苏科版九年级数学上册直线与圆、圆与圆的位置关系 专题练习

合集下载

苏科版九年级数学上册直线与圆、圆与圆的位置关系专题练习

苏科版九年级数学上册直线与圆、圆与圆的位置关系专题练习

初中数学试卷直线与圆、圆与圆的地点关系专题练习一、选择题1 .如图,⊙ O 内切于△ABC ,D 、E、F 为三个切点,若DEF=52 0,则 A 的度数为()A. 76 0B.680C.52 0D.38 02 .同一平面内两圆的半径是R 和 r ,圆心距是 d ,若以R、 r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是( )A .外离B.相切C.订交D.内含3 .如图,等腰梯形 ABCD 的腰 AD 的长为 3 ,⊙O 为其内切圆,则它的中位线长是( )A . 3 B. 4 C. 5 D .6则OC的长为()A . 3 B. 2 C.23 D . 22 2 3二、填空题5 .如图, AB 是⊙ O 的直径, CD 与⊙ O 相切于点 C,BAC=50 0,则ACD=________ 0.6 .如图, AB 是⊙ O 的直径, AM 为弦, MAB=30 0,过 M 点的⊙ O 的切线交 AB 延伸线于点 N .若 ON=12 cm ,则⊙ O 的半径为 _________cm.7 .两圆相切,圆心距为9 cm ,已知此中一圆的半径为 5 cm ,则另一圆的半径为 _______cm.8 .半径分别为 13 、15 的⊙ O 1,与⊙ O 2订交于 A、B 两点,它们的公共弦 AB 的长为 24 ,则这两个圆的圆心距为.三、解答题9 .如图, PA、 PB 是⊙ O 的切线,点A、 B 为切点, AC 是⊙ O 的直径,ACB=70 0.求P 的度数.10 .如图, AB 是⊙ O 的直径, F 是 BA 的延伸线上的一点,EF AB ,垂足为 F,直线 EA 交⊙ O 于点 C,过 C 作⊙ O 的切线交直线EF 于点 D . DC 与 DE 相等吗 ?为何 ?11 .如图, AB 为⊙ O 的直径, C 为⊙ O 上一点, CD 切⊙ O 于点 C,且DAC=BAC .(1)试判断 AD 与 CD 的地点关系,并说明原因.(2)若 AD=4 ,AB=6 ,求 AC.12 .如图, O 为原点,点 A 的坐标为 (4 , 3) ,⊙ A 的半径为 2 .过点 A 作直线 l 平行于 x 轴,交 y 轴于点 B,点 P 在直线 l 上运动.(1)当点 P 在⊙ A 上时,请你直接写出它的坐标.(2)设点 P 的横坐标为 12 ,试判断直线 OP 与⊙ A 的地点关系,并说明原因.13 .如图,在直角梯形ABCD 中,AD ∥BC,B=90 0,AB=8 cm,AD=24 cm,BC=26 cm , AB 为⊙ O 的直径.动点P 从 A 点开始沿 AD 边向点 D 以 l cm /s 的速度运动,动点 Q 从点 C 开始沿 CB 边向点 B 以 3 cm / s 的速度运动, P、Q 两点同时出发,当此中一点抵达端点时,另一点也随之停止运动,设运动时间为t s ,求:(1)t 分别为何值时,四边形PQCD 为平行四边形、等腰梯形?(2)t 分别为何值时,直线PQ 与⊙ O 订交、相切、相离?参照答案1. A2.C3.A4.C5. 406 . 67.4 或 148.4 或 149.P为 40010 . DC=DE连结OC(图略).则有OC=OA,OAC=OCA .又 Q CD是⊙O的切线,DCA+OCA=900.依据 EF AB ,EAF+E=90 0.E=DCA .DC=DE11 . (1)AD CD 连结 OC ,则 OA=OC .OCA= BAC .OCA= DAC .AD ∥OC .又 CD 切⊙O 于点 C, OC CD .AD CD(2) 连结 BC.由题意得△ ADC ∽△ACB . AC 2 =AD ·AB .AC=2 6 12 .(1) 点 P 的坐标是 (2,3) 或(6 ,3)(2) 连结 OP,过点 A 作 AC OP ,垂足为 C(图略 ) ,则 AP=PB-AB=12-4=8 , OB=3 ,OP= 122 32 153 ,Q ACP= OBP=90 0,APC= OPB,APC ∽ OPB .AC AP AC 8, AC=241.9 2.OB,3 153 153OP直线 OP与⊙A订交13 . (1) 当 t=6 时, rain PQCD 为平行四边形;当t=7 时,四边形 PQCD 为等腰梯形 .2或 8时,直线 PQ 与⊙O 相切;0 t 2 26时,直线 PQ 与⊙ O 相(2) 当 t= 或 8 t3 3 32t 8 时,直线PQ与⊙O相离交;当3。

苏科版九年级上25直线与圆的位置关系(1)同步练习含答案.docx

苏科版九年级上25直线与圆的位置关系(1)同步练习含答案.docx

第2章对称图形一一圆2.5直线与圆的位置关系(1)【基础提优】1. 已知。

O 的半径是6,点O 到直线/的距离为5,则直线/与0O 的位置关系是( )A.相离B.相切C.相交D.无法判断2. 已知直线I 与半径为r 的相交,且点0到直线/的距离为6,则r 的取值范围是( )A.相交B.相切 6. 如图,在矩形ABCD 中,AB=6, BO4,若OO 是以AB 为直径的圆,则直线DC 与O 0的位置关系是DAB 7. 已知的半径为3 cm,圆心0到直线/的距离是4 cm,则直线/与的位置关系是 __________ • 12 8. 如图,已知0P 的半径为2,圆心P 在反比例函数y =—上运动,当OP 与兀轴相切时, x9. 如图,0P 的圆心为P (-3, 2),半径为3,直线MN 过点M (5, 0)且平行于y 轴,点N 在点A. r<6B. r=6C. r>63. 在 RtAABC 中,ZC=90°与直线AB 相切,则厂的值为( A. 4. A. 5. 是,AC=3cm, BC=4cm, )2cm B ・ 2.4cm C. 3cmD.心6 以点C 为圆心,/•为半径作圆,若D. 4cm 若OO 的半径为2,直线/上有一点P 满足P0=2,则直线/与的位置关系是() 相切 B.相离 己知OO 的面积为9兀cm 2,( )C.相离或相切D.相切或相交 若点O 到直线1的距离为7: cm,贝ij 直线I 与OO 的位置关D.无法确定C.相离 XM的上方.(1)在图中作LBOP关于y轴对称的。

卩,根据作图直接写出OP,与直线MN的位置关系;(2)若点N在(1)中的(DP,上,求PN的长.【拓展捉优】圆心0在等腰直角三角形ABC 的内部,ZBAC= 90°, OA=1,3. 如图,直线y =——x + >/3与x 轴、y 轴分别相交于A, B 两点,圆心P 的坐标为(1, 0), (DP 与y 轴相切于点O.若将(DP 沿兀轴向左移动,当OP 与该直线相交时,横坐标为整数 的点P 的个数是( )1.如图,在 RtAABC 屮,ZC=90°, ZB=30°, BC=4 cm,以点C 为圆心,2 cm 的长为半D.相切或相交B. 3C. 4D. 5相交 2.如图,OO 过点B, C. A. 24. 如图,已知<30是以平面直角坐标系的原点0为圆心,半径为1的圆,ZAOB=45°,点 P 在兀轴上运动(点P 与点0不重合),若过点P 且与0B 平行的直线与OO 有公共点,设D. A >V25. 在平面直角坐标系xOy 中,以点P (・3, 4)为圆心,广为半径的圆与两坐标轴恰有四个公共点,则尸的取值范围是 _________________ . 6. 如图,已知ZAPB=30°, 0是射线PB±的一点,0P=5cm,若以点0为圆心,1.5cm 为 半径的(DO 沿BP 方向以lcm/s 的速度移动,则O0移动__________ s 后与PA 相切. 7. 如图,公路MN 与公路PQ 在点P 处交汇,且ZQPN=30。

苏科版九年级数学上册2.5 直线与圆的位置关系2.5.1直线与圆的位置关系(word版含答案)

苏科版九年级数学上册2.5 直线与圆的位置关系2.5.1直线与圆的位置关系(word版含答案)

