带电粒子在电场中的偏转(题,详细)
高中物理每日一点十题之带电粒子在电场中的偏转
高中物理每日一点十题之带电粒子在电场中的偏转一知识点如图,两个相同极板Y与Y′的长度为l,相距d,极板间的电压为U.一个质量为m、电荷量为e的电子沿平行于板面的方向射入电场中,射入时的速度为v0.把两极板间的电场看作匀强电场.(1)电子在电场中做什么运动?如何处理?答案电子在电场中做类平抛运动,应用运动的分解进行处理,沿v0方向:做匀速直线运动;沿静电力方向:做初速度为零的匀加速直线运动(2)设电子不与平行板相撞,完成下列内容(均用题所给字母表示).①电子通过电场的时间t=l v0.②静电力方向:加速度a=eUmd,离开电场时垂直于极板方向的分速度vy=eUlmd v0.③速度与初速度方向夹角的正切值tan θ=eUlmd v02.④离开电场时沿静电力方向的偏移量y=eUl2 2md v02.十道练习题(含答案)一、单选题(共9小题)1. 如果带电粒子进入电场时的速度与匀强电场的电场力垂直,则粒子在电场中做类平抛运动.若不计粒子的重力,影响粒子通过匀强电场时间的因素是( )A. 粒子的带电荷量B. 粒子的初速度C. 粒子的质量D. 粒子的加速度2. 带电粒子垂直进入匀强电场中偏转时(除电场力外不计其他力的作用)( )A. 电势能增加,动能增加B. 电势能减少,动能增加C. 电势能和动能都不变D. 上述结论都不正确3. 如图所示,有一带电粒子贴着A板沿水平方向射入匀强电场,当偏转电压为U1时,带电粒子沿①轨迹从两板正中间飞出;当偏转电压为U2时,带电粒子沿②轨迹落到B板中间;设粒子两次射入电场的水平速度相同,则两次偏转电压之比为( )A. U1∶U2=1∶8B. U1∶U2=1∶4C. U1∶U2=1∶2D. U1∶U2=1∶14. 如图所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A. 它们运动的时间t Q>t PB. 它们运动的加速度a Q<a PC. 它们所带的电荷量之比q P∶q Q=1∶2D. 它们的动能增加量之比ΔE kP∶ΔE kQ=1∶25. 如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A. 2倍B. 4倍C.D.6. 氢的三种同位素氕、氘、氚的原子核分别为H、H、H.它们以相同的初动能垂直进入同一匀强电场,离开电场时,末动能最大的是( )A. 氕核B. 氘核C. 氚核D. 一样大7. 质子和氦核从静止开始经相同电压加速后,又垂直于电场方向进入一匀强电场,离开偏转电场时,它们侧向偏移量之比和在偏转电场中运动的时间之比分别为( )A. 2∶1,∶1B. 1∶1,1∶C. 1∶2,2∶1D. 1∶4,1∶28. 如图所示,带电荷量之比为q A∶q B=1∶3的带电粒子A、B,先后以相同的速度从同一点水平射入平行板电容器中,不计重力,带电粒子偏转后打在同一极板上,水平飞行距离之比为x A∶x B=2∶1,则带电粒子的质量之比m A∶m B以及在电场中飞行的时间之比t A∶t B分别为( )A. 1∶1,2∶3B. 2∶1,3∶2C. 1∶1,3∶4D. 4∶3,2∶19. 如图所示,一重力不计的带电粒子以初速度v0射入水平放置、距离为d的两平行金属板间,射入方向沿两极板的中心线.当极板间所加电压为U1时,粒子落在A板上的P点.如果将带电粒子的初速度变为2v0,同时将A板向上移动后,使粒子由原入射点射入后仍落在P点,则极板间所加电压U2为( )A. U2=3U1B. U2=6U1C. U2=8U1D. U2=12U1二、多选题(共1小题)10. 如图所示,三个α粒子在同一地点沿同一方向垂直飞入偏转电场,出现了如图所示的运动轨迹,由此可判断( )A. 在B飞离电场的同时,A刚好打在负极板上B. B和C同时飞离电场C. 进入电场时,C的速度最大,A的速度最小D. 动能的增加值C最小,A和B一样大1. 【答案】B【解析】水平方向:L=v0t,则粒子在电场中的运动时间t=.2. 【答案】B【解析】整个过程电场力做正功,只有电势能与动能之间相互转化,根据能量守恒,减少的电势能全部转化为动能,故A、C、D错误,B正确3. 【答案】A【解析】由y=at2=··得:U=,所以U∝,可知A项正确4. 【答案】C【解析】设两板距离为h,P、Q两粒子的初速度为v0,加速度分别为a P和a Q,粒子P到上极板的距离是,它们做类平抛运动的水平距离均为l.则对P,由l=v0t P,=a P t,得到a P=;同理对Q,l=v0t Q,h=a Q t,得到a Q=.由此可见t P=t Q,a Q=2a P,而a P=,a Q=,所以q P∶q Q=1∶2.由动能定理得,它们的动能增加量之比ΔE kP∶ΔE kQ=ma P∶ma Q h=1∶4.综上所述,C项正确5. 【答案】C【解析】电子在两极板间做类平抛运动.水平方向:l=v0t,所以t=.竖直方向:d=at2=t2=,故d2=,即d∝,故C正确6. 【答案】D【解析】因为qU1=mv=E k0偏移量:y=,可知三种粒子的偏移量相同.由动能定理可知:qE·y=E k-E k0,E k相同,D正确7. 【答案】B【解析】偏移量:y=,可知y1∶y2=1∶1,时间t=l,t1∶t2=1∶,B正确8. 