将a,b和的一半赋值给变量c,c得4;语句d=c*c是将c的平方赋值给d,最后输出d的值.答案:169.下面程序是输出A(x1,y1),B(x2,y2)中点的程序,添上空白部分缺省的语句.x1=input(“x1=”);y1=input(“y1=”);x2=input(“x2=”);y2=input(“y2=”);①________②________解析:利用中点坐标公式来解决.答案:①x=(x1+x2)/2②y=(y1+y2)/2三、解答题10.设计程序,用公式法解一元二次方程2x2+3x-1=0.解:根据一元二次方程的求根公式x=-b±b2-4ac2a,结合赋值语句便可以设计出这个运算程序.程序如下:11.编写一个程序,求分别用长度为l的细铁丝围成的一个正方形和一个圆的面积,要求输入l的值,输出正方形和圆的面积(π取3.14).解:设围成的正方形的边长为a,依题意得4a=l,a=l4,所以正方形的面积为S1=(l4)2=l216;同理若设围成的圆的半径为R,则2πR=l,R=l2π,所以圆的面积为S2=πR2=π(l2π)2=l24π,因此可以用顺序结构实现这一算法,采用input语句输入l的值,利用print语句输出得到的面积.程序如下:12.我国土地沙漠化问题非常严重,2000年全国沙漠化土地总面积达到1.6×105km2,并以每年约3.4×103km2的速度扩张.请你设计一个程序,计算以后某年的全国沙漠化土地总面积.解:程序如下:人教B版必修3同步练习1.条件语句表达的算法的结构为()A.顺序结构B.条件分支结构C.循环结构D.以上都不对解析:选B.条件语句主要用来实现算法中的条件分支结构,故选B. 2.若输入4,则下面程序执行后输出的结果为()A.4B.0.2C.0.1 D.0.3答案:B3.程序框图:该程序框图的功能是()A.输入一个数x,判断其是否大于或等于2,然后输出符合条件的x的值B.输入一个数x值,输出x-2的值C.任给一个实数x,求|x-2|的值D.任给一个实数x,同时输出x-2的值和2-x的值答案:C4.求函数y=|x-4|+1的函数值,则③为________.解析:else 暗含的条件为x <4,此时y =5-x . 答案:y =5-x5.输入两个数,输出其中较大的一个数,试将其程序补充完整.答案:b一、选择题1.下列关于条件语句的功能的叙述,正确的是( ) A .条件语句主要是给变量赋值的功能B .条件语句可以在计算机屏幕上输出表达式的值及系统信息C .条件语句必须嵌套才能使用D .条件语句主要用来实现算法中的条件分支结构解析:选D .分清条件语句在功能上与输入、输出语句、赋值语句的区别. 2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求函数f (x )=⎩⎪⎨⎪⎧x 2-1, x ≥0x +2, x <0的函数值;③求面积为6的正方形的周长; ④求三个数a ,b ,c 中的最大数.其中不需要用条件语句来描述的有( ) A .1个 B .2个C.3个D.4个解析:选A.只有③不需要用条件语句来描述.3.下列程序的功能是:判断任意输入的数x是否是正数,若是,输出它的平方值;若不是,输出它的相反数.则填入的条件应该是()A.x>0 B.x<0C.x>=0 D.x<=0解析:选D.因为条件真则执行y=-x,条件假则执行y=x*x,由程序功能知条件应为x<=0.4.当a=3时,下面的程序段输出的结果是()A.9 B.3C.10 D.6解析:选D.据条件3<10,故y=2×3=6.5.下列程序运行的结果是()A.10.5 B.11.5C.16 D.25答案:D6.为了在运行下面的程序之后能输出y=9,则应从键盘输入()A .-4B .-2C .4或-4D .2或-2 解析:选C.该程序功能是求函数y =⎩⎪⎨⎪⎧(x +1)2x <0(x -1)2x ≥0的函数值,y =9时有两种情况,若x <0,则由(x +1)2=9,得x =-4(x =2舍去);若x ≥0,则由(x -1)2=9,得x =4(x =-2舍去),从而答案为-4或4. 二、填空题7.写出下面程序运行后的结果.x =6,p =________;x =20,p =________. 解析:该程序是求分段函数f (x )=⎩⎪⎨⎪⎧x ×0.35, x ≤1010×0.35+(x -10)×0.7, x >10的函数值,当x =6时,f (6)=2.1;当x =20时,f (20)=10.5. 答案:2.1 10.58.下面程序是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1, x ≥4x 2-2x +3, x <4的函数值,则①为________.解析:由条件语句的特点知①处应为x >=4. 答案:x >=49.读程序完成下列题目: x =input (“x =”)if x >1y =x +1;else y =2x +1;endprint (%io (2),y );(1)若执行程序时没有执行语句y =x +1,则输入x 的范围是________;(2)若执行结果y 的值为5,则执行的赋值语句是________,输入的x 值为________.解析:(1)由题意,该程序是求f(x )=⎩⎪⎨⎪⎧x +1, x >12x +1, x ≤1的函数值的程序,因此x ≤1时没有执行y =x +1;(2)又当x >1时,x +1>2;当x ≤1时,2x +1≤3,从而输出的y 的值为5,则执行了语句y =x +1,得x =4.答案:(1)x ≤1 (2)y=x +1 4 三、解答题10.编写一个程序,对于函数y =⎩⎪⎨⎪⎧x 2+1, x ≤2.5x 2-1, x >2.5,输入x 的值,输出相应的函数值.解:程序如下:11.根据下面给出的程序画出相应的程序框图.解:程序框图如图.12.我国是水资源相对匮乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施,规定每季度每人用水量不超过5吨时,每吨水费收基本价1.3元,若超过5吨而不超过6吨时,超过部分水费收200%;若超过6吨而不超过7吨,超过部分的水费收400%.如果某人本季度实际用水量为x (x ≤7)吨,试设计一个某人本季度缴纳水费的程序. 解:某人本季度缴纳水费的计算公式: y =⎩⎪⎨⎪⎧1.3x , x ≤56.5+2.6(x -5), 5<x ≤69.1+5.2(x -6), 6<x ≤7. 程序如下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[同步试题] 1①1①1算法的概念1下面对算法描述正确的一项是:()A算法只能用自然语言来描述B算法只能用图形方式来表示C同一问题可以有不同的算法D同一问题的算法不同结果必然不同2算法的有穷性是指()A、算法的最后包含输出B、算法中的每个步骤都是可执行的C、算法的步骤必须有限D、以上说法都不正确3、写出求过P(3,2),Q(-1,6)两点的直线斜率的一个算法①4、深圳到香港的海底电缆有一处发生故障,请你设计一个检修方案①5、任意给定一个大于1的正整数n,设计一个算法求出n的所有因数①6、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断①7、用二分法设计一个求方程(x^2)-2=0的近似根的算法①8、牛虎过河。