2.5 直线与圆的位置关系2.5.1直线与圆的位置关系一、选择题(共6小题;共30分)1. 如图所示,已知∠BAC=45∘,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )A. 0<x≤√2B. 1<x≤√2C. 1≤x<√2D. x>√22. 在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆一定( )A. 与x轴相切,与y轴相切B. 与x轴相切,与y轴相交C. 与x轴相交,与y轴相切D. 与x轴相交,与y轴相交3. 设⊙O的半径为r,圆心O到直线l的距离为d,若直线l与⊙O有交点,则d与r的关系为( )A. d=rB. d<rC. d>rD. d≤r4. 如图,△ABC中,AB=6,AC=8,BC=10,D,E分别是AC,AB的中点,则以DE为直径的圆与BC的位置关系是( )A. 相交B. 相切C. 相离D. 无法确定5. 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360∘,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现( )A. 3次B. 4次C. 5次D. 6次6. 在Rt△ABC中,∠C=90∘,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定二、填空题(共8小题;共40分)7. 如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是.8. 如图,在Rt△ABC中,∠C=90∘,AC=3,BC=4,若以点C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是.9. 已知直线l与半径为4的⊙O相交,则点O到直线l的距离d可取的整数值是.10. 如图,给定一个半径为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m= 4.由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.11. Rt△ABC中,∠C=90∘,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是.12. 如图,△ABC为等边三角形.AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个长度单位,以O为圆心,√3为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第秒.13. 如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(−3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.14. 如图,已知∠APB=30∘,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是;(2)若圆心O的移动距离是d cm,当⊙O与直线PA相交时,则d的取值范围是.三、解答题(共2小题;共30分)15. 在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆.探究、归纳:(1)当r=时,⊙O上有且只有一个点到直线l的距离等于3;(2)当r=时,⊙O上有且只有三个点到直线l的距离等于3;(3)随着r的变化,⊙O上到直线l的距离等于3的点的个数有什么变化,并求出相对应的r的值或取值范围(不必写出计算过程).16. 已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1,l2(如图①).(1)在图②的平面直角坐标系中,画出到直线y=x+2√2的距离为1的所有点的集合的图形.并写出该图形与y轴交点的坐标.(2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线y=x+2√2的距离为1的点的个数与r的关系.(3)如图③,若以坐标原点O为圆心,2为半径的圆上有两个点到直线y=x+ b的距离为1,则b的取值范围为.答案第一部分1. A2. C3. D 【解析】当d=r时,直线与圆相切,则直线l与⊙O有一个交点;当d<r时,直线与圆相交,则直线l与⊙O有两个交点,∴若直线l与⊙O有交点,则d与r的关系为d≤r.4. A 【解析】过点A作AM⊥BC于点M,交DE于点N,由AB2+AC2=BC2,得∠BAC=90∘,∴AM⋅BC=AC⋅AB,=4.8.∴AM=6×810∵D,E分别是AC,AB的中点,BC=5,∴DE∥BC,DE=12AM,∴AN=MN=12∴MN=2.4.∵以DE为直径的圆的半径为 2.5,∴r=2.5>2.4,∴以DE为直径的圆与BC的位置关系是相交.5. B【解析】如图,∵⊙O的半径为1,正方形ABCD的对角线长为6,OA=4,∴⊙O与正方形ABCD的边AB,AD只有一个公共点的情况各有1次,与边BC,CD只有一个公共点的情况各有1次.∴在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现4次.6. A 【解析】过C作CD⊥AB于D,如图所示:∵在Rt△ABC中,∠C=90,AC=4,BC=3,∴AB=2+BC2=5,∵△ABC的面积=12AC×BC=12AB×CD,∴3×4=5CD,∴CD=2.4<2.5,即d<r,∴以2.5为半径的⊙C与直线AB的关系是相交.第二部分7. 相离8. 2.4<R≤3【解析】过点C作CD⊥AB交AB于点D.∵BC>AC,∴要使以点C为圆心,R为半径所作的圆与斜边AB有两个交点,则圆的半径应大于CD的长,小于或等于AC的长,由勾股定理知,AB=√AC2+BC2=5.∵S△ABC=12AC⋅BC=12CD⋅AB,即12×3×4=12×5×CD,∴CD=2.4,即R的取值范围是 2.4<R≤3.9. 0,1,2,3【解析】∵直线l与半径为4的⊙O相交,∴点O到直线l的距离d的取值范围为0≤d<4,∴d可取的整数值是0,1,2,3.10. 1,1<d<3【解析】(1)当d=3时,d>r,∴直线l与⊙O相离,此时圆上只有一个到直线l的距离等于1的点,∴m=1;(2)当d=3时,m=1;当d=1时,m=3,∴当m=2时,d的取值范围是1<d<3.11. r=60或5<r≤1213【解析】根据勾股定理求得直角三角形的斜边是2+122=13.当圆和斜边相切时,则半径即是斜边上的高,等于60;13当圆和斜边相交,且只有一个交在斜边上时,可以让圆的半径大于短直角边而小于或等于长直角边,则5<r≤12.故半径r的取值范围是r=60或5<r≤12.1312. 4【解析】根据题意,该圆在运动过程中与△ABC的边第二次相切时是与BC边相切.作OD⊥BC于D,则OD=√3.在Rt△OCD中,∠C=60∘,OD=√3,∴OC=2,∴OA=6−2=4,∴4÷1=4(秒),∴以O为圆心,√3为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第4秒.13. 1或5【解析】当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.14. 相切,1<d<5【解析】(1)如图①,当圆心O向左移动1cm时,POʹ=PO−OʹO=3−1=2(cm),作OʹC⊥PA于C,∴∠P=30∘,POʹ=1(cm).∴OʹC=12∵圆的半径为1cm,∴⊙O与直线PA的位置关系是相切.(2)如图②,当圆心O由Oʹ向左继续移动时,PA与圆相交,当移动到Oʺ时,相切,此时OʺP= POʹ=2cm,∴点O移动的距离d的范围满足1<d<5时相交.第三部分15. (1)2(2)8(3)当0<r<2时,⊙O上没有点到直线l的距离等于3;当r=2时,⊙O上有1个点到直线l的距离等于3;当2<r<8时,⊙O上有2个点到直线l的距离等于3;当r=8时,⊙O上有3个点到直线l的距离等于3;当r>8时,⊙O上有4个点到直线l的距离等于3.16. (1)如图,与y轴交点的坐标为(0,√2)和(0,3√2).(2)(线定圆动)当0<r<1时,0个;当r=1时,1个;当1< r<3时,2个;当r=3时,3个;当3<r时,4个.(3)(圆定线动)−3√2<b<−√2或√2<b<3√2。