【答案】D【解析】粒子在水平方向上做匀速直线运动x=v0t,由于初速度相同,x A∶x B=2∶1,所以t A∶t B=2∶1,竖直方向上粒子做匀加速直线运动y=at2,且y A=y B,故a A∶a B=t∶t=1∶4.而ma=qE,m=,=·=×=.综上所述,D项正确9. 【答案】D【解析】板间距离为d,射入速度为v0,板间电压为U1时,在电场中有=at2,a=,t=,解得U1=;A板上移,射入速度为2v0,板间电压为U2时,在电场中有d=a′t′2,a′=,t′=,解得U2=,即U2=12U1,故选D10. 【答案】ACD【解析】由题意知,三个α粒子在电场中的加速度相同,A和B有相同的偏转位移y,由公式y=at2得,A和B在电场中运动时间相同,由公式v0=得v B>v A,同理,v C>v B,故三个粒子进入电场时的初速度大小关系为v C>v B>v A,故A、C正确,B错误;由题图知,三个粒子的偏转位移大小关系为y A =y B>y C,由动能定理可知,三个粒子的动能增加值C最小,A和B一样大,D正确.。
高二物理:带电粒子在电场中的偏转(答案)
高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 带电粒子在匀强电场中的偏转222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 【答案】2. 解电偏转问题的三种方法方法一、分解法(速度三角形和位移三角形):加速度mdqU m qE a ==;时间0v L t =; 偏移2221v L md qU y =;偏角20mdv qUL tan =θ 方法二、推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。
②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
方法三、动能定理法: qEy =ΔE K 【答案】3. 带电粒子在匀强电场中偏转的功能关系(1)当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv20,其中U y =U d y ,指初、末位置间的电势差.(2)电势能的变化量:ΔE P =-qU y =-qEy 【答案】4. 电偏转中的比较与比值问题二、选择题5. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、222ql mv d B 、2202qd mvl C 、qd lmv 0 D 、v dlv q 0【答案】A【解析】图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)。
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
带电粒子在电场中的偏转大题
1、一带电粒子以一定的初速度垂直进入匀强电场,在电场中做类平抛运动。
下列说法正确的是:A. 粒子的电势能一直减小B. 粒子的动能一直增大C. 粒子的速度方向与电场力方向的夹角一直减小D. 粒子的加速度方向与电场力方向相反(答案:A)2、一个带正电的粒子,在电场中仅受电场力作用,从A点运动到B点。
在此过程中,粒子的速度大小随时间变化的图象可能是:A. 速度大小不变B. 速度大小均匀增大C. 速度大小先减小后增大D. 速度大小先增大后减小(答案:C,若粒子先做减速运动,电场力方向与初速度方向相反,后做加速运动,则可能出现此情况)3、带电粒子以相同的速度分别垂直进入水平方向的匀强电场和匀强磁场中,粒子将:A. 在电场和磁场中都做匀速圆周运动B. 在电场中做类平抛运动,在磁场中做匀速圆周运动C. 在电场和磁场中都做匀变速曲线运动D. 在电场中做匀变速直线运动,在磁场中做匀速直线运动(答案:B)4、一带电粒子在电场中运动,只受电场力作用,下列说法正确的是:A. 粒子的运动轨迹一定与电场线重合B. 粒子的速度方向一定与电场力方向相同C. 粒子的速度大小一定变化D. 粒子的动能可能不变(答案:D,如粒子在匀强电场中做匀速圆周运动,动能不变)5、一初速度为零的带电粒子,经过电压为U的加速电场后,垂直进入电势差为U的匀强偏转电场。
已知加速电场和偏转电场的宽度相同,下列说法正确的是:A. 偏转距离随着加速电压U的增大而增大B. 偏转距离与加速电压U无关C. 粒子从偏转电场射出时的速度随着加速电压U的增大而增大D. 粒子从偏转电场射出时的速度方向与加速电压U无关(答案:B)6、带电粒子在电场中偏转时,下列说法正确的是:A. 电场力对粒子一定做正功B. 电场力对粒子可能不做功C. 粒子的电势能可能增加D. 粒子的动能一定增加(答案:B,若粒子初速度与电场力方向垂直且向电场力反方向偏转,则电场力先做负功,电势能增加,动能减小)7、一带电粒子在匀强电场中运动,电场力与运动方向成某一角度,粒子只受电场力作用。
带电粒子在电场中的加速及偏转练习题
