平面直角坐标系(3)ppt课件

合集下载

《平面直角坐标系》课件(共20张PPT)

《平面直角坐标系》课件(共20张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

4、如果以中心 广场为原点呢?
.

(-2,1) (3,1)
. . 雁塔
碑林
. (-2,-1)中 心 广 场 .大 成 殿
.. . (-1,-3) 影月楼 科技大学
B(0,-3) D(4,0) F(0,3)
思考 对比
1.平面直角坐标系中,点P(3,5)与Q(5,3) 是同一个点吗?
2.在平面直角坐标系下,点与实数对之间有何 关系?
*3.引入平面直角坐标系,有什么好处?
发现 归纳
• 在直角坐标系中,对于平面上的任意一点, 都有唯一的一对有序实数对(即点的坐标) 与它对应;

4.3平面直角坐标系(第三课时) 课件

4.3平面直角坐标系(第三课时) 课件

(2)点(-1,3)关于X轴的对称点的坐标为 (1,3) ________,关于Y轴对称点的坐标为______,关于原 (-1,-3) (1,-3) 点的对称点的坐标为____________。
一般地,点P(a,b),关于x轴对称点的坐标为 ________,关于y轴对称点的坐标为_________, (a,-b) (-a,b) 关于原点的坐标为_____ 。 (-a,-b)
思考:点P(a,b)左右平移时,点P的坐标如何变化?点P(a,b)上下平
移时,点P的坐标如何变化?
结论:
(1).点左右平行移动时,点的横坐标发生变化(向左减,向右加), 纵坐标不变。(或平行于x轴的直线上的点的纵坐标相同)
(2).点上下平行移动时,点的横坐标不变,纵坐标发生变化(向下 减,向上加)。
(或平行于y轴的直线上的点的横坐标相同)
习:
.点A(-1,3)向 ′(0,3)。

平移1个单位长度,得到点
已知三角形的三个顶点的坐标分别是(-4,-1)、 ,1)、(-1,4),现将这三个顶点先向右平移2个单位, 向上平移3个单位,则平移后的三个顶点的坐标分别 (-2,2)、(3,4)、(1,7) 。
。 。
若点P(x,y)在 > (1)第一象限,则x____0,y____0 > < (2)第二象限,则x____0,y____0 > < (3)第三象限,则x____0,y____0 < < > (4)第四象限,则x____0,y____0 任意值 =0 (5)x轴上,则x________,y_________ =0 任意值 (6)y轴上,则x________,y_________ =0 =0 (7)原点上,则x________,y_________

浙教版八年级上册 4.2 平面直角坐标系 课件(共19张PPT)

浙教版八年级上册 4.2 平面直角坐标系 课件(共19张PPT)

1234
②有坐标(a,b),能否确定对应点P的位置. C
O
–1
Ex
小结:坐标可以确定点的位置.
–2
D
–3
–4
点P
(a,b)
情境升华,二生三
笛卡尔(1596-1660)
做中所悟,三生万物
活动4:小组活动 若需将现有10个点根据位置和坐标进行分类, 小组交流分类方式并分享你们分类的依据, 小组确定汇报人进行汇报交流.
点的位置

点P
有序数对 数
(a,b)
说说点的坐标
直角坐标系中,点P的坐标,其中a是 点P的横坐标,b是点P的纵坐标.
情境升华,二生三
活动3:2在该直角坐标系内,已知G,H,M,N
y
A
B
4
对应的坐标(3,2),(-3,-3),(0,2),(-4,2)
3
请你在坐标系内找到四点的位置;
2
1
–4 –3 –2 –1
终章活动,做中所固
2.在平面直角坐标系中,点P的坐标是(a,b),若ab>0,则 点P在第________象限;若ab<0,则点P在第________象限; 若ab=0,则点P在_________.
瓢城东望水漫漫,行到下菰城畔望
4.2 平面直角坐标系2022来自5.31情境引入,一生二
活动1:根据“数学灯谜”,推理出信息.
A:江 E:成 I:南
B:晶 F:水 J:修
C:德 G:正 K:苏
D:盐 H:才 L:浔
推理线索 -1,-5,-5,3,6
水晶晶南浔
修正德成正才 4 1 -4 -2 1 2
情境引入,一生二
情境升华,二生三
平面直角坐标系