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练【含答案】

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练【含答案】

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练一、单选题1.在中,,以点为圆心,为半径作圆.若与边只有ABC 9045C AC AB ︒∠===,,C R C AB 一个公共点,则的取值范围是( )R A .B .C .或D .或125R =34R 03R <<4R >34R < 125R =2.如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB=60°,⊙O 半径是3,则劣弧AB 的长为( )A .B .πC .2πD .4π2π3.在中,,,,以C 为圆心作与AB 相切,则的半径Rt ABC △90C ∠=︒10AB =8AC =C C 长为()A .8B .4C .9.6D .4.84.已知⊙O 的半径是5,直线l 是⊙O 的切线,那么点O 到直线l 的距离是( )A .2.5B .3C .5D .105.已知某直线到圆心的距离为,圆的周长为,请问这条直线与这个圆的公共点的个数为( 5cm 10cm π)A .0B .1C .2D .无法确定6.如图,在中,,点在线段上(不与、重合),若为的ABC 40B C ∠=∠=︒D BCB C O ADC 内心,则不可能是( )AOC ∠A .B .C .D .100︒120︒140︒150︒7.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF)的面积是()A .4B .6.25C .7.5D .98.已知⊙O 分别与△ABC 的BC 边,AB 的延长线,AC 的延长线相切,则∠BOC等于()A .(∠B+∠C )B .90°+∠AC .90°-∠AD .180°-∠A1212129.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PA =AO,PD 与⊙O 相切于点D ,BC ⊥AB 交PD 的延长线于点C,若⊙O 的半径为1,则BC 的长是( )A .1.5B .2CD 10.如图,AB 是⊙O 的直径,C ,D 在⊙O上,且BC=CD ,过点C 作CE ⊥AD ,交AD 延长线于E ,交AB 延长线于F 点.若AB=4ED ,则cos ∠ABC 的值是( )A .B .C .D .12131415二、填空题11.如图,⊙O 的半径OC =5cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于A 、B 两点,AB =8cm ,则l沿OC 所在直线向下平移 __________cm 时与⊙O 相切.12.如图,已知,M 为OB 边上任意一点,以M 为圆心,2cm 为半径作,当30AOB ∠=︒M ________cm时,与OA 相切.OM =M 13.以正方形的边为直径作半圆,过点作直线切半圆于点,交边于点,若ABCD AB O C F AB E的周长为,则直角梯形周长为___________.CDE ∆12ABCE 14.如图,已知Rt △ABC 中,AC =5,BC =12,∠ACB =90°,P 是边AB 上的动点,Q 是边BC上的动点,且∠CPQ =90°,则线段CQ 的取值范围是____.15.在Rt △ABC 中,∠C=90°,AC=4,BC=3,若以C 为圆心,R 为半径作的圆与直线AB 相切,则R=______.16.已知⊙O的半径OA=5cm,延长OA到B,AB=2cm,以OB为一边作∠OBC=45°,那么BC所在直线与⊙O的位置关系是_____.17.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,I是△ABC的内心,则∠BIA的度数是_______°.18.等腰直角△ABC中, ∠C=90度,斜边AB=6,则此三角形的内心与外心之间的距离是_________.三、解答题19.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.20.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.21.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.22.如图,在锐角△ABC 中,BC =5,sin ∠BAC =,点I 为三角形ABC 的内心,AB =BC ,求AI 的45长.23.如图,以平行四边形的顶点为圆心,长为半径作,分别交于两点,ABCD A ABA ,BC AD ,E F 交的延长线于点.BA G (1)求证:;EF FG =(2)连接,若,求的度数.AE 140EAG ︒∠=D ∠24.已知:如图,⊙O 是Rt △ABC 的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.25.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为 ACE,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;AC(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.26.如图,⊙O与四边形ABCD的各边依次切于M,N,G,H.(1)猜想AB+CD与AD+BC有何数量关系,并证明你的猜想;(2)若四边形ABCD 增加条件AD ∥BC 而成为梯形,梯形的中位线长为m ,其他条件不变,试用m 表示梯形的周长.27.如图,都为⊙O 的切线,切点分别为,且.52,,,APB PA PB DE ︒∠=,,A B F 6PA =(1)求的周长;PDE △(2)求的度数.DOE ∠28.如图,在Rt △ABC 中,∠BAC =90°,CD 平分∠ACB ,交AB 于点D ,以点D 为圆心,DA 为半径的⊙D 与AB 相交于点E.(1)判断直线BC 与⊙D 的位置关系,并证明你的结论.(2)若AC=3,BC=5,求BE的长.答案1.D如图,过点作于点.C CD AB ⊥D ,.9045ACB AC AB ︒∠=== ,,3BC ∴=①如果以点为圆心,为半径的圆与斜边相切,则.此时C R AB CD R =.1112225CD AB AC BC R CD ⋅=⋅∴==,②当时,圆与边也只有一个公共点.34R < AB 综上,或.34R < 125R =故选D.2.C解:连接OA ,OB .则OA ⊥PA ,OB ⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB 的长是:120π32π.180⨯=故选C .3.D解:如图,过点C 作CD ⊥AB 于点D ,∵,,,90C ∠=︒10AB =8AC =∴,6BC ==∵S △ABC ,1122AC BC CD AB =⋅=⋅∴,4.8AC BC CD AB ⋅==则以C 为圆心CD 为半径作与AB 相切.C 故选D.4.C根据圆与直线的位置关系可得:当直线与圆相切时,圆心到直线的距离等于半径;当直线与圆相交时,圆心到直线的距离小于半径;当直线与圆相离时,圆心到直线的距离大于半径.5.B解:∵圆的周长为10πcm ,∴圆的半径为5cm ,∵圆心到直线l 的距离为5cm ,∴d=r ,∴直线与圆相切,∴直线l 和这个圆的公共点的个数为1个.故选:B .6.A∵中,,ABC 40B C ∠=∠=︒∴∠BAC=180º﹣∠B﹣∠C=100º,∵为的内心,O ADC ∴∠OAC=∠DAC ,∠ACO=∠ACB=20º,1212∴∠AOC=180º﹣∠OAC﹣∠ACO=160º﹣∠DAC ,12∵点在线段上(不与、重合),D BC B C ∴0º﹣∠DAC﹣100º,即0º﹣∠DAC﹣50º,12∴110º﹣∠AOC﹣160º,故∠AOC 不可能是100º,故选:A .7.A∵AB=5,BC=13,CA=12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC=90°,∵⊙O 为△ABC 内切圆,∴∠AFO=∠AEO=90°,且AE=AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE=OF=r ,∴S 四边形AEOF =r²,连接AO ,BO ,CO,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴,11()22AB AC BC r AB AC ++=⋅∴r=2,∴S 四边形AEOF =r²=4,故选A.8.C设⊙O 分别与△ABC 的BC 边,AB 的延长线,AC 的延长线相切,切点分别为D ,E ,F ,∴OE ⊥AB ,OF ⊥AC ,∠BOD =∠EOD ,∠COD =∠FOD ,1212∴∠EOF =180°-∠A ,∴∠BOC =∠BOD +∠COD=(∠EOD +∠FOD )12=∠EOF12=×(180°-∠A )12=90°-∠A .12故选C .9.D连接OD ,如图所示∵PC 切⊙O 于D ∴∠ODP =90°∵⊙O 的半径为1,PA =AO ,AB 是⊙O 的直径 ∴PO =1+1=2,PB =1+1+1=3,OD =1∴由勾股定理得:PD==∵BC ⊥AB ,AB 过O ∴BC 切⊙O 于B ∵PC 切⊙O 于D ∴CD =BC设CD =CB =x 在Rt △PBC 中,由勾股定理得:PC 2=PB 2+BC 2即 解得:x即BC222)3x x =+故选:D10.A连接OC 、AC,∵CE ⊥AD ,∴∠EAC+∠ECA=90°,∵OC=OA ,∴∠OCA=∠OAC ,又∵BC=CD ,∴∠OAC=∠EAC ,∴∠OCA=∠EAC ,∴∠ECA+∠OCA=90°,∴EF 是⊙O 的切线,∴∠ECD=∠EAC ,又∵BC=CD ,∴∠EAC=∠BAC ,∴∠ECD=∠BAC ,又∵AB 是直径,∴∠BCA=90°,在△BAC 和△DCE 中,∠BCA=∠DEC=90°,∠ECD=∠CAB ,∴△CDE ∽△ABC ,∴ =,CDDE A B B C 又∵AB=4DE ,CD=BC ,∴,=14BC AB BCAB∴BC=AB ,12∴cos ∠ABC= =.BC AB 12故选:A .11.2∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2 =4,OA =5,∴OH =3.∴需要平移5-3=2cm .故答案是:2.12.4解:如图,过M 作MN ⊥OA 于点N ,∵MN=2cm ,,30AOB ∠=︒∴OM=4cm ,则当OM=4cm 时,与OA相切.M 故答案为4.13.212设正方形ABCD 的边长为a则,AB BC CD AD a ====90BAD ABC D ∠=∠=∠=︒由圆的切线的判定得:AD 、BC 均为圆O 的切线由切线长定理得:,AE FE FC BC a===的周长为CDE 12,即12DE CE CD ∴++=12DE FE FC CD +++=,即12DE AE BC CD ∴+++=12AD BC CD ++=,解得312a ∴=4a =设,则AE x =3,3DE AD AE x CE FE FC x =-=-=+=+在中,,即Rt CDE △222CD DE CE +=2223(3)(3)x x +-=+解得34x =315,344AE CE x ∴==+=则直角梯形周长为ABCE 1532133442AB BC CE AE +++=+++=故.21214.≤CQ ≤12.203∵Rt △ABC 中,AC =5,BC =12,∠ACB =90°,∴AB =13,①当半圆O 与AB 相切时,如图,连接OP ,则OP ⊥AB ,且AC =AP =5,∴PB =AB ﹣AP =13﹣5=8;设CO =x ,则OP =x ,OB =12﹣x ;在Rt △OPB 中,OB 2=OP 2+OB 2,即(12﹣x )2=x 2+82,解之得x =,103∴CQ =2x =;203即当CQ =且点P 运动到切点的位置时,△CPQ 为直角三角形.203②当<CQ ≤12时,半圆O 与直线AB 有两个交点,当点P 运动到这两个交点的位置时,△CPQ 为直203角三角形;③当0<CQ <时,半圆O 与直线AB 相离,即点P 在AB 边上运动时,均在半圆O 外,∠CPQ <90°,203此时△CPQ 不可能为直角三角形;∴当≤CQ ≤12时,△CPQ 可能为直角三角形.203故≤CQ ≤12.20315.2.4解:过C 作CD ⊥AB 于D.∵ AB 2=AC 2+BC 2,AC =3,BC =4,∴ AB 2=32+42=25,∴ AB =5,根据三角形面积,得AC ·BC =CD ·AB∴CD =2.4.∵直线AB 和⊙C相切,∴ R =CD =2.4.16.相交过O 作OC ⊥BC ,在Rt △OBC 中,∠B=45°,OB=5+2=7,∴5,∴BC 所在直线与⊙O 的位置关系是相交,故答案为相交.17.135∵AB 是⊙O 的直径∴=90ACB ∠︒∴90CAB CBA ∠+∠=︒∵I 是△ABC 的内心∴IA 、IB 是角平分线∴()1452IAB IBA CAB CBA +=+=︒∠∠∠∠∴()180135AIB IAB IBA =︒-+=︒∠∠∠故135.18.3如图,∵AB=6,AC=BC ,∠ABC=90°∴CO 1= AO 1= BO 1=3AC=BC=∵O 2是内心,∴11()22AB CDAB AC BC r ⋅=++∴-3即O 1O 2-3故-319.(1)相离(2)相切(3)相交∵∠C =90°,AC =3cm ,BC =4cm ,∴AB =5cm.作CD ⊥AB 于D , 则 AC ·BC = AB ·CD , CD = cm.(1) ∵CD =2.4cm >r =2cm, ∴直线AB 与⊙C 相离.(2) ∵CD =2.4cm =r =2.4cm, ∴直线AB 与⊙C 相切.(3) ∵CD =2.4cm <r =3cm, ∴直线AB 与⊙C 相交.20.BC 、AC 的长分别是10cm 、cm.解:∵圆O 内切于△ABC ,∴∠ABO=∠CBO ,∠BCO=∠ACO ,∵∠ACB=90°,∴∠BCO=×90°=45°,12∵∠BOC=105°,∴∠CBO=180°−45°−105°=30°,∴∠ABC=2∠CBO=60°,∴∠A=30°,∴BC=AB=×20=10cm ,1212∴==∴BC 、AC 的长分别是10cm 、21.S=(a+b+c)r12如图,设△ABC 与⊙O 相切与点D 、E 、F .连接OA 、OB 、OC 、OD 、OE 、OF .则OD ⊥AB ,OE ⊥AC ,OF ⊥BC .∵S △AOB =AB•OD=cr ,同理,S △OBC =ar ,S △OAC =br .12121212∵S △ABC =S △AOB +S △OBC +S △OAC ,即S=cr+ar+br=(a+b+c)r1212121222.AI .连结CI ,BI ,且延长BI 交AC 于点F ,过点I 作IG ⊥BC 于点G ,IE ⊥AB 于点E .∵AB =BC =5,点I 为△ABC 的内心,∴BF ⊥AC ,AF =CF .在Rt △ABF 中,∵sin ∠BAC =,∴BF =4.∴AF=3,∴AC =6.∵点I 是△ABC 的内心,45BF AB =IE ⊥AB ,IF ⊥AC ,IG ⊥BC ,∴IE =IF =IG .∴S △ABC =AB +AC +BC )·IF =AC ·BF ,∴IF =1212,∴AI.6436562AC BF AB AC BC ⨯ ==++++23.(1)详见解析;(2)70°(1)证明:连接.AE∵四边形是平行四边形,ABCD ,//AD BC ∴,,EAF AEB ∴∠=∠GAF B ∠=∠,AE AB = ,B AEB ∴∠=∠,EAF GAF ∴∠=∠.EF FG ∴=(2)解:为的直径,,GB A 140EAG ︒∠=,40BAE ︒∴∠=,70B AEB ︒∴∠=∠=∵四边形是平行四边形,ABCD .70D B ︒∴∠=∠=24.(1)r=3cm. (2) r=(a+b-c ).12(1)如图,连接OD ,OF ;在Rt △ABC 中,∠C=90°,AC=12cm ,BC=9cm ;根据勾股定理=15cm ;四边形OFCD 中,OD=OF ,∠ODC=∠OFC=∠C=90°;则四边形OFCD 是正方形;由切线长定理,得:AD=AE ,CD=CF ,BE=BF ;则CD=CF=(AC+BC-AB );12即:r=(12+9-15)=3cm .12(2)当AC=b ,BC=a ,AB=c ,由以上可得: CD=CF=(AC+BC-AB );12即:r=(a+b-c ).则⊙O 的半径r 为:(a+b-c ).121225.(1)证明见解析;(2)菱形,理由见解析.解:(1)连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)以A,O,C,F为顶点的四边形是菱形.理由如下:∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,AC∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.26.(1)AB+CD=AD+BC,证明详见解析;(2)4m.(1)AB+CD=AD+BC证明:由切线长定理,得:AM=AH,BN=BM,CN=CG,DG=DH,所以AB+CD=AM+BM+CG+DG=AH+BN+CN+DH=AD+BC,即AB+CD=AD+BC(2)AD∥BC,在梯形ABCD中,由梯形的中位线定理得,AD+BC=2m,梯形的周长=AB+CD+AD+BC=2(AD+BC)=2×2m=4m27.(1)12;(2)64°解:(1)∵PA 、PB 、DE 都为⊙O 的切线,∴DA=DF ,EB=EF ,PA=PB=6,∴DE=DA+EB ,∴PE+PD+DE=PA+PB=12,即△PDE 的周长为12;(2)连接OF,∵PA 、PB 、DE 分别切⊙O 于A 、B 、F 三点,∴OB ⊥PB ,OA ⊥PA ,∠BOE=∠FOE=∠BOF ,∠FOD=∠AOD=∠AOF ,1212∵∠APB=52°,∴∠AOB=360°-90°-90°-52°=128°,∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF )=∠BOA=64°.121228.(1)直线BC 与⊙D 相切,理由见解析;(2)BE=1.(1)直线BC 与⊙D 相切,理由:过D 作DF ⊥BC 于F ,∴∠CFD =∠A =90°,∵CD 平分∠ACB ,∴DA =DF ,∴直线BC 与⊙D 相切;(2)∵∠BAC =90°,AC =3,BC =5,∴AB 4,在Rt △ACD 与Rt △FCD 中,AD DF CD CD =⎧⎨=⎩∴Rt △ACD ≌Rt △FCD(HL),∴CF =AC =3,∴BF =2,∵BF 是⊙D 的切线,∴BF 2=BA•BE ,∴.22214BF BE AB ===。

九年级数学苏科版上册课时练第2单元《2.5直线与圆的位置关系》(1) 练习试题试卷 含答案

九年级数学苏科版上册课时练第2单元《2.5直线与圆的位置关系》(1) 练习试题试卷 含答案

课时练2.5直线与圆的位置关系一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8cm时,直线与圆相交B.当d=4.5cm时,直线与圆相离C.当d=6.5cm时,直线与圆相切D.当d=13cm时,直线与圆相切2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能3.直线l上的一点到圆心的距离等于半径,则直线与圆的位置关系一定是()A.相离B.相切C.相交D.相切或相交4.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定5.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个6.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是()A.BD=CDB.AC⊥BCC.AB=2ACD.AC=2OD7.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8cm,若l沿OC所在直线平移后与⊙O相切,则平移的距离是()A.1cmB.2cmC.8cmD.2cm或8cm8.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BGB.AB∥EFC.AD∥BCD.∠ABC=∠ADC9.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为()A.8B.6C.5D.410.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知CD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△CMN),则剪下的△CMN的周长是()A.9cmB.12cmC.15cmD.18cm二、填空题11.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C相离,则a 的取值范围为.12.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是.13.已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为.14.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=____度.15.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.16.如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足条件时,⊙P与直线CD相交.三、解答题17.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP 上移动.(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?18.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD ⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)判断直线DP与⊙O的位置关系,并说明理由;(2)若DC=4,⊙O的半径为5,求PB的长.19.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.20.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①;②;③.(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.参考答案1.C.2. A.3. D.4. B.5. C.6.C.7.D.8.C9.D10.B11.a<﹣2或a>2.12.r=2或4<r≤4.13.5.14.4515.相切16.4<t<8.17.解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,作O′C⊥PA于C,∵∠P=30度,∴O′C=PO′=1cm,∵圆的半径为1cm,∴⊙O与直线PA的位置关系是相切;(2)如图:当点O由O′向右继续移动时,PA与圆相交,当移动到C″时,相切,此时C″P=PO′=2,∵OP=3,∴OO'=1,OC''=OP+C''P=3+2=5∴点O移动的距离d的范围满足1cm<d<5cm时相交,故答案为::1cm<d<5cm.18.解:(1)直线DP与⊙O相切.理由如下:连接OC,如图,∵AC是∠EAB的平分线,∴∠EAC=∠OAC∵OA=OC,∴∠ACO=∠OAC,∴∠ACO=∠DAC,∴OC∥AD,∵CD⊥AE,∴OC⊥CD,∴DP是⊙O的切线;(2)作CH⊥AB于H,如图,∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,∴CH=CD=4,∴OH==3,∵OC⊥CP,∴∠OCP=∠CHO=90°,而∠COP=∠POC,∴△OCH∽△OPC,∴OC:OP=OH:OC,∴OP==,∴PB=OP﹣OB=﹣5=.19.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.20.(1)当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;(3)如图3,作直径AD,连结CD,BD,∵AD为直径,∴∠ABD=90°,∵∠CAE=∠ABC,∴∠DAE+∠DAC=∠ABD+∠DBC,而∠DAC=∠DBC,∴∠DAE=∠ABD=90°,∴AD⊥EF,∴EF为⊙O的切线.。