一个人带三只老虎和三头牛过河。

只有一条船,可以容一个人和两只动物。

没有人在的时候,如果老虎的数量不少于牛的数量就会吃掉牛。

设计安全渡河的算法。

答案:1、 C2、 C3、 解:第一步:计算1-1--36-2K ==)(, 第二步:输出-1。

4、 解:第一步:找到深圳到香港的地缆的中点位置P ,第二步:分别检验P 到深圳,P 到上海间的地缆,找出不通的,故障即在此段。

记为段1。

第三步:找到段1的中点P1,为别检验段1被分成的两段,找出不通的,故障即在此段。

记为段2。

第四步:依次重复上述操作,第五步:找到发生故障处。

5、 解:第一步:给定一个大于一的正整数n , 第二步:依次以(2――n-1)的整数d 为除数去除n ,检查余数是否为0,若是,则d 是n 的因数;若不是,则d 不是n 的因数。

第三步:在n 的因数中加入1和n ,第四步:输出n 的所有因数。

6、 7、 见新人教A 版,必修3第一章P4〔同步试题〕1① 1①2程序框图与算法的基本逻辑结构 ——————顺序结构、 条件结构1①算法是指可以用计算机来解决的某一类问题的程序或步骤,它不具有( )A ① 有限性B ① 明确性C ① 有效性D ①无限性 2①程序框图是算法思想的重要表现形式,程序框图中不含( ) A ① 流程线B ① 判断框C ① 循环框D ①执行框 3①程序框图中有三种基本逻辑结构,它不是( ) A ① 条件结构B ① 判断结构C ① 循环结构D ①顺序结构 4①在程序框图中一般不含有条件判断框的结构是( ) A ① 顺序结构B ① 循环结构C ① 当型结构D ①直到型结构 5、 用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( )A 顺序结构B 条件结构C 循环结构D 以上都用6、 给出以下四个问题,①x , 输出它的相反数②求面积为6的正方形的周长③求三个数,,a b c 中输入一个数的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值 其中不需要用条件语句来描述其算法的有 ( )A 1个B 2个C 3个D 4个7、 图中所示的是一个算法的流程图,已知31=a ,输出的7b =,则2a 的值是____________8、 已知一个三角形的三边边长分别为2,3,4, 设计一个算法,求出它的面积, 并画出程序框图。