人教版七年级数学下册课件平面直角坐标系3

人教版七年级数学下册课件平面直角坐标系3
四、作业布置与教学反思
解若:连点 接3A点对.P应 ,在的Q(数3地-为a-图,3a,上+点2)我B,对则们应线的段要数P为Q确与2;定___一___(个选填地“x点轴”的或位“y轴置”,)平行需.要借助经线和纬线,这两条 4三.象在限平线和面__直从_角__局坐__标_部_系_.中上坐,可标坐轴标以上平的面看点被成不两属条是于坐任标平何轴面象分限成内.了_两___条个部互分相,每垂个部直分的称为直___线___,_,有分别刻叫度做第、一象有限方、__向___的______、第 解4.:如(1图)直A,(0根线,据0,)图,中B进(正-方而2,形0抽的),位象C置(-,成2分,数别2)写,轴出D(边.0,长2在为);2平的正面方形内AB,CD两的各条点坐互标相. 垂直的且有公共原点的数 若 2.连如接图轴点,P写,,出Q就(数3-轴如a上,A同a,+B地2两),点图则所线上对段应的P的Q与数经_,_线反__过_和_来(选,纬填描“线出x数轴,-”4可或,“0以y和轴1帮”所)对平助应行的我.点们. 确定平面内任何一个点
2.教材P67 思考及以下内容. 提出问题:
(1)原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点? (2)什么叫做象限?平面直角坐标系有几个象限?它们是如何分布的? (3)每个象限内的点的坐标符号能够确定吗?请分别指出各象限内点的坐 标的符号特征. (4)坐标轴上的点属于第几象限? (5)坐标平面内的点与有序数对有什么关系?
4.在平面直角坐标系中,坐标平面被两条坐标轴分成4了____个部分,每个部分称为_______,分别叫做第一象限、___________、第
三象限和__________.坐标轴上的点不属于任何象限.
2.教材P67 思考及以下内容.第二象限
3

平面直角坐标系--PPT课件

平面直角坐标系--PPT课件

在直角坐标系内画出下列各点:A(4,5),B(0,-3)
y
C(-3,-4),D(5,0),E(2. 5,-2)
5
.A
.4
P
3
2
1
.D
6 5 4 3 2 1O 1 2 3 4 5 6 7
x
C.
1
.2
3
. E
4B
5
练习3:在平面直角坐标系中分别描出点
A(3,2)、B(2,3)的位置,并写出点C、D、E
4、若点P(x,y)的坐标满足xy﹥0,则点
P在第
象限;
若点P(x,y)的坐标满足xy﹤0,且在x
轴上方,则点P在第
象限.
5、实数 x,y满足 (x-1)2+ |y| = 0,则点 P( x,
y)在( )
(A)原点
(B)x轴正半轴
(C)第一象限 (D)任意位置
今天你知道了什么?
1、如何建立平面直角坐标系?-2来自第三象限 -3-4
1 23 4 5 6 X
第四象限
-5
注 意:坐标轴上的-6点不属于任何象限。
①两条数轴 ②互相垂直 ③公共原点 叫平面直角坐标系
直角坐标系的划分
y
5
注意

4

3
轴 上
第二象限Ⅱ 2第一象限Ⅰ

1


-6 -5 -4 -3 -2 -1 0 -1 1 2 3 4 5 6 x
在 任
2
.R
3
T(0,--5)
.4
5T
.P
一般,先在x轴上得到横坐标,再在y轴上得到纵坐标。
练习1:找一找,它在哪?y
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

《平面直角坐标系》PPT课件 (公开课获奖)2022年浙教版 (3)

《平面直角坐标系》PPT课件 (公开课获奖)2022年浙教版 (3)
A.(3,0) B.(4,0) C.(5,0) D.(6,0)
5.(5分)如图是益阳市行政区域图,图中益阳市区所在地用 坐标表示为(1,0),安化县城所在地用坐标表示为(-3,- 1),那么南县县城所在地用坐标表示为 (2,4) .
第4题图
第5题图
6.(5分)正方形ABCD的边长为4,请你建立适当的 平面直角坐标系,写出各个顶点的坐标.
A
D
E
F
B
C
1、在一个四边形中,∠A:∠B:∠C:∠D=9: 5:3:7,求这个四边形各内角的度数?
2、四边形ABCD中,AD//BC,那么∠A:∠B:∠C:
∠D的值可能是( D )
A、9:5:3:7 B、2:3:4:5 C、3:5:2:4 D、2:5:4:3
3 、一个多边形,除了一个内角外,其余内角和为1205度, 则这个内角是多少度,这是个几边形?
8.(5分)已知等腰三角形ABC的底边BC=6,腰AB=AC =5,若点C与坐标原点重合,点B在x轴的负半轴上,点A 在x轴的上方,则点A的坐标是 (-3,4) ,点B的坐标是
(-6,0) .
9.(10分)如图所示,AB=DE=GH=MN=2,其余各短边 长为1,且图中的角都是直角,请建立适当的直角坐标系, 并写出各个顶点的坐标.
三角形的重心有一个重要的几何性质:
三角形的重心分每一条中线的比为
1∶2(重心到每边的中点距离∶重心
解:(这是开放题,答案不唯一)以AB所在的直线为 x轴,AD所在的直线为y轴,并以点A为坐标原点,建 立平面直角坐标系,如图所示,则点A,B,C,D的 坐标分别是 (0,0),(4,0),(4,4),(0,4) .
7.(5分)在方格纸上有两点A,B,若以点B为原点建立直 角坐标系,则点A的坐标为(4,3),若以点A为原点建立直 角坐标系,则点B的坐标为 (-4,-3) .