苏科版九年级上册数学 圆章节2.5 直线与圆的位置关系(3) (含答案)

苏科版九年级上册数学 圆章节2.5 直线与圆的位置关系(3) (含答案)

直线与圆的位置关系例题例1、下列说法中,正确的是()A、垂直于半径的直线一定是这个圆的切线B、圆有且只有一个外切三角形C、三角形有且只有一个内切圆,D、三角形的内心到三角形的3个顶点的距离相等例2. 如图,PA,PB,分别切⊙O于点A,B,∠P=70°,∠C= 。

例3. 已知点I为△ABC的内心,且∠ABC=50°,∠ACB=60°,∠BIC= 。

例4. 在⊿ABC中,∠A=50°(1)若点O是⊿ABC的外心,则∠BOC= .(2) 若点O是⊿ABC的内心,则∠BOC= .例5. 已知:如图,⊿ABC求作:⊿ABC的内切圆。

例6 已知:如图,⊙O与⊿ABC各边分别切于点D,E,F,且∠C=60°,∠EOF=100°,求∠B的度数。

巩固练习:一、选择题1.三角形的内心是三角形的( ) A.三条高的交点B.三条角平分线的交点C. 三条中线的交点D.三条边的垂直平分线的交点2.如图,点O是△ABC的内切圆的圆心,若∠BOC=1260,则∠BAC的度数为( )A.720B.540C.630D.3603.如图,☉O是△ABC的内切圆,切点分别是D、E、F,已知∠A=1000,∠C=300,则∠DFE的度数为( )A.550B.600 C. 650D.7004.如图,☉I是△ABC的内切圆,切点分别为D、E、F,则△DEF是( )A.钝角三角形B.直角三角形C.锐角三角形D.它的形状不能确定二、填空题5.已知点I为△ABC的内心,且∠ABC=50°,∠ACB=60°,则∠BIC=________.6.在△ABC中,∠A=50°.(1)若点O是△ABC的外心,则∠BOC=_______.(2)若点O是△ABC的内心,则∠BCC=_______.7.三角形的面积为15,周长为30,则它的内切圆半径为__________.8.定义1:与四边形四边都相切的圆叫做四边形的内切圆.定义2:一组邻边相等,另两边也相等的凸四边形叫做筝形.探究:任意筝形是否一定存在内切圆?答案:________ (填“是”或“否”).三、解答题9.如图是一块三角形木板余料.现要从中裁出一块圆形的木板,怎样裁剪才能使这块圆形木板的面积尽可能大?10.如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,分别交PA、PB于点E、F,已知PA=12 cm,∠P=70°.(1)求△PEF的周长;(2)求∠EOF的度数.11.等腰三角形的腰长为10 cm,底边长为12 cm,求它的内切圆的半径.12.如图,AB是☉O的直径,AE平分 BAC交☉O于点E,过E作☉O的切线ME交AC于点D.试判断△AED的形状,并说明理由.13.如图①,⊙O是边长为6的等边三角形ABC的外接圆,点D在BC上运动(不与点B、C重合),过点D作DE∥BC,DE交AC的延长线于点E,连接AD、CD.(1)在图①中,当AD=210时,求AE的长;(2)当点D为弧BC的中点时(如图②),①DE与⊙O的位置关系是_______;②求△ADC的内切圆半径r.巩固练习答案1. B 2.A 3.C 4.C5.125°6.(1)100°(2)115°7.18.是9.作出这个三角形木板余料的内切圆即可10.(1)24 cm (2)∠EOF=55°11.3 cm12.∆AED为直角三角形连接BE(图略).AB是直径,∴∠BEA= 900.∴∠B+∠BAE= 900。

苏教版九年级数学上册第二章 2.5 直线与圆的位置关系 同步练习题(含答案解析)

苏教版九年级数学上册第二章 2.5 直线与圆的位置关系 同步练习题(含答案解析)