9、 某市公用电话(市话)的收费标准为:3分钟之内(包括3分钟)收取0.30元;超过3分钟部分按0.10元/分钟加收费 设计一个程序,根据通话时间计算话费答案:1、 D2、 C3、 B4、 A5、 D6、 B7、 118、 解:第一步:取2,3,4a b c === 第二步:计算2a b c p ++=第三步:计算S =第四步:输出S 的值9[同步试题]1①2①1输入、输出、赋值语句1、计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句:,,,,。

2、在程序语言中,下列符号分别表示什么运算①;\;∧;SQR();AB S()①,,,,。

3、下列程序运行后,a,b,c的值各等于什么①(1)a=3 (2)a=3b=-5 b=-5c=8 c=8a=b a=bb=c b=cPRINT a,b,c c=aEND PRINT a,b,cEND(1)________________________(2)________________________4、①指出下列语句的错误,并改正:(1)A=B=50(2)x=1,y=2,z=3(3)INPUT “How old are you”x(4)INPUT ,x(5)PRINT A+B=;C(6)PRINT Good-bye!5①将两个数8,17a b==交换,使17,8a b==,下面语句正确一组是( )A BC D6①计算机执行下面的程序段后,输出的结果是()1a=3b=a a b=+b a b=-PRINT a,bA1,3B4,1C0,0D6,07下列给出的赋值语句中正确的是()A4M=B M M=-C3B A==D0x y+=8对赋值语句的描述正确的是()①可以给变量提供初值②将表达式的值赋给变量③可以给一个变量重复赋值④不能给同一变量重复赋值A①②③B①②C②③④D①②④9、 已知f (x )=x 3-3x 2+2x+1,写出任意一个x 的值对应的函数值f (x )的求法程序①10①已知华氏温度和摄氏温度的转化公式为: 5(32)9=-⨯摄氏温度华氏温度编写一个程序,输入一个华氏温度,输出其相应的摄氏温度。

11①编写一个程序,输入两个非零实数,输出他们加、 减、 乘、 除的结果。

12①已知一个三角形的三边长分别是,,a b c ,它的面积可用海伦—秦九韶公式计算。

S =2a b cp ++=设计一个算法程序,输入三角形的三条边长,,a b c ,输出三角形的面积S 。

13① 春节到了,糖果店的售货员忙极了。

已知水果糖每千克10①4元,奶糖每千克15① 6元,果仁巧克力每千克25①2元,那么依次购买这三种果糖,,a b c 千克,应收取多少钱①请你设计一个程序,帮售货员算账。