《平面直角坐标系》PPT课件教学课件初中数学3

《平面直角坐标系》PPT课件教学课件初中数学3

课堂小结
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标系。 2.横轴和纵轴:在平面直角坐标系中,水平的数轴称为x轴或 横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴, 一般取向上方向为正方向。 3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面 直角坐标系的原点,一般用O来表示。
新知讲解
平面直角坐标系的概念
解:A(4,0),B(-2,0),C(0,5),D(0,-3),
平面直角坐标系的概念:在平面内画两条互相垂直、 1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 D(-1,-4) 注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔。
ቤተ መጻሕፍቲ ባይዱ
C(4,-3),
两坐标轴的交点为平面直角坐标系的原点。
C(4,-3),
在上面的问题中,点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关?
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
A.第一象限
B.第二象限
根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响?
A.平面内两条互相垂直的数轴就构成了平面直角坐标系
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
A(4,0),B(-2,0),
B.平面直角坐标系中两条数轴是互相垂直的
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?

《平面直角坐标系》ppt课件

《平面直角坐标系》ppt课件

坐标系的建立
确定原点
选择平面内的任意一点作为原点,作为两条数轴 的公共起点。
确定正方向
在水平数轴上选取正方向,通常以向右为正;在 垂直数轴上选取正方向,通常以向上为正。
单位长度
根据实际需要确定数轴上的单位长度,通常以厘 米或毫米为单位。
坐标系的分类
绝对坐标标 系。
平面直角坐标系
目录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的点 • 平面直角坐标系中的直线 • 平面直角坐标系中的距离公式 • 平面直角坐标系的应用
01
平面直角坐标系的基本 概念
定义与性质
定义
平面直角坐标系是由两条互相垂直、 原点重合的数轴构成的平面几何图形。
性质
具有方向性、单位性、正交性等性质, 是描述平面内点位置的重要工具。
05
平面直角坐标系的应用
在几何中的应用
确定点位置
01
通过平面直角坐标系,可以确定平面内任意点的位置,并描述
其坐标。
计算距离和角度
02
利用坐标系,可以方便地计算两点之间的距离和两点之间的夹
角。
绘制图形
03
通过坐标系,可以绘制各种几何图形,如直线、圆、椭圆等。
在代数中的应用
代数方程表示
平面直角坐标系可以将代数方程表示为图形,便于理解和解决代 数问题。
点到直线的距离公式
总结词
点到直线最短距离的平方
详细描述
给定点$P(x_0, y_0)$和直线$Ax + By + C = 0$,则点到直线的距离公式为:$d^2 = frac{|Ax_0 + By_0 + C|^2}{A^2 + B^2}$。

《平面直角坐标系》课件 (3)

《平面直角坐标系》课件 (3)

A
( 2,3 ) ,
·
C
-4 -3
·
·
B ( 3,2 ) ,
-2
D ( -4,- 3 ) ,
·
·E
( 1,- 2 ) ,
例题 试写出平面直角坐标系中A、B、C、 讲解 D、E、各点的坐标
y
1
.C
-3 -2
3 2 1
.A
2
.B
3
-1 -1 -2 D -3
E
.O
.F
. .G
x
A(2, 3) ( , ) B(3, 2) ( , ) C(-2, 1) ( , ) D(-1,-2) ( , ) E(0, 0) ( , ) F (2 , 0) G(0,-2)
x
点M的坐标是(3 ,2) 点N的坐标是(-3,2) (
想一想1:
如何表示点A 如何表示点A 的位置? 的位置?
4 3 2 1