带电粒子在电场中的加速及偏转练习题1.如图所示是示波器原理图,电子以电压为U1的加速电场加速后射入电压为U2的偏转电场,离开偏转电场后电子打在荧光屏上的P点,P点与O点的距离叫做偏转距离,而单位偏转电压引起的偏转距离称之为示波器的灵敏度,欲提高示波器的灵敏度,应采取下列哪些方法?()A.提高加速电压U1B.增大偏转电场极板长度C.增大偏转电场极板与荧光屏间的距离D.减小偏转电场极板间的距离2.如图所示,从灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U1,偏转电压为U2,要使电子在电场中的偏转量y变为原来的2倍,可选用的方法是(设电子不落到电极上)A.只使U1变为原来的1/2倍;B.只使U2变为原来的1/2倍;C.只使偏转电极的长度L变为原来的2倍;D.只使偏转电极间的距离d减为原来的1/2倍3.几种不同的正离子,都从静止开始,经一定的电势差加速后,垂直射入到同一个匀强偏转电场中,已知它们在电场中的偏转轨迹完全相同,由此可知[ ]A.它们是经过相同的电势差加速后射入的 B.被加速后它们具有相同的动能C.被加速后它们一定具有相同的速度 D.它们射出偏转电场后速度可能不相同4.三个质量相等,分别带正电、负电和不带电的小球,以相同的速率在带电平行金属板间的P点沿垂直电场方向射入电场,分别落到a 、b 、c 点,如图,则()A.三个小球在电场中运动的时间相等B.三个小球到达正极板时的动能相等C.落到 a 点的小球原来带正电,b 点的小球原来不带电,c 点的小球原来带负电D.三个小球在电场中的加速度 a c>a b>a a5.如图所示,质量为m、电量为q的带电微粒,以初速度V0从A点竖直向上射入水平方向、电场强度为E的匀强电场中。
当微粒经过B点时速率为V B=2V0,而方向与E同向。
下列判断中正确的是A.A、B两点间电势差为2mV02/qB.A、B两点间的高度差为V02/2gC.微粒在B点的电势能大于在A点的电势能D.从A到B微粒作匀变速运动6.一个带正电的微粒放在电场中,场强的大小和方向随时间变化的规律如图所示。
带电粒子在电场中的偏转(含问题详解)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
(完整版)带电粒子在电场中的偏转(含答案)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B错误;在相同的运动时间内,液滴c水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D正确;因为重力做功相同,而电场力对液滴c做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy所在平面与光滑水平面重合,电场方向与x轴正向平行,电场的半径为R= 2 m,圆心O与坐标系的原点重合,场强E=2 N/C.一带电荷量为q=-1×10-5 C、质量m=1×10-5 kg的粒子,由坐标原点O处以速度v0=1 m/s沿y轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间;(2)粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s(2)(-1 m,1 m)(3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0t x 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域内有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说法正确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为 mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2DR ,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12m v 2D -12m v 20 解得v 0= 103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR310、在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A点以一定的初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如图所示.由此可见()A.电场力为3mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等答案AD解析设AC与竖直方向的夹角为θ,带电小球从A到C,电场力做负功,小球带负电,由动能定理,mg·AC·cos θ-qE·BC·cos θ=0,解得电场力为qE=3mg,选项A正确,B 错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转、基础知识1 、带电粒子在电场中的偏转(1) 条件分析:带电粒子垂直于电场线方向进入匀强电场. (2) 运动性质:匀变速曲线运动.(3) 处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间la.