14①编写一个程序,输入梯形的上底、 下底和高的值,计算并输出其面积。

15①编写一个程序,交换两个变量a 、 b 的值,并输出交换前后的值。

参考答案1①输入语句、输出语句、赋值语句、条件语句、循环语句。

2、乘、除、乘方、求平方根、绝对值3、(1)a=-5,b=8,c=8;(2)a=-5,b=8,c=-5①4①(1)变量不能够连续赋值①可以改为A=50B=A(2)一个赋值语句只能给一个变量赋值①可以改为x=1y=2z=3(3)INPUT语句“提示内容”后面有个分号(;)①改为INPUT “How old are you①”;x(4)INPUT语句可以省略“提示内容”部分,此时分号(;)也省略,也不能有其他符号①改为INPUT x(5)PRINT语句“提示内容”部分要加引号(“”)①改为PRINT “A+B=”;C(6)PRINT语句可以没有表达式部分,但提示内容必须加引号(“”)①改为PRINT “Good-bye!”5、B6、B7、B8、A9、解:(方法一)INPUT “请输入自变量x的值:”;xA=x∧3B=3①x∧2C=2①xD=A-B+C+1PRINT “x=”;xPRINT “f(x)=”;DEND(方法二)INPUT “请输入自变量x的值:”;xm=x①(x-3)n=x①(m+2)y=n+1PRINT “x=”;xPRINT “f(x)=”;yEND10、程序:INPUT FC=(F-32)①5/9PRINT C11、INPUT a,bA=a+bB=a-bC=a①bD=a/bPRINT A,B,C,D12、INPUT “a,b,c=”;a,b,cp=(a+b+c)/2S=SQR(p①(p-a)①(p-b)①(p-c)) PRINT “三角形面积S=”;S END13、INPUT a,b,cy=10①4①a+15①6①b+25①2①cPRINT y14、INPUTa,b,hS=(a+b)①h/2PRINT S15、INPUT a,bPRINT a,bt=aa=bb=t PRINT a,b〔同步习题〕1①2①2条件语句1、当3=a时,下面的程序段输出的结果是()IF 10a<THEN2y a=*ELSEy a a=*PRINT yA9B3C10D62给出以下四个问题,①输入x, 输出它的相反数②求面积为6的正方形的周长③求三个数,,a b c中输入一个数的最大数④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A1个 B2个C3个 D4个3右面程序运行后输出的结果为_______________4 下面程序运行后实现的功能为_______________5、 写出已知函数⎪⎩⎪⎨⎧<-=>=).0(1),0(0),0(1x x x y 输入x 的值,求y 的值程序①6、 函数⎪⎩⎪⎨⎧≤<-≤<≤≤=128),12(284,840,2x x x x x y ,写出求函数的函数值的程序INPUT “a ,b ,c =”;a ,b ,cIF b>a THENt=a a=b b=t END IFIF c>a THENt=a a=c c=t END IFIF c>b THENt=b b=c c=t END IFPRINT a ,b ,c END(第4题)7、 下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0①05(x-800);否则 y=25+0①1(x-1300)第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)8、 用二分法求方程0135=+-x x 在(0,1)上的近似解,精确到0.001c =,写出算法画出流程图,并写出算法语句9①儿童乘坐火车时,若身高不超过1①1 m ,则不需买票;若身高超过1①1 m 但不超过1①4 m ,则需买半票;若身高超过1①4 m ,则需买全票①试设计一个买票的算法,并画出相应的程序框图及程序。