(4,3)
-5
-4
-3
-2
-1 -1
0
1
2
3
4
5
如何表示点A的位置: 如何表示点A的位置: 过点A 轴的垂线,垂足在X 过点A作X轴的垂线,垂足在X轴上对 -2 应的实数( ),就是点 的横坐标. 就是点A 应的实数(4),就是点A的横坐标. -3 过点A作Y轴的垂线,垂足在Y轴上对 过点A 轴的垂线,垂足在Y 应的实数( ),就是点 的纵坐标. 就是点A 应的实数(3),就是点A的纵坐标. -4 有序实数对( 就是点A 有序实数对(4,3)就是点A的坐标.
平面直角坐标系 .
N 4 3 2 1
y
.
M
-3 -2 -1 1 -1 O 2 3 -2 -3 -4

平面直角坐标系1-PPT课件

平面直角坐标系1-PPT课件
6.1.2平面直角坐标系(3)
特殊位置点的特殊坐标:
坐标轴上点 P(x,y)
连线平行于坐 标轴的点
点P(x,y)在各象 限的坐标特点
象限角平分 线上的点
x轴
y轴
原点 平行于 平行于 第一 第二 第三 第四 一三 x轴 y轴 象限 象限 象限 象限 象限
二四象 限
纵坐标 横坐标 x>0 x>0 x<0 x<0 (m,m) (m,-m) (x,0) (0,y) (0,0) 相同 相同 y>0 y<0 y>0 y<0
F(5,3)
G(2,5)
H(2,-2)
(1)连接AB, BC, CD, DA, EF, HG.
(2)观察所得到的图形,你觉得它象什么?
作业:书本P65
2,3,6,9
11、说出已知坐标的点所在的象限或坐标 轴。 ⑴A(-3,0); ⑵B(2,-4);⑶C(1,2); ⑷D(-1,-3);⑸E(0,2);⑹F(-1.2,+1)
12、点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标上 写出一个符合条件的坐标即可)。
(只要
13、已知点P(1,b)在第四象限,求点Q(-b,1)所在 象限。
x轴
3、若点N(a+5,a-2)在x轴上,则点N的坐标为 (7,0)

4、已知点M(2,-3),则M到x轴的距离为 2
,到y轴的距离为
3

5、已知点P到x轴和y轴的距离分别是2和5,求P点的坐标。
(2,5)或(-2,5)或(-2,-5)或(2,-5) 6、点M位于x轴下方,距x轴3个单位长,且位于y轴左方,距y轴2个单位长,则M点 坐标是 。 (-2,-3)
7、若点P(x,y)的坐标满足xy=0,则点p在( ) A 原点 B x轴上 C y轴上 D x轴上或y轴上