2.5直线与圆的位置关系一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•宿豫区期中)下列关于三角形的外心说法正确的是()A.三角形的外心一定在它的外部B.三角形的外心是它三边垂直平分线的交点C.三角形的外心到它的三边距离相等D.三角形的外心与它的内心不可能重合2.(2019秋•宿豫区期中)已知⊙O的直径为8,点P在直线l上,且OP=4,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.相切或相交3.(2019秋•邗江区校级期中)直线l与半径为r的⊙O相交,且点O到直线l的距离为3,则r的取值范围是()A.r<3 B.r=3 C.r>3 D.r≥34.(2019秋•睢宁县期中)如图,AB是半圆的直径,P是AB延长线上的一点,PC切半圆于点C,若∠CAB =29°,则∠P等于()A.29°B.30°C.31°D.32°5.(2019秋•东台市期中)如图所示,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB有公共点,则r的取值范围为()A.r B.r=3或r=4 C.r≤3 D.r≤46.(2019秋•西城区校级期中)如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.3cm C.6cm D.6cm7.(2019秋•江宁区期中)如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()A.14 B.12 C.9 D.78.(2019秋•锡山区期中)如图,在平面直角坐标系xOy中,点P的坐标为(0,﹣6),⊙P的半径为2,⊙P沿y轴以2个单位长度/s的速度向正方向运动,当⊙P与x轴相切时⊙P运动的时间为()A.2s B.3s C.2s或4s D.3s或4s二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)9.(2019秋•睢宁县期中)如图,P A、PB是⊙O的切线,切点分别是A、B,C在AB上,过C的切线分别交P A、PB于点D、E.若PB=10,则△PDE的周长为.10.(2019秋•亭湖区校级期中)若直角三角形两边分别为6和8,则它内切圆的半径为.11.(2019秋•宝应县期中)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切,点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为.12.(2019秋•沛县期中)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠B=50°,∠C=60°,则∠EDF=.13.(2019秋•镇江期中)如图,AB是⊙O的直径,CD与⊙O相切于点C,∠BCD=25°,∠ABC=°.14.(2019秋•建邺区期中)如图,△ABC为等边三角形,AB=4,以点A为圆心,半径为1作⊙A.M为BC边上的一动点,过点M作⊙A的一条切线,切点为N,则MN的最小值是.三、解答题(本大题共6小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.(2020春•锡山区期中)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB 并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=2.5,MB=3,求AD的长.16.(2019秋•宿豫区期中)如图,AB是⊙O的直径,C为⊙O上的一点,点D为的中点,DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若AE=8,DE=4,求⊙O的半径.17.(2019秋•新北区期中)如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.(1)试说明:2∠B+∠DAB=180°(2)若∠B=30°,AD=2,求⊙P的半径.18.(2019秋•建湖县期中)如图,AB为⊙O直径,P A、PC分别与⊙O相切于点A、C,PE⊥P A,PE交OC的延长线于点E.(1)求证:OE=PE;(2)连接BC并延长交PE于点D,P A=AB,且CE=9,求PE的长.19.(2019秋•宝应县期中)如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O 交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.20.(2019秋•东海县期中)小明在学习“圆的对称性”时知道结论:垂直于弦的直径一定平分这条弦,请尝试解决下面的问题:如图,在Rt△ACB中,∠ACB=90°,圆O是△ACB的外接圆.点D是圆O上一点,过点D作DE⊥BC,垂足为E,且BD平分∠ABE.(1)判断直线ED与圆O的位置关系,并说明理由.(2)若AC=12,BC=5,求线段BE的长.答案解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•宿豫区期中)下列关于三角形的外心说法正确的是()A.三角形的外心一定在它的外部B.三角形的外心是它三边垂直平分线的交点C.三角形的外心到它的三边距离相等D.三角形的外心与它的内心不可能重合【分析】分别根据三角形外心内心逐项判断即可.【解析】A.三角形的外心还可以在三角形的边上或三角形的内部,故错误;B.三角形的外心是它三边垂直平分线的交点,正确;C.根据三角形的外心到三个顶点的距离相等,故此选项错误;D.只有等边三角形的外心与内心重合,故错误.故选:B.2.(2019秋•宿豫区期中)已知⊙O的直径为8,点P在直线l上,且OP=4,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.相切或相交【分析】根据垂线段最短,得圆心到直线的距离小于或等于4,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解析】如图所示:根据题意可知,圆的半径r=4.因为OP=4,当OP⊥l时,直线和圆是相切的位置关系;当OP与直线l不垂直时,则圆心到直线的距离小于4,所以是相交的位置关系.所以l与⊙O的位置关系是:相交或相切,故选:D.3.(2019秋•邗江区校级期中)直线l与半径为r的⊙O相交,且点O到直线l的距离为3,则r的取值范围是()A.r<3 B.r=3 C.r>3 D.r≥3【分析】直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,①当d=r时,直线l和⊙O相切,②当d<r时,直线l和⊙O相交,③当d>r时,直线l和⊙O相离,根据以上内容得出即可.【解析】∵直线l与半径为r的⊙O相交,且点O到直线l的距离为3,∴r>3,故选:C.4.(2019秋•睢宁县期中)如图,AB是半圆的直径,P是AB延长线上的一点,PC切半圆于点C,若∠CAB =29°,则∠P等于()A.29°B.30°C.31°D.32°【分析】连接OC,根据圆周角定理和切线的性质即可得到结论.【解析】连接OC,∴∠CAB=29°,∴∠COP=2∠CAB=58°,∵PC切半圆于点C,∴∠OCP=90°,∴∠P=90°﹣58°=32°,故选:D.5.(2019秋•东台市期中)如图所示,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以C为圆心,r为半径的圆与边AB有公共点,则r的取值范围为()A.r B.r=3或r=4 C.r≤3 D.r≤4【分析】作CD⊥AB于D,由勾股定理求出AB,由三角形的面积求出CD,由AC>BC,可得以C为圆心,r或4为半径所作的圆与斜边AB只有一个公共点;若⊙C与斜边AB有公共点,即可得出r的取值范围.【解析】作CD⊥AB于D,如图所示:∵∠C=90°,AC=3,BC=4,∴AB5,∵△ABC的面积AB•CD AC•BC,∴CD,即圆心C到AB的距离d,∵AC<BC,∴以C为圆心,r或4为半径所作的圆与斜边AB只有一个公共点,∴若⊙C与斜边AB有公共点,则r的取值范围是r≤4.故选:D.6.(2019秋•西城区校级期中)如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是()A.3cm B.3cm C.6cm D.6cm【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的半径.【解析】设圆心为O,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB∠CAB=60°,∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故选:B.7.(2019秋•江宁区期中)如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()A.14 B.12 C.9 D.7【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【解析】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选:D.8.(2019秋•锡山区期中)如图,在平面直角坐标系xOy中,点P的坐标为(0,﹣6),⊙P的半径为2,⊙P沿y轴以2个单位长度/s的速度向正方向运动,当⊙P与x轴相切时⊙P运动的时间为()A.2s B.3s C.2s或4s D.3s或4s【分析】由题意可求OP=2,分圆心P在x轴下方和x轴上方两种情况讨论可求解.【解析】∵⊙P与x轴相切∴OP=2当点P在x轴下方,即点P(0,﹣2)∴t2s当点P在x轴上方,即点P(0,2)∴t4s故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)9.(2019秋•睢宁县期中)如图,P A、PB是⊙O的切线,切点分别是A、B,C在AB上,过C的切线分别交P A、PB于点D、E.若PB=10,则△PDE的周长为20.【分析】根据切线长定理求出AP=BP,DA=DC,CE=BE,代入求出△PDE的周长为2PB,代入即可.【解析】∵P A、PB、DE是圆O的切线,切点分别是A、B、C,∴AP=BP,DA=DC,CE=BE,∴△PED的周长是:PD+DE+PE=PD+DC+CE+PE=PD+DA+PE+BE=P A+PB=2PB=20.答:△PED的周长是20.故答案为:20.10.(2019秋•亭湖区校级期中)若直角三角形两边分别为6和8,则它内切圆的半径为2或1.【分析】首先证明四边形ODCF为正方形;求出AB的长度;证明AF=AE,BD=BE,分两种情况,问题即可解决.【解析】如图,⊙O内切于直角△ABC中,切点分别为D、E、F;半径为r,连接OD、OF;则OD⊥BC,OF⊥AC;OD=OF;∵∠C=90°,∴四边形ODCF为正方形,∴CD=CF=r;①当AC=8,BC=6时,由勾股定理得:AB2=AC2+BC2=36+64=100,∴AB=10;由切线长定理得:AF=AE,BD=BE;∴CD+CF=AC+BC﹣AB=6+8﹣10=4,∴r=2;②当AB=8,AC=6,则BC2,∴r(26﹣8)1;它的内切圆半径为2或1.故答案为:2或 111.(2019秋•宝应县期中)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切,点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为4.【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【解析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故答案为:4.12.(2019秋•沛县期中)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠B=50°,∠C=60°,则∠EDF=55°.【分析】连接OE,OF.由三角形内角和定理可求得∠A=70°,由切线的性质可知:∠OF A=90°,∠OEA=90°,从而得到∠A+∠EOF=180°,故可求得∠EOF=110°由圆周角定理可求得∠EDF=55°.【解析】如图所示,连接OE,OF.∵∠B=50°,∠C=60°,∴∠A=180°﹣50°﹣60°=70°.∵AB是圆O的切线,∴∠OF A=90°.同理∠OEA=90°.∴∠A+∠EOF=180°.∴∠EOF=110°.∴∠EDF=55°,故答案为:55°.13.(2019秋•镇江期中)如图,AB是⊙O的直径,CD与⊙O相切于点C,∠BCD=25°,∠ABC=65°.【分析】连接OC,如图,根据切线的性质得OC⊥CD,利用互余得到∠OCB=65°,然后根据等腰三角形的性质得到∠B的度数.【解析】连接OC,如图,∵CD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∴∠OCB=90°﹣∠BCD=90°﹣25°=65°,∵OB=OC,∴∠B=∠OCB=65°.故答案为:65.14.(2019秋•建邺区期中)如图,△ABC为等边三角形,AB=4,以点A为圆心,半径为1作⊙A.M为BC边上的一动点,过点M作⊙A的一条切线,切点为N,则MN的最小值是.【分析】作AD⊥BC于D,过D作⊙A的一条切线,切点为E,连接AE,由等边三角形的性质和勾股定理得出AD2,由切线的性质得出AE⊥DE,由勾股定理求出DE,当点M与D重合时,N与E重合,此时MN最小.【解析】作AD⊥BC于D,过D作⊙A的一条切线,切点为E,连接AE,如图所示:∵△ABC是等边三角形,AD⊥BC,∴BC=AB=4,BD=CD BC=2,∴AD2,∵DE是⊙A的一条切线,∴AE⊥DE,AE=1,∴DE,当点M与D重合时,N与E重合,此时MN最小,故答案为:.三、解答题(本大题共6小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.(2020春•锡山区期中)如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB 并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=2.5,MB=3,求AD的长.【分析】(1)根据切线的性质得出∠EAM=90°,等腰三角形的性质∠MAB=∠AMB,根据等角的余角相等得出∠BAE=∠AEB,即可证得AB=BE;(2)连接BC,证明△ABC∽△EAM,由比例段求出AM的长,则答案可求出.【解答】(1)证明:∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°.又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2)解:连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠ABC=∠EAM,在Rt△ABC中,AC=5,BM=AB=3,∴BC4,∵BE=AB=BM,∴EM=6,由(1)知,∠BAE=∠AEB,∴△ABC∽△EAM,∴,∠AMB=∠C,即,∴AM,又∵∠C=∠D,∴∠AMB=∠D,∴AD=AM.16.(2019秋•宿豫区期中)如图,AB是⊙O的直径,C为⊙O上的一点,点D为的中点,DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若AE=8,DE=4,求⊙O的半径.【分析】(1)连接AD.证明OD∥AE,可得∠E=90°,则∠ODE=90°得出DE⊥OD即可;(2)设⊙O的半径为r.过点O作OF⊥AE于F,则OF=DE=4,EF=OD=r,AF=8﹣r(8﹣r)2+42=r2解方程即可得出答案.【解答】(1)证明:连接AD.∵点D为弧BC的中点,∴,∴∠EAD=∠DAB,∵OA=OD,∴∠ADO=∠DAB,∴∠EAD=∠ADO,∴OD∥AE,∵DE⊥AC,∴∠E=90°,∴∠ODE=90°,∴DE⊥OD∴DE是⊙O的切线;(2)解:设⊙O的半径为r.过点O作OF⊥AE于F,则OF=DE=4,EF=OD=r,AF=8﹣r,∵在Rt△AFO中,AF2+OF2=OA2,∴(8﹣r)2+42=r2,∴r=5,∴⊙O的半径为5.17.(2019秋•新北区期中)如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.(1)试说明:2∠B+∠DAB=180°(2)若∠B=30°,AD=2,求⊙P的半径.【分析】(1)根据切线的性质和圆周角定理,可得∠APC=∠PCB+∠B=2∠B,证得∠DAB+∠APC=180°,则结论得证;(2)连接AC,证得△ACP是等边三角形,可得AC=P A,∠ACP=60°,可求出AC长,P A长,则⊙P 的半径可求出.【解析】(1)连接CP,∵PC=PB,∴∠B=∠PCB,∴∠APC=∠PCB+∠B=2∠B,∵CD是⊙OP的切线,∴∠DCP=90°,∵∠ADC=90°,∴∠DAB+∠APC=180°∴2∠B+∠DAB=180°;(2)解:连接AC,∵∠B=30°,∴∠APC=60°,∵PC=P A,∴△ACP是等边三角形,∴AC=P A,∠ACP=60°,∴∠ACD=30°,∴AC=2AD=4,∴P A=4.即⊙P的半径为4.18.(2019秋•建湖县期中)如图,AB为⊙O直径,P A、PC分别与⊙O相切于点A、C,PE⊥P A,PE交OC的延长线于点E.(1)求证:OE=PE;(2)连接BC并延长交PE于点D,P A=AB,且CE=9,求PE的长.【分析】(1)欲证明OE=PE,只要证明∠EOP=∠EPO即可;(2)设OA=r.在Rt△PCE中,利用勾股定理构建方程求出r,即可解决问题.【解答】(1)证明:连接OP.∵P A、PC分别与⊙O相切于点A,C∴P A=PC,OA⊥P A,∵OA=OC,OP=OP,∴△OP A≌△OPC(SSS),∴∠AOP=∠POC,∵EP⊥P A,∴EP∥BA,∴∠EPO=∠AOP,∴∠EOP=∠EPO,∴OE=PE.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥ED,∴∠EDC=∠B,∵∠OCB=∠ECD,∴∠ECD=∠EDC,∴EC=ED=9,∵EO=EP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCE=90°,在Rt△PCE中,∵PE2=PC2+EC2,∴(9+r)2=92+(2r)2,解得:r=6或0(舍弃),∴PE=15.19.(2019秋•宝应县期中)如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O 交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.【分析】(1)欲证明直线AB是⊙O的切线,只要证明OC⊥AB即可.(2)首先证明OC∥DF,再证明∠FDC=∠OCD,∠EDC=∠OCD即可.(3)作ON⊥DF于N,延长DF交AB于M,在Rt△CDM中,求出DM、CM即可解决问题.【解答】(1)证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(3)解:作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=4,在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴3,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=3,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD3.20.(2019秋•东海县期中)小明在学习“圆的对称性”时知道结论:垂直于弦的直径一定平分这条弦,请尝试解决下面的问题:如图,在Rt△ACB中,∠ACB=90°,圆O是△ACB的外接圆.点D是圆O上一点,过点D作DE⊥BC,垂足为E,且BD平分∠ABE.(1)判断直线ED与圆O的位置关系,并说明理由.(2)若AC=12,BC=5,求线段BE的长.【分析】(1)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODB=∠OBD,等量代换得到∠ODB=∠DBE,根据平行线的判定和性质得到∠DEC=∠ODE=90°,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(2)如图,延长DO交AC于点H,连结CO,构建直角△ABC的中位线OH,运用三角形中位线定理和勾股定理分别求得OH=HO BC、AB=13,结合图形找到相关线段间的和差关系求得线段BE的长度即可.【解析】(1)如图,连接OD.∵OB=OD,∴∠ODB=∠OBD,又∵∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥BE,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°,∴OD⊥DE,又∵OD为半径,∴直线ED与⊙O相切;(2)如图,延长DO交AC于点H,连结CO,∵OD∥BE,∠ODE=90°,∴∠OHC=90°,即OH⊥AC,又∵OA=OC,∴AH=CH,又由O是AB的中点,∴HO是△ABC的中位线,∴HO BC.∵AC为直径,∴∠ACB=90°,∴AC=12,BC=5,∴AB13,∴OA=OD AB.∴HD=HO+OD=9由四边形CEDH是矩形,∴CE=HD=9,∴CE=9,∴BE=CE﹣BC=4.。