能飞出电容器: t = .v 01 qU 2mdyy=2at=2mdt, t =qU②沿电场力方向,做匀加速直线运动F qE Uq加速度: a = = =m m md1Uql 2离开电场时的偏移量: y = at 2= 22 2mdv 2v y Uql离开电场时的偏转角: tan θ= = 2v 0 mdv 20特别提醒 带电粒子在电场中的重力问题(1) 基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外, 考虑重力 (但并不忽略质量 ).b.不能飞出电容器:般都不(2) 带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2 、带电粒子在匀强电场中偏转时的两个结论(1) 不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.1证明:由 qU 0=2mv 0211 qU 1 ly =2at 2=2·md ·(v 0)2(2) 粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点 O 为粒子水平位移l的中点,即 O 到偏转电场边缘的距离为 2.3 、带电粒子在匀强电场中偏转的功能关系U中 U y =d y ,指初、末位置间的电势差.二、练习题1 、如图,一质量为 m ,带电量为+ q 的带电粒子,以速度 v 0 垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是 ( )tanqU 1lmdv 20 U 1l 2U 1l得:y =4U 0dtan θ=2U 0d当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解:1qU y =2mv 21 mv 220,其A.粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B.粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C.分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D.分析该运动,有时也可用动能定理确定其某时刻速度的大小答案BCD2 、如图所示,两平行金属板 A、B长为 L=8 cm ,两板间距离 d=8 cm ,A板比 B板电势高300 V ,一带正电的粒子电荷量为 q=1.0×10-10 C,质量为 m = 1.0 ×10 -20 kg,沿电场中心线 RO垂直电场线飞入电场,初速度 v0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS间的无电场区域,然后进入固定在O 点的点电荷 Q 形成的电场区域(设界面 PS右侧点电荷的电场分布不受界面的影响).已知两界面 MN 、PS相距为12 cm ,D 是中心线 RO与界面 PS的交点, O 点在中心线上,距离界面 PS为9 cm ,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k=9.0 ×109 N·m 2/C2,粒子的重力不计)(1) 求粒子穿过界面 MN 时偏离中心线 RO的距离多远?到达 PS界面时离 D 点多远?(2) 在图上粗略画出粒子的运动轨迹.(3) 确定点电荷 Q 的电性并求其电荷量的大小.解析(1)粒子穿过界面 MN 时偏离中心线 RO的距离(侧向位移):1y= at22F qU a==m dmL=v0t1 qU L则y=2at2=2md(v0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与 PS 交于 H,设 H 到中心线的距离为 Y,则有1L2y=,解得 Y=4y=12 cm1YL+12 cm2(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略)(3) 粒子到达 H 点时,其水平速度 v x= v0 =2.0 ×10 6 m/s竖直速度 v y= at= 1.5 ×10 6 m/s则 v 合=2.5 ×10 6 m/s该粒子在穿过界面 PS后绕点电荷 Q 做匀速圆周运动,所以 Q带负电根据几何关系可知半径 r=15 cmqQ v2合k2=mr2r解得 Q≈1.04 ×10 -8 C答案(1)12 cm (2)见解析(3)负电 1.04 ×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L、电场强度为 E 的匀强电场,在与右侧虚线相距也为 L 处有一与电场平行的屏.现有一电荷量为+q 、质量为 m 的带电粒子(重力不计),以垂直于电场线方向的初速度 v0 射入电场中, v0 方向的延长线与屏的交点为 O.