平面直角坐标系ppt课件

平面直角坐标系ppt课件

知识点2 坐标轴上点的坐标特征:
点在x轴上,纵坐标为0;点在y轴上,横坐标为0;点在原点,
横坐标和纵坐标都为0
【例2】(北师教材母题改编)在平面直角坐标系中,点(0,-4)
在( C )
A.x轴的正半轴
B.y轴的正半轴
C.y轴的负半轴
D.x轴的负半轴
【变式2】(北师教材母题改编)若点M(2x-1,x+3)在x轴上,则点
知识点2 根据坐标描出点的位置 【例2】在如图所示的平面直角坐标系中. (1)描出下面各点:A(0,3),B(1,-3), C(3,-5),D(-3,—5),E(5,3),F(-1, -3),并写出点A,B,C所在的象限; 解:(1)点A在y轴上,不在任何一个象限内; 点B在第四象限;点C在第四象限. (2)连接BC,FD,则线段BC,FD关于__y___轴对称.
(1)若点A在x轴上,求点A的坐标; 解:(1)依题意,得2a-6=0, 解得a=3. ∴点A(5,0). (2)点A 的纵坐标比横坐标大4,求点A 的坐标; 解:(2)依题意,得2a-6-2-a=4, 解得a=12. ∴点A(14,18).
5.(一题多设问)(北师教材母题改编)在平面直角坐标系中,点A的 坐标为(2+a,2a-6).
2.如图是象棋棋盘的一部分,若“帅”的坐标 为(1-2),“相”的坐标为(3,-2),则“炮”的坐标 为___(_-__2_,__1_) __.
3.如图,在长方形ABCD中,已知AB=6,AD= 4,在长方形ABCD外画△ABE,使AE=BE=5,请建立 适当的平面直角坐标系,并求出各顶点的坐标.
A.经过原点
B.平行于x轴
C.平行于y轴
D.无法确定
2.已知点A(-1,0),B(1,1),C(0,-3),D(-1,2),E(0,1),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A
C
D
5
例2 如图, 矩形ABCD的长宽分别是6 , 4 , 建立适当的
坐标系,并写出各个顶y点的坐标. y
0
x
0x
你最喜欢哪y 种方法?为什么? y
0x
0
x
6
我的发现
y
建立直角坐标系常用方法
0
x
1.以某已知点为原点,使它的坐标为(0,0) 2.尽量让更多的点分布在坐标轴上 3.尽量让更多的点分布在第一象限 4.尽量让原图形的线段所在直线作为坐标轴
B
C
18
回归情境 在一次寻宝的游戏中,寻
宝人已经找到了坐标为(3,2)和(3
,-2)的两个标志点,并且知道藏宝
地点的坐标为(4,4),此外不知道
其他信息。如何确定直角坐标系找到
“宝藏”?
y
4 3 (A3,2) 2 1
0123
P(4,4)
X
x
B
(3,-2)
19
活学活用
• 在正方形网格中,若点A的坐标为(-1,-2
中线、对称轴等) 建立直角坐标系的方法不唯一,其原则是 运算简单,所得坐标简单.
22
课堂检测
23
课后作业
必做:BP94 1,2 选做:KP129 随堂练习 2
24
( -1 , 0 ) 0
(1,0) x
15
例3 如图,正三角形ABC的边长为 2 , 建立适当的直
角坐标系 ,并写出各个顶点的坐标 .
C
你还可以怎
样建立直角Biblioteka 坐标系?AB
16
我的发现
y
C
y
C
0
x
x
A
A
0
Bx
B
以某些特殊线段所在直线为坐标轴(高、 中线、对称轴等)
17
BP94 3
学以致用
• 在△ABC中,AB=AC=13,BC=10,建立适当 的直角坐标系,写出各个顶点的坐标. A
-1
-2
-3
A
-4 B
11
y 4 3 2 1
-4 -3 -2 -1 D0
-1
1 2 3 4 C5 x
-2
-3
A-4
B
12
y 4
3
D
2
C
1
-4 -3 -2 -1 0
-1
A
-2
12345x
B
-3
-4
13
应用:建立适当的坐标系并求边长 为标4. 的正方形yA4 BCD的各顶点的坐
3
2
1
-4 -3 -2 -1 0 -1
12345x
-2
-3
-4
14
例3 如图,正三角形ABC的边长为 2 , 建立适当的直
角坐标系 ,并写出各个顶点的坐标 .
解: 如图,以边AB所在的直
y
线为x 轴,以边AB的中垂线为
C
y 轴,建立直角坐标系.
由正三角形的性质可
知CO= ,正三角形
ABC各个顶点A , B ,
C的坐标分别为
A
B
A ( -1 , 0 );B ( 1 , 0 ); C ( 0 , ).
(3,2) A
B (3,-2) (3,-2) 3
学习目标: 1、进一步巩固画平面直角坐标系,在给定的 直角坐标系中,会根据坐标描出点的位置, 由点的位置写出它的坐标. 2、根据已知条件,建立适当的直角坐标系, 并能用坐标表示点的位置。 3、极度热情,全力以赴,感受数学来源于生 活,应用于生活。
4
例2 如图, 矩形ABCD的长宽分别是6 , 4 , 建立适当 的坐标系,并写出各个顶点的坐标.
5.2 平面直角坐标系(3)
1
说出图中A,B,C,D,E,F各点的坐标
( -1,2 ) ( -2,0 )
( -1,-1 )
( 0,3 ) ( 2,1 )
( -2,1 )
图 17.2.3
2
问题情境 在一次寻宝的游戏中,寻 宝人已经找到了坐标为(3,2)和(3 ,-2)的两个标志点,并且知道藏宝 地点的坐标为(4,4),此外不知道 其他信息。如何确定直角坐标系找到 “宝藏”?
),点B的坐标为(1,-1),则点C的坐标
为( )
Y
O
B A
C
X
20
21
建立直角坐标系常用方法
• 1.以某已知点为原点,使它的坐标为(0,0) • 2.尽量让更多的点分布在坐标轴上 • 3.尽量让更多的点分布在第一象限 • 4.尽量让原图形的线段所在直线作为坐标轴 • 5.以某些特殊线段所在直线为坐标轴(高、
7
应用:建立适当的坐标系并求边长
为4的正方形ABCD的各顶点的坐
标.
D
C
A
B
8
y
D4
3
2
1
A
-4 -3 -2 -1 0 -1
C
B
12345x
-2
-3
-4
9
y
D
4C
3
2
1
A
B
x -4 -3 -2 -1 0 1 2 3 4 5
-1
-2
-3
-4
10
y 4 3 2 1
x D-4 -3 -2 -1 0 C1 2 3 4 5
相关文档
最新文档