专题2.3 直线与圆的位置关系(专项拔高卷)学生版-2024-2025学年九年级数学上册真题汇编章节

专题2.3 直线与圆的位置关系(专项拔高卷)学生版-2024-2025学年九年级数学上册真题汇编章节

2024-2025学年苏科版数学九年级上册同步专题热点难点专项练习专题2.3 直线与圆的位置关系(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.52姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•金华期末)AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.20°B.25°C.30°D.40°2.(2分)(2022秋•阳谷县期末)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是()A.相切B.相交C.相离D.平行3.(2分)(2022秋•河西区校级期末)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=35°,则∠OCB的度数为()A.42.5°B.55.5°C.62.5°D.75°4.(2分)(2023春•青山区校级月考)如图,不等边△ABC内接于⊙O,I是其内心,BI⊥OI,AC=14,BC =13,△ABC内切圆半径为()A.4 B.C.D.5.(2分)(2022秋•大荔县期末)如图,点O是△ABC的内心,也是△DBC的外心.若∠A=84°,则∠D的度数为()A.42°B.66°C.76°D.82°6.(2分)(2023•沙坪坝区校级模拟)如图,AB是⊙O的直径,E为⊙O上一点,BD垂直平分OE交⊙O于点D,过点D的切线与BE的延长线交于点C.若,则AB的长为()A.4 B.2 C.D.7.(2分)(2023•哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为()A.45°B.50°C.65°D.75°8.(2分)(2023•遵义一模)如图,AB是半圆O的直径,点P为BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.若CD=2,BD=4,则⊙O的半径为()A.3 B.2 C.2.5 D.29.(2分)(2023•江岸区模拟)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI ⊥AD于I,若CD=4,则AC为()A.B.C.D.510.(2分)(2022•成县校级模拟)如图,⊙O与∠A=90的Rt△ABC的三边AB、BC、AC分别相切于点D、E、F,若BE=10,CF=3,则⊙O的半径为()A.5 B.4 C.3 D.2评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•柯桥区校级模拟)如图AB、AC、BD是圆O的切线,切点分别为P、C、D,若AB=5,BD =2,则AC的长是.12.(2分)(2022秋•启东市校级期末)如图,AB为⊙O的直径,CB为⊙O的切线,AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是.13.(2分)(2022秋•河西区校级期末)如图,在Rt△OAB中,∠AOB=90°,OA=8,AB=10,⊙O的半径为4,点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则PQ的最小值为.14.(2分)(2023•青海)如图,MN是⊙O的切线,M是切点,连接OM,ON.若∠N=37°,则∠MON的度数是.15.(2分)(2022秋•建昌县期末)如图,点O是△ABC的内心,∠A=60°,OB=3,OC=6,,则⊙O的半径为.16.(2分)(2023•西陵区模拟)木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=8cm,BC=16cm,则⊙O的半径等于cm.17.(2分)(2023•安岳县二模)如图,AB、CD是⊙O的两条直径,EA切⊙O于点A,交CD的延长线于点E.若∠ABC=75°,则∠E的度数为.18.(2分)(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.19.(2分)(2022秋•鼓楼区校级月考)在Rt△ABC中,∠ACB=90°,BC=6,AC=8,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.20.(2分)(2022秋•滨湖区校级期中)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F、G分别在AD、BC上,连结OG、DG,若OG⊥DG,且⊙O的半径长为1,则BC﹣AB的值,CD+DF的值.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023•鞍山二模)如图,在△ABC中,以AB为直径作⊙O,⊙O恰好经过点C,点D为半圆AB 中点,连接CD,过D作DE∥AB交AC延长线于点E.(1)求证:DE为⊙O切线:(2)若AC=4,,求⊙O的半径长.22.(6分)(2023•槐荫区模拟)如图,AB为⊙O的直径,C为⊙O上一点,⊙O的切线BD交OC的延长线于点D.(1)求证:∠DBC=∠OCA;(2)若∠BAC=30°,AC=2.求CD的长.23.(8分)(2022秋•嘉祥县校级期末)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.24.(8分)(2022秋•平阴县期末)如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若,∠BAC=60°,求⊙O的半径.25.(8分)(2023•宛城区二模)如图①,中国古代的马车已经涉及很复杂的机械设计(相对当时的生产力),包含大量零部件和工艺,所彰显的智慧让人拜服.如图②是马车的侧面示意图,AB为车轮⊙O的直径,过圆心O的车架AC一端点C着地时,地面CD与车轮⊙O相切于点D,连接AD,BD.(1)徽徽猜想∠C+2∠BDC=90°,徽徽的猜想正确吗?请说明理由;(2)若,BC=2米,求车轮的直径AB的长.26.(8分)(2023•晋安区校级模拟)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB 于点E,且∠ACP=60°,PA=PD.(1)证明:PD是⊙O的切线.(2)若点C是弧AB的中点,已知AB=2,求CE•CP的值.27.(8分)(2022秋•惠阳区校级期末)(1)如图1,在菱形ABCD中,点E,F分别为边CD,AD的中点,连接AE,CF.求证:AE=CF.(2)如图2,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.28.(8分)(2023•绥江县二模)如图1,在四边形ABCD中,AD=CD=6,∠B=60°,以AB为直径所作的⊙O经过点C,且与AD相切于A点,连接AC.(1)求证:CD是⊙O的切线;(2)⊙E是△ACD的外接圆,不与A、D重合的点F在⊙E的劣弧AD上运动(如图2所示).若点P、Q 分别为线段AC、CD上的动点(不与端点重合),当点F运动到每一个确定的位置时,△FPQ的周长有最小值m,随着点F的运动,m的值也随之变化,求m的最大值.。

苏科版九年级上2.5直线与圆的位置关系(3)同步练习含答案.doc

苏科版九年级上2.5直线与圆的位置关系(3)同步练习含答案.doc

第 2 章对称图形——圆2.5直线与圆的位置关系(3)【基础提优】1.如图,△A.70°ABC 的内心为点B. 60°O,∠ BOC=110°,则∠C. 50°A 的度数是(D. 40°)第1题第2题2.如图,⊙ O 是 Rt△ ABC 的内切圆, D, E, F 分别为切点,∠ACB=90°,则∠ EDF 的度数为()A.25°B. 30°C. 45°D. 60°3.已知在△ ABC 中,内切圆⊙ I 和 BC , CA ,AB 边分别相切于点 D, E, F,则点 I 是△ABC ()A .三条高的交点B .三个内角平分线的交点C.三边中线的交点 D .三边垂直平分线的交点4.下列说法中,正确的是()A .垂直于半径的直线一定是这个圆的切线B.圆有且只有一个外切三角形C.三角形有且只有一个内切圆D.三角形的内心到三角形的三个顶点的距离相等5.如图,在△ ABC 中,⊙ I 是△ ABC 的内切圆,与边BC、 CA 、AB 分别相切于点D、 E、F,则∠ FDE 与∠ A 的关系为.第5题第6题6.如图, PA、PB 分别切⊙ O 于点 A 、B,并与⊙ O 的切线分别相交于cm,则△ PCD 的周长等于.7.在△ ABC 中,如果∠ A= m°,点 I 是内心,那么∠BIC= D、C 两点,已知.PA=78.已知⊙ O 分别切△ ABC 的三边 AB , BC , CA 于点 D, E, F,若 BC= a, AC= b, AB= c,∠C=90°,则⊙ O 的半径为.9.如图,某市有一块由三条马路围成的三角形绿地,现准备在其中建一小亭供人们休息,要求小亭中心到三条马路的距离相等,试确定小亭的中心位置.(不写作法,保留作图痕迹)10.如图,点I 是△ ABC于点 E.求证: BD=ID .的内心,∠BAC 的平分线与△ABC 的外接圆相交于点D,交BC 【拓展提优】1.已知三角形的面积为A.2B.1 15,周长为30,则它的内切圆半径为(C.1.5 D . 2.5)2.下列四边形中,一定有内切圆的是(A .平行四边形B.菱形3.如图,⊙ O 是边长为 2 的等边三角形)C.矩形D.直角梯形ABC 的内切圆,则图中阴影部分的面积是()A .πB .3C. 2π D . 3 π3 3第 3 题4.如图, EB 、EC 是⊙ O 的切线,B、C 是切点,第 4 题A 、 D 是⊙ O 上的两点,如果∠E=46°,∠DCF=32°,那么∠ A 的度数为()A .64°B.96°C. 99° D .104 °5.如图, O 是正方形 ABCD 的对角线 BD 上一点,⊙ O 与边 AB ,BC 都相切,点 E , F 分别在 AD ,DC 上,现将△ DEF 沿着 EF 对折, 折痕 EF 与⊙ O 相切,此时点 D 恰好落在圆心 O 处.若DE=2 ,则正方形ABCD的边长是()A . 3B .4C . 22D .2 2第 5 题第 6 题6.如图, AB 是⊙ O 的直径, AM 和 BN 是它的两条切线,切点分别为 A ,B ,DE 切⊙ O 于点 E ,交 AM 于点 D ,交 BN 于点 C ,OD=6cm , OC=8cm ,则 CD 的长为 .7.已知点 I 为△ ABC 的内心, AB=8 , BC=5 ,AC=7 ,则内切圆⊙ I 的半径 r =.8.阅读材料:如图 1,△ ABC 的周长为 l ,内切圆⊙ O 的半径为 r ,连结 OA 、 OB 、 OC ,△ABC 被划分为三个小三角形,用 S △ ABC 表示△ ABC 的面积.因为 S△ABC =S△OAB +S △ OBC +S △OCA ,又因为 11 BC ?r ,S △OCA =1 CA?r ,S△OAB = AB ?r ,S△OBC =2 2 1 1 1 1 2l?r (可作为三角形内切圆半径公式).所以 S △ABC = AB?r+ BC?r+2CA?r =222(1)利用公式计算边长分别为 5、 12、13 的三角形内切圆的半径;(2)若四边形 ABCD 存在内切圆(与各边都相切的圆,如图 2)且面积为 S ,各边长分别为 a 、 b 、 c 、d ,试推导四边形的内切圆半径公式;(3)若一个 n 边形( n 为不小于 3 的整数)存在内切圆,且面积为 S ,各边长分别为 a 1、a 2、 a 3、 、 a n ,合理猜想其内切圆半径公式(不需说明理由).参考答案【基础提优】1-4 DCBC5.∠ A+2 ∠ FDE=180°6. 14 cmm7.(90)2ab8.a b c9.图略(画三角形的三条内角平分线,交点即为所求)10.证明略【拓展提优】1-5 BBDCC6. 10 cm7. 38.( 1)r 2 2S;( 3)r2S;( 2)ra na b c d a1 a2。

苏科版九年级数学上册直线与圆的位置关系练习题2(1)

苏科版九年级数学上册直线与圆的位置关系练习题2(1)

2.5 直线与圆的位置关系(2)1、如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.拓展:如果A B不是直径,其余条件不变,上面的结论还成立吗?2、如图,AB是⊙O的直径,弦AD平分∠ABC,过点D的切线交AC于点E,DE与AC 有怎样的位置关系?为什么?从中你有什么启发?3.如图,AB是⊙O的直径,∠ABC=45°,AB=AC.判断直线AC与⊙O的位置关系,并说明理由.BOA C拓展提升4、如图:在△ABC中AB=BC,以AB 为直径的⊙O 与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.求证:直线DE是⊙O的切线.达标检测1.下列直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线2C.垂直于圆的半径的直线D.过圆直径外端点的直线2.如图,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M•的坐标是_______.3.如图3,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.4.如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB•的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.5.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结OG并延长与BE相交于点F,延长AF•与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为2,求BD和FG的长度.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ) A.16 B.π6 C.π8 D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14,且使关于x的不等式组⎩⎪⎨⎪⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 2 2 2 3 2 5 2 32 33 35 318.解:(1)0.33(2)当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