参考答案1、D2、B3、22,-224、把a,b,c三个数按从大到小的顺序输出。

5、解:INPUT “x=”;xIF x>0 THENy=1ELSEIF x=0 THENy=0ELSEy=-1END IFEND IFPRINT yEND6、解:INPUT “x=”;xIF x>=0 and x<=4 THENy=2 xEND IFIF 4=<x ANDx<=8 THE N y=8 END IFIF 8=<x ANDx<=12 THE N y=2①(12-x) END IF PRINT y END 7、8、 解:算法如下:1、 取[,]a b 中点)(210b a x +=,将区间一分为二2、 若0)(0=x f ,则0x 就是方程的根;否则所求根*x 在0x 的左侧或右侧若0)()(0>x f a f ,则),(0*b x x ∈,以0x 代替a ; 若0)()(0<x f a f ,则),(0*x a x ∈,以0x 代替b ; 3、 若a b c -<,计算终止 此时0*x x ≈,否则转到第1步 算法语句: Input ,,a b c02a bx +=5()31f a a a =-+5000()31f x x x =-+repeat if 0)(0=x f then print 0x elseif 0)()(0<x f a f then 0b x = else 0a x = until a b c -< print 0x end流程图:9①解:是否买票,买何种票,都是以身高作为条件进行判断的,此处形成条件结构嵌套①程序框图是:开始结束IF h<=1①1 THENPRINT “免票” ELSEIF h<=1①4 THENPRINT “买半票” ELSEPRINT “买全票” END IF END IF END[同步试题] 1、 2、 3循环语句1、 在循环 语句的一般形式中有“until A ”,其中A 是 ( ) A 循环变量 B 循环体 C 终止条件 D 终止条件为真2、 当2=x 时,下面的程序段结果是 ( ) 3 下面程序执行后输出的结果是( ) A 1- B 0 C 1 D 24、 把求!n 的程序补充完整5、 把程序框图补充完整:(1)________________________(2)________________________6、 下面程序运行后输出 的结果为( )A 50B 5C 25D 0 7、 右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是____________8、 计算 236312222+++++,写出算法的程序①9、 计算1+4+7+①①①+301,写出算法的程序①10、 计算50以内的偶数之积,写出算法的程序①11、 计算2/1+3/2+4/3+…+(n+1)/n ,写出算法的程序①12、 2000年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年 后我国人口将达到15亿①设计一个算法的程序13、 给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推①要求计算这50个数的和①先将下面给出的程序框图,再根据程序框图写出程序①14、 我国古代数学家张邱建编《张邱建算经》中记有有趣的数学问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、 母、 雏各几何①”你能用程序解决这个问题吗15写出用二分法求方程x 3-x -1=0在区间[1,1①5]上的一个解的算法(误差不超过0①001),并画出相应的程序框图及程序①参考答案1、 C2、 263、 B4、 INPUT,WHILE,WEND5、 ①程序:(1)_____i < = 50___ (2)_____p= p + i_ 6、 D7、 10i8、 i=1 S=1WHILE i <= 63 S=s+2^i i=i+1 WEND PRINT s END 或 i=1 S=1 DO S=s+2^i i=i+1LOOP UNTIL i >63 PRINT s END 9、 i=1 S=0WHILE i <= 101 S=s+i i=i+3 WEND P RINT s END 或 i=1 S=0 DO S=s+3 i=i+1LOOP UNTIL i >101 PRINT s END 10、S=1WHILE i <= 25S=s①ii=i+1WENDPRINT sEND或i=1S=1DOS=s①ii=i+1LOOP UNTIL i >25PRINT sEND11、PRINT ni=1S=0WHILE i <= nS=s+(i+1)/ii=i+1WENDPRINT sEND或PRINT ni=1S=0DOS=s+(i+1)/ii=i+1LOOP UNTIL i >nPRINT sEND12、①解:A=13R=0①007i=1DOA=A①(1+R)i=i+1LOOP UNTIL A>=15i=i-1PRINT “达到或超过15亿人口需要的年数为:”;i END13、i=1p=1s=1WHILE i <=50s=s+ip=p+si=i+1 WEND PRINT p14、 设鸡翁、 母、 雏各x 、 y 、 z 只,则⎪⎩⎪⎨⎧=++=++②,①,100100335z y x z y x由②,得z=100-x -y , ③ ③代入①,得5x+3y+3100yx --=100, 7x+4y=100①④ 求方程④的解,可由程序解之①程序:x=1 y=1WHILE x <=14 WHILE y <=25IF 7①x+4①y=100 THENz=100-x -yPRINT “鸡翁、 母、 雏的个数别为:”;x ,y ,z END IF y=y+1 WEND x=x+1 y=1 WEND END(法二)实际上,该题可以不对方程组进行化简,通过设置多重循环的方式得以实现①由①、 ②可得x 最大值为20,y 最大值为33,z 最大值为100,且z 为3的倍数①程序如下:x=1 y=1 z=3WHILE x <=20 WHILE y <=33 WHILE z <=100IF 5①x+3①y+z/3=100 ANDx+y+z=100 THENPRINT “鸡翁、 母、 雏的个数分别为:”;x 、 y 、 zE ND IF z=z+3WENDy=y+1 z=3 