苏科版九年级上2.5直线与圆的位置关系专题练习(3)含答案

苏科版九年级上2.5直线与圆的位置关系专题练习(3)含答案

《直线与圆的位置关系》专题练习(3)1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).9.(2016•宜宾)如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.19.(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O 的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.20.如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)当0<x<2时,求证:AD平分△PQD的面积;(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).21.(2015•德阳)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D 为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.22.(2015•厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC 平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.23.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.24.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.25.如图1在平面直角坐标系中,⊙O1与x轴切于A(﹣3,0)与y轴交于B、C两点,BC=8,连AB.(1)求证:∠ABO1=∠ABO;(2)求AB的长;(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM﹣BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.26.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.(1)△DEF的边长为(用含有t的代数式表示),当t=秒时,点F落在AB上;(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.27.在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E 是射线AB上的任意一点,DF∥AB,DF与CE相交于点F,设EF=x,DF=y.(1)如图1,当点E在射线OB上时,求y关于x的函数解析式,并写出函数定义域;(2)如图2,当点F在⊙O上时,求线段DF的长;(3)如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.28.如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为﹣1,直线l:y=﹣x﹣与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.(1)求点A的坐标及∠CAO的度数;(2)⊙B以每秒1个单位长度的速度沿想x轴负方向平移,同时,直线l绕点A以每秒钟旋转30°的速度顺时针匀速旋转,当⊙B第一次与⊙O相切时,请判断直线l与⊙B的位置关系,并说明理由:(3)如图2,过A、O、C三点作⊙O1,点E是⊙O1上任意一点,连接EC、EA、EO.①若点E在劣弧OC上,试说明:EA﹣EC=EO;②若点E在优弧OAC上,①的结论中EC、EA、EO的关系式是否仍然成立?若成立,请你说明理由?若不成立,请你直接写出正确的结论.29.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.(1)求⊙O的半径;(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.参考答案与解析1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角定理得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.【分析】(1)连接DO并延长交AC于M,证出,由垂径定理得出DM⊥AC,证出DM∥BC,由已知得出DF⊥DO,即可得出DF为⊙O的切线;(2)由(1)得出DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,由垂径定理得出CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理求出半径,得出CN=EN=OM=2,CE=4,求出EF=4.5﹣4=0.5,再由勾股定理求出DE 即可.【解答】(1)证明:连接DO并延长交AC于M,如图1所示:∵∠ACB=90°,AC<BC,点D为AB的中点,∴CD=AB=AD,∴,∴DM⊥AC,∴DM∥BC,∵DF⊥BC,∴DF⊥DO,∴DF为⊙O的切线;(2)解:由(1)得:AC∥DF,∵点D为AB的中点,∴DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,如图2所示:则CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理得:r2+(4.5﹣r)2=r2,解得:r=2.5,∴CN=EN=OM=4.5﹣2.5=2,∴CE=4,∴EF=4.5﹣4=0.5,∴DE===.【点评】本题考查了切线的判定、直角三角形斜边上的中线性质、勾股定理,垂径定理等知识;熟练掌握切线的判定,由勾股定理求出半径是解决问题(2)的关键.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.【分析】(1)连接OC,欲证明CF是⊙O的切线,只要证明∠OCF=90°.(2)作DH⊥AC于H,由△AEO∽△ABC,得=求出AE,EC,再根据sin∠A=sin∠EDH,得到=,求出DE即可.【解答】证明:连接OC,∵OA=OC,∴∠A=∠OCA,∵OD⊥AB,∴∠A+∠AEO=90°,∵DE=DC,∴∠DEC=∠DCE,∵∠AEO=∠DEC,∴∠AEO=∠DCE,∴∠OCE+∠DCE=90°,∴∠OCF=90°,∴OC⊥CF,∴CF是⊙O切线.(2)作DH⊥AC于H,则∠EDH=∠A,∵DE=DC,∴EH=HC=EC,∵⊙O的半径为5,BC=,∴AB=10,AC=3,∵△AEO∽△ABC,∴=,∴AE==,∴EC=AC﹣AE=,∴EH=EC=,∵∠EDH=∠A,∴sin∠A=sin∠EDH,∴=,∴DE===.,【点评】本题考查切线的性质、相似三角形的判定和性质、三角函数等知识,解题的关键是添加辅助线,构造相似三角形,属于中考常考题型.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【分析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.【点评】本题考查了切线的判定、圆周角定理、角的互余关系;熟练掌握切线的判定方法,由圆周角定理得出直角是解决问题的关键.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.【分析】(1)根据等腰三角形的性质得到∠B=∠ACB,∠OCE=∠E,推出∠ACO=90°,根据切线的判定定理即可得到结论;(2)根据已知条件得到∠CFO=30°,解直角三角形得到DF==,EF=3OE=4,即可得到结论.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵OC=OE,∴∠OCE=∠E,∵DE⊥AB,∴∠BDE=90°,∴∠B+∠E=90°,∴∠ACB+∠OCE=90°,∴∠ACO=90°,∴AC⊥OC,∴AC是⊙O的切线;(2)解:∵∠E=30°,∴∠OCE=30°,∴∠FCE=120°,∴∠CFO=30°,∴∠AFD=∠CFO=30°,∴DF==,∵BD=5,∴DE=5,∵OF=2OC,∴EF=3OE=4,∴OE=,即⊙O的半径=.【点评】本题考查了切线的判定,直角三角形的性质,等腰三角形的性质,熟练掌握切线的判定定理是解题的关键.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O 的切线;(2)由在△OBE中,sinB=,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF •sinB=r ,∴BG==r ,∴EG=BG ﹣BE=r ,∴S △FGE =EG •FG=r 2,EG :FG=1:2,∵BC 是切线,∴∠GEH=∠EFG ,∵∠EGH=∠FGE ,∴△EGH ∽△FGE ,∴=()2=,∴S △EHG =S △FGE =r 2. 【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.9.(2016•宜宾)如图1,在△APE 中,∠PAE=90°,PO 是△APE 的角平分线,以O 为圆心,OA 为半径作圆交AE 于点G .(1)求证:直线PE 是⊙O 的切线;(2)在图2中,设PE 与⊙O 相切于点H ,连结AH ,点D 是⊙O 的劣弧上一点,过点D 作⊙O 的切线,交PA 于点B ,交PE 于点C ,已知△PBC 的周长为4,tan ∠EAH=,求EH 的长.【分析】(1)作OH ⊥PE ,由PO 是∠APE 的角平分线,得到∠APO=∠EPO ,判断出△PAO ≌△PHO ,得到OH=OA ,用“圆心到直线的距离等于半径”来得出直线PE 是⊙O 的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.【解答】证明:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴===,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴EH2=EG×EA=EG×(EG+AG)=×(+2)=,∴EH=.【点评】此题是切线的性质和判定题,主要考查了切线的判定和性质,相似三角形的性质和判定,勾股定理,三角函数,解本题的关键是用三角函数求出OA.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠ODB,于是∠CDA+∠ADO=90°;(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线的性质得到BE=DE,BE⊥BC根据勾股定理列方程即可得到结论.【解答】(1)证明:连结OD,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∵OD是⊙O半径,∴CD是⊙O的切线(2)解:∵∠C=∠C,∠CDA=∠CBD∴△CDA∽△CBD∴∵,BC=6,∴CD=4,∵CE,BE是⊙O的切线∴BE=DE,BE⊥BC∴BE2+BC2=EC2,即BE2+62=(4+BE)2解得:BE=.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.【点评】此题考查了三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S 为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【分析】(1)先根据BC、AC、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5+6+9),解得:r=,故△ABC的内切圆半径r=.【点评】本题主要三角形的内切圆与内心、二次根式的应用,熟练掌握三角形的面积与内切圆半径间的公式是解题的关键.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.【分析】(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,由△OHE∽△FAE,得=求出EF=,由CE•ED=BE•AE求出k、a关系,得EF=10k,得到DE=DC,得△DEA、△BCE都是等腰三角形,在RT△ABC中利用勾股定理即可解决问题.(2)根据tan∠ECB=tan∠AEF=,求出AF、AE即可.【解答】解:(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,∴EH=0.5k,OE=0.5a,∵AF是切线,∴∠FAE=90°=∠OHE,∵∠OEH=∠FEA,∴△OHE∽△FAE,∴=即=,∴EF=,∵CE•ED=BE•AE,∴6k•5k=3a•2a,∴a2=5k2,∴EF=10k,∴点D是EF中点,∴AD=ED=DF=5k,∴△DEA、△BCE都是等腰三角形,∴BC=BE=3a,∵AB是直径,∴∠ACB=90°,∴BC2+AC2=AB2,∴(3a)2+82=(5a)2,∴a=2,∴AB=5a=10.(2)∵a=2,∴k=,∵AF2=DF•FC=80k2=64,∴AF=8,∴tan∠ECB=tan∠AEF===2.【点评】本题考查切线的性质、垂径定理、直角三角形斜边中线性质、等腰三角形的性质、勾股定理等知识,解题的关键是设两个参数,想办法求出EF的长,发现点D是EF中点这个突破口,题目比较难,属于中考压轴题.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.【分析】(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.【解答】(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.【点评】本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.【分析】(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.【解答】(1)证明:如图一,连接OC,则OC⊥EF,且OC=OA,易得∠OCA=∠OAC.∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD,∴∠CAD=∠OAC.即∠CAD=∠BAC.(2)解:与∠CAD相等的角是∠BAG.证明如下:如图二,连接BG.∵四边形ACGB是⊙O的内接四边形,∴∠ABG+∠ACG=180°.∵D,C,G共线,∴∠ACD+∠ACG=180°.∴∠ACD=∠ABG.∵AB是⊙O的直径,∴∠BAG+∠ABG=90°∵AD⊥EF∴∠CAD+∠ACD=90°∴∠CAD=∠BAG.【点评】此题运用了切线的性质定理、圆周角定理的推论.注意根据等角的余角相等是证明角相等的一种常用方法.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.。

专题05 直线与圆的位置关系(原卷版)21-22年九年级数学上学期专题(苏科版)

专题05 直线与圆的位置关系(原卷版)21-22年九年级数学上学期专题(苏科版)
(1)如图1,点P是AC延长线上一点,∠APB=∠ADC,求证:BP与⊙O相切;
(2)如图2,点G在CD上,OF⊥AC于点F,连接AG并延长交⊙O于点H,若CD为⊙O的直径,当∠CGB=∠HGB,BG=2OF=6时,求⊙O半径的长.
30.(2020•乌兰浩特市一模)如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.
(1)求证:EF=BF;
(2)求证:BC是⊙O的切线.
(3)若AB=4,BC=3,求DE的长.
2021-2022学年苏科版数学九年级全册压轴题专题精选汇编
专题05直线与圆的位置关系
一.选择题
1.(2020•江岸区模拟)如图,正方形ABCD的每一条边都与⊙O相切,E、F为切点,BD与⊙O交于H,求 =( )
A. B. C. D.
2.(2020•肥城市三模)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在 上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC的度数为( )
25.(2020•浙江自主招生)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.
26.(2020•浙江自主招生)如图所示,在△ABC中,CD为∠ACB的平分线,以CD为弦作一与AB相切的圆,分别交CA,CB于点M,N.
A.3B. C. D.
二.填空题
9.(2020秋•香坊区期末)如图,菱形OABC的顶点A、B、C在⊙O上,过点B作⊙O的切线交OA的延长线于点D,若⊙O的半径为5,则线段BD的长为.

苏科版九年级数学上《25直线与圆的位置关系》专题练习含答案初三数学试题.docx

苏科版九年级数学上《25直线与圆的位置关系》专题练习含答案初三数学试题.docx

《直线与圆的位置关系》专题练习(2)1. (2016*百色)如图,己知AB 为(30的直径,AC 为<30的切线,0C 交(DO 于点D, BD 的延长线交AC 于点E. (1) 求证:Z1=ZCAD ; (2) 若AE=EC=2,求OO 的半径.2. (2016・济南)(1)如图1,在菱形ABCD 中,CE=CF,求证:AE=AF.(2)如图2, AB 是的直径,PA 与G >0相切于点A, 0P 与OO 交于点C,连接CB, ZOPA=40°,求ZABC 的度数.3. (2016*曲靖)如图,在RtAABC ZBAC=90°, O 是AB 边上的一点,以0A 为半径 的<30与边BC 相切于点E. (1) 若 AC=5, BC=13,求OO 的半径; (2) 过点E 作弦EF 丄AB 于M,连接AF,若ZF=2ZB,求证:四边形ACEF 是菱形.4. (2016*南通)已知:如图,AM 为。

0的切线,A 为切点, 于点D, BD 交OO 于点C, OC 平分ZAOB.B(1)求ZAOB的度数;(2)当OO的半径为2cm,求CD的长.5. (2016*十堰)如图1, AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的 切线,切点为C.(1) 求证:ZACD=ZB ;(2) 如图2, ZBDC 的平分线分别交AC, BC 于点E, F ; ① 求tanZCFE 的值;② 若AC=3, BC=4,求CE 的长.6.丄AO 交AC 于点P,交EC 的延长线于点D. (1) 求证:APCD 是等腰三角形;(2) CG 丄AB 于H 点,交OO 于G 点,过B 点作BF 〃EC,交OO 于点F,交CG 于Q 点, 3(2016-武汉)如图,点C 在以AB 为直径的OO±, AD 与过点C 的切线垂直,垂足为点 AD交图2E 是AB 延长线上一点,EC 切OO 于点C, OP7. D,<30于点E.(1)求证:AC平分ZDAB;4 AF(2)连接BE交AC于点F,若COS ZCAD=5,求FC的值.D r8.(2016*江西)如图,AB是(DO的雙,点P是弦AC ±一动点(不与A, C重合),过点P作PE丄AB,垂足为E,射线EP交AC于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若ZCAB=30°,当F是AC的中点时,判断以A, 0, C, F为顶点的四边形是什么特殊四边形?说明理由.9.(2016*烟台)如图,AABC内接于©0, AC为OO的直径,PB是(30的切线,B为切点,0P 丄BC,垂足为E,交于D,连接BD.(1)求证:BD平分ZPBC;(2)若<90的半径为1, PD=3DE,求0E及AB的长.10.(2016*北京)如图,AB为OO的直径,F为弦AC的中点,连接OF并延长交AC于点D,过点D作<30的切线,交BA的延长线于点E.(1)求证:AC〃DE;(2)连接CD,若0A二AE二a,写出求四边形ACDE面积的思路.11.(2016*南平)如图,PA, PB是OO的切线,A, B为切点,点C在PB上,OC〃AP, CD丄AP于D(1)求证:0C二AD;(2)若ZP=50°, G>0的半径为4,求四边形AOCD的周长(精确到0」)D12. (2016・孝感)如图,在RtAABC ZC=90°,点O 在AB ±,经过点A 的(DO 与BC 相切于点D,与AC, AB 分别相交于点E, F,连接AD 与EF 相交于点G. (1) 求证:AD 平分ZCAB ;(2) 若 0H 丄AD 于点 H, FH 平分ZAFE, DG=1. ①试判断DF 与DH 的数量关系,并说明理由; ⑥求。

苏科新版九年级上25直线与圆的位置关系同步训练含答案解析.docx

苏科新版九年级上25直线与圆的位置关系同步训练含答案解析.docx

2016年苏科新版九年级数学上册同步训练:2.5直线与圆的位置关系一、选择题(共3小题)1.如图,AC是矩形ABCD的对角线,OO是AABC的内切圆,现将矩形ABCD按如图所示的方式折叠, 使点D与点O重合,折痕为FG•点F, G分别在边AD, BC ±,连结OG, DG.若OG丄DG, FLO0的A. CD+DF二4B. CD・DF二2逅・3 C・BC+AB=2A/5+4 D. BC ・ AB=22.若等峻直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. V2B. 2^2-2C. 2-V2D. V2-23.将正方形ABCD绕点A按逆时针方向旋转30。

,得正方形ABQD], B】C]交CD于点E, AB=V3,则V5+1 R 3_馅r V5+1 n3_忑二、填空题(共4小题)4.边长为1的正三角形的内切圆半径为__________ .5.如图,AABC的内心在x轴上,点B的坐标是(2, 0),点C的坐标是(0,・2),点A的坐标是(・3,b),反比例函数y=Z (x<0)的图象经过点A,X则k= ___________ .结果落在区域D屮每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M屮〃这个事件,那么事件A发生的概率P A二与.如图,现在等边AABC内射入一个点则该点落在AABC内切圆中的概率是____________ .7.如图,在边长为2的正三角形屮,将其内切圆和三个角切圆(少角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为三、解答题(共10小题)8.如图,0是厶ABC的内心,BO的延长线和AABC的外接圆相交于点D,连接DC, DA, OA, OC,舛边形OADC为平行以边形.(1)求证:ABOC^ACDA;(2)若AB=2,求阴影部分的面积.9.如图,AD是。

0的切线,切点为A, AB是OO的弦.过点B作BC〃AD,交OO于点C,连接AC, 过点C 作CD〃AB,交AD于点D.连接AO并延长交BC于点M,交过点C的肓线于点P,且ZBCP= ZACD.(1)判断直线PC与(DO的位置关系,并说明理由;(2)若 AB二9, BC=6.求PC 的长.P C10.如图,AB是OO的直径,AM和BN是OO的两条切线,E是0O ±一点,D是AM ±一点,连接DE 并延长交BN于点C,且OD〃BE, OF/7BN.(1)求证:DE与相切;(2)求证:OF二£C D.AD M11.如图,AB是(DO直径,D为OO±一点,AT平分ZBAD交OO于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为OO的切线;(2)若OO半径为2, CT二灵,求AD的长.12.如图,在平面直角坐标系中,以点0为圆心,半径为2的圆My轴交于点A,点P (4, 2)是(DO外一点,连接AP,直线PB与相切于点B,交x轴于点C.(1)证明PA是OO的切线;13.如图,AABC内接于OO, AB是直径,OO的切线PC交BA的延长线于点P, OF〃BC交AC于点E,交PC于点F,连接AF.(1)判断AF与OO的位置关系并说明理由;14.如图,AB是。

2.5 直线与圆的位置关系 苏科版数学九年级上册堂堂练(含答案)

2.5 直线与圆的位置关系 苏科版数学九年级上册堂堂练(含答案)

2.5直线与圆的位置关系—2023-2024学年苏科版数学九年级上册堂堂练1.已知的直径为4,点O到直线m的距离为3,则直线m与的位置关系是( )A.相离B.相交C.相切D.不确定2.已知的半径为5,直线EF经过上一点P(点E,F在点P的两旁),下列条件能判定直线EF与相切的是( )A. B.C.点O到直线EF的距离是4D.3.如图,PA,PB分别切于点A,B,,CD切于点E,分别交PA,PB 于C,D两点,则的周长是( )A.10B.18C.20D.224.如图, PA,PB是的切线, A,B为切点, 若, 则的度数为 ( )A. B. C. D.5.如图,是等边的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则的度数是( )A.65°B.60°C.58°D.50°6.如图,已知是直角,在射线BC上取一点O,以O为圆心,长为半径画圆,射线BA绕点B顺时针旋转_______________时与圆O相切.7.如图,直线l是的切线,A为切点,B为直线l上一点,连接OB交于点C.若,,则OC的长为_________.8.如图,AB为圆O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交圆O于点C,延长CO与AB的延长线交于点D.(1)求证:AC为圆O的切线;(2)若,,求线段AD和AC的长.答案以及解析1.答案:A解析:由的直径为4,则圆的半径为2,点O到直线m的距离为3,可知圆心到直线的距离大于半径,所以直线m与的位置关系是相离;故选A.2.答案:D解析:根据切线的判定定理可求得需要满足的条件.点P在上,只需要即可.故选D.3.答案:C解析:,PB是的切线,.又是的切线,,,的周长.4.答案:B解析:PA,PB是的切线, ,, 即,.5.答案:B解析:如图,连接OE,OF.是的内切圆,E,F是切点,,,,是等边三角形,,,,故选B.6.答案:60°或120°解析:将射线BA绕点B顺时针旋转60°时,记为射线BE,作,垂足为D.在中,,,即OD为的半径,与相切.射线BA绕点B顺时针旋转120°时,同理可证.7.答案:6解析:直线l是的切线,A为切点,OA为半径,,,,,,故答案为:6.8.解析:(1)证明:连接OB,则,如图所示:,,OA是CB的垂直平分线,,在和中,,.AB为圆O的切线,B为切点,,,即,AC是圆O的切线.(2)解:,,,,,,设,则,,,解得,,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
直线与圆、圆与圆的位置关系专题练习
一、选择题
1.如图,⊙O内切于△ABC,D、E、F为三个切点,若∠DEF=520,则∠A的度数为( ) A. 760B.680C.520D.380
2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是( )
A.外离B.相切C.相交D.内含
3.如图,等腰梯形ABCD的腰AD的长为3,⊙O为其内切圆,则它的中位线长是( ) A.3 B.4 C.5 D.6
4.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=750,⊙O的半径为1,
则OC的长为( )
A.3B.2
2C.23
3
D.2
二、填空题
5.如图,AB是⊙O的直径,CD与⊙O相切于点C,∠BAC=500,则∠ACD=________0.
6.如图,AB是⊙O的直径,AM为弦,∠MAB=300,过M点的⊙O的切线交AB延长线于点N.若ON=12 cm,则⊙O的半径为_________cm.
7.两圆相切,圆心距为9 cm,已知其中一圆的半径为5 cm,则另一圆的半径为_______cm. 8.半径分别为13、15的⊙O1,与⊙O 2相交于A、B两点,它们的公共弦AB的长为24,则这两个圆的圆心距为____________.
三、解答题
9.如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,
∠ACB=700.求∠P的度数.
10.如图,AB是⊙O的直径,F是BA的延长线上的一点,EF⊥AB,垂足为F,直线EA 交⊙O于点C,过C作⊙O的切线交直线EF于点D.DC与DE相等吗?为什么?
11.如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O于点C,且∠DAC=∠BAC.
(1)试判断AD与CD的位置关系,并说明理由.
(2)若AD=4,AB=6,求AC.
12.如图,O为原点,点A的坐标为(4,3),⊙A的半径为2.过点A作直线l平行于x 轴,交y轴于点B,点P在直线l上运动.
(1)当点P在⊙A上时,请你直接写出它的坐标.
(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.
13.如图,在直角梯形ABCD中,AD∥BC,∠B=900,AB=8 cm,AD=24 cm,BC=26 cm,AB为⊙O的直径.动点P从A点开始沿AD边向点D以l cm/s的速度运动,动点Q从点C开始沿CB边向点B以3 cm/s的速度运动,P、Q两点同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s,求:
(1)t分别为何值时,四边形PQCD为平行四边形、等腰梯形?
(2)t分别为何值时,直线PQ与⊙O相交、相切、相离?
参考答案
1.A 2.C 3.A 4.C
5.40
6.6
7.4或14
8.4或14
9.∠P为400
10.DC=DE连接OC(图略).则有OC=OA,∠OAC=∠OCA.
又Q CD是⊙O的切线, ∴∠DCA+∠OCA=900.
根据EF⊥AB,∴∠EAF+∠E=900.∴∠E=∠DCA.∴DC=DE
11.(1)AD⊥CD连接OC,则OA=OC.
∴∠OCA=∠BAC.∠OCA=∠DAC.∴AD∥OC.
又CD切⊙O于点C, ∴OC⊥CD.∴AD⊥CD
(2)连接BC.由题意得△ADC∽△ACB.∴AC2=AD·AB.∴12.(1)点P的坐标是(2,3)或(6,3)
(2)连接OP,过点A作AC⊥OP,垂足为C(图略),
则AP=PB-AB=12-4=8,OB=3,=
Q∠ACP=∠OBP=900,∠APC=∠OPB,
∴∆APC∽∆OPB.∴AC AP
OB OP
=,∴
3
AC
=,∴ 1.92
≈<.
∴直线OP与⊙A相交
13.(1)当t=6时,rain PQCD为平行四边形;当t=7时,四边形PQCD为等腰梯形.
(2)当t=2
3或8时,直线PQ与⊙O相切;2
3
t≤<或
26
8
3
t<≤时,直线PQ与⊙O相
交;当28
3
t<<时,直线PQ与⊙O相离。

相关文档
最新文档