WENDx=x+1y=1WENDEND15、用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)<0,f(b)>0①由于f(1)=13-1-1=-1<0,f(1①5)=1①53-1①5-1=0①875>0,所以取[1,1①5]中点25.11=1①25研究,以下同求x2-2=0的根的方法①相应的程序框图是:程序:a=1b=1①5c=0①001DOx=(a+b)/2f(a)=a∧3-a-1f(x)=x∧3-x-1IF f(x)=0 THENPRINT “x=”;xELSEIF f(a)①f(x)<0 THENb=xELSEa=xEND IFEND IFLOOP UNTIL ABS(a-b)<=c PRINT “方程的一个近似解x=”;x END必修3 1① 3 算法案例1①(1)将101111011(2)转化为十进制的数;(2)将53(8)转化为二进制的数①2①用冒泡排序法将下列各数排成一列:8,6,3,18,21,67,54①并写出各趟的最后结果及各趟完成交换的次数①3①用秦九韶算法写出求f(x)=1+x+0①5x2+0①16667x3+0①04167x4+0①00833x5 在x=-0①2时的值的过程①4①我国《算经十书》之一《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二①问物几何①答曰:二十三①”你能用程序解决这个问题吗①5①我国古代数学家张邱建编《张邱建算经》中记有有趣的数学问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、母、雏各几何①”你能用程序解决这个问题吗①6①写出用二分法求方程x3-x-1=0在区间[1,1①5]上的一个解的算法(误差不超过0①001),并画出相应的程序框图及程序①参考答案1① 解:(1)101111011(2)=1×28+0×27+1×26+1×25+1×24+1×23+0×22+1×21+1=379①(2)53(8)=5×81+3=43①余数4321105212222220110101∴53(8)=101011(2)①2①每一趟都从头开始,两个两个地比较,若前者小,则两数位置不变;否则,调整这两个数的位置①解:第一趟的结果是:6 3 8 18 21 54 67 完成3次交换① 第二趟的结果是:3 6 8 18 21 54 67 完成1次交换①第三趟交换次数为0,说明已排好次序, 即3 6 8 18 21 54 67①3①先把函数整理成f (x )=((((0①00833x +0①04167)x +0①16667)x +0①5)x +1)x +1,按照从内向外的顺序依次进行①x =-0① 2a 5=0①00833 V 0=a 5=0①008333a 4=0①04167 V 1=V 0x +a 4=0①04 a 3=0①016667 V 2=V 1x +a 3=0①15867 a 2=0①5 V 3=V 2x +a 2=0①46827 a 1=1 V 4=V 3x +a 1=0① 90635 a 0=1 V 5=V 4x +a 0=0①81873∴f (-0①2)=0①81873①4①设物共m 个,被3,5,7除所得的商分别为x 、 y 、 z ,则这个问题相当于求不定方程⎪⎩⎪⎨⎧+=+=+=27,35,23z m y m x m 的正整数解①m 应同时满足下列三个条件:(1)m MOD 3=2;(2)m MOD 5=3;(3)m MOD 7=2①因此,可以让m 从2开始检验,若3个条件中有任何一个不成立,则m 递增1,一直到m 同时满足三个条件为止①程序:m =2f =0 WHILE f =0I F m MOD 3=2 AND m MOD 5=3 AND m MOD 7=2 THEN PRINT “物体的个数为:”;m f =1ELSE m =m +1 END IF WENDEND5①设鸡翁、 母、 雏各x 、 y 、 z 只,则⎪⎩⎪⎨⎧=++=++②,①,100100335z y x z y x由②,得z =100-x -y , ③ ③代入①,得5x +3y +3100yx --=100, 7x +4y =100①④ 求方程④的解,可由程序解之①程序:x =1y=1WHILE x<=14WHILE y<=25IF 7①x+4①y=100 THENz=100-x-yPRINT “鸡翁、母、雏的个数别为:”;x,y,zEND IFy=y+1WENDx=x+1y=1WENDEND(法二)实际上,该题可以不对方程组进行化简,通过设置多重循环的方式得以实现①由①、②可得x最大值为20,y最大值为33,z最大值为100,且z为3的倍数①程序如下:x=1y=1z=3WHILE x<=20WHILE y<=33WHILE z<=100IF 5①x+3①y+z/3=100 ANDx+y+z=100 THENPRINT “鸡翁、母、雏的个数分别为:”;x、y、zEND IFz=z+3WENDy=y+1z=3WENDx=x+1y=1WE NDEND6①用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)<0,f(b)>0①由于f(1)=13-1-1=-1<0,f(1①5)=1①53-1①5-1=0①875>0,所以取[1,1①5]中点25.11=1①25研究,以下同求x2-2=0的根的方法①相应的程序框图是:程序:a=1b=1①5c=0①001DOx=(a+b)/f(a)=a∧3f(x)=x∧3IF f(x)PRINT “xELSEIF f(a)b=xELSEa=x输出xEND IFEND IFLOOP UNTIL ABS(a-b)<=c PRINT “方程的一个近似解x=”;x END1①3算法案例---秦九韶算法1、 利用秦九韶算法求多项式1153723+-+x x x 在23=x 的值时,在运算中下列哪个值用不到( )A 、 164B 、 3767C 、 86652D 、 85169 2、 利用秦九韶算法计算多项式1876543x f(x)23456++++++x x x x x = 当x=4的值的时候,需要做乘法和加法的次数分别为( )A 、 6,6B 、 5,6C 、 5,5D 、 6,53、 利用秦九韶算法求多项式1352.75.38123)(23456-++-++=x x x x x x x f 在6=x 的值,写出详细步骤。

相关文档
最新文档