试求:(1) 粒子从射入电场到打到屏上所用的时间;(2) 粒子刚射出电场时的速度方向与初速度方向间夹角的正切值(3) 粒子打在屏上的点 P到 O 点的距离 x.2L qEL 3qEL2答案(1) (2) 2 (3) 2v0 mv 022mv20tan α;解析(1) 根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入场中的加速度为: a = E m qmL qEL 所以 v y = a = v 0 mv 0(3) 解法一 设粒子在电场中的偏转距离为 y ,则又 x = y + L tan α,4 、如图所示,虚线 PQ 、 MN 间存在如图所示的水平匀强电场,一带电粒子质量为 m = 2.0×10 -11 kg 、电荷量为 q =+ 1.0 ×10 -5 C ,从 a 点由静止开始经电压为 U =100 V 的 电场加速后, 垂直于匀强电场进入匀强电场中, 从虚线 MN 的某点 b (图中未画出 )离开 匀强电场时速度与电场方向成 30 °角.已知PQ 、MN 间距为 20 cm ,带电粒子的重力 忽略不计.求:电场到打到屏上所用的时间 2Lt = .v 0(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tanv y α=v 0qELmv 021 qEL 22·mv 2解得: x = 3qEL 22mv 20解法Lx =v y · + y = v 03qEL 2 2mv 20 解法三L L + x 2 由= 得: yLx =3y = 3qEL 22mv 201L(1) 带电粒子刚进入匀强电场时的速率 v1 ;(2) 水平匀强电场的场强大小;(3) ab 两点间的电势差.答案(1)1.0 ×104 m/s (2)1.732 ×103 N/C(3)400 V1解析(1)由动能定理得: qU =2mv 21代入数据得 v1= 1.0 ×10 4 m/s(2) 粒子沿初速度方向做匀速运动: d=v1t粒子沿电场方向做匀加速运动: v y= atv1由题意得:tan 30 °=v y由牛顿第二定律得: qE= ma联立以上各式并代入数据得:E=3×103 N/C ≈1.732 ×103 N/C1(3) 由动能定理得: qU ab= m(v21+v y2)-0联立以上各式并代入数据得: U ab=400 V .5 、如图所示,一价氢离子(11H) 和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点 D .先后到达屏上不同点答案B解析一价氢离子(1 H)和二价氦离子(24He) 的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选 B.6 、如图所示,六面体真空盒置于水平面上,它的 ABCD 面与 EFGH 面为金属板,其他面为绝缘材料. ABCD 面带正电, EFGH 面带负电.从小孔 P沿水平方向以相同速率射入三个质量相同的带正电液滴 a、b 、 c,最后分别落在1、2、3 三点.则下列说法正确的A .三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴 c 所带电荷量最多答案D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项 A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项 B 错误;在相同的运动时间内,液滴 c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项 D 正确;因为重力做功相同,而电场力对液滴 c 做功最多,所以它落到底板时的速率最大,选项 C 错误.7 、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中 xOy 所在平面与光滑水平面重合,电场方向与 x 轴正向平行,电场的半径为 R= 2 m ,圆心 O 与坐标系的原点重合,场强 E=2 N/C. 一带电荷量为 q=-1×10 -5 C、质量 m =1 ×10 -5 kg 的粒子,由坐标原点 O 处以速度 v0=1 m/s 沿 y 轴正方向射入电场(重力不计),求:(1) 粒子在电场中运动的时间;(2) 粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s (2)( - 1 m,1 m) (3)2.5 ×10-5 J解析(1) 粒子沿 x 轴负方向做匀加速运动,加速度为a,则有:1 Eq=ma ,x=2at2沿 y 轴正方向做匀速运动,有y=v0tx2+y2=R2解得 t=1 s.(2) 设粒子射出电场边界的位置坐标为(-x1,y1),则有1 x1= at2=1 m ,y1=v0t=1 m ,即出射点的位置坐标为(-1 m,1 m) .1(3) 射出时由动能定理得 Eqx1=E k- mv 20代入数据解得 E k=2.5 ×10 -5 J.8 、如图所示,在正方形 ABCD 区域内有平行于 AB 边的匀强电场, E、F、G、H 是各边中点,其连线构成正方形,其中P 点是 EH 的中点.一个带正电的粒子( 不计重力) 从 F点沿 FH 方向射入电场后恰好从 D 点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形 ABCD 区域D.若将粒子的初速度变为原来的一半,粒子恰好由 E 点射出正方形 ABCD 区域答案BD解析粒子从 F 点沿 FH 方向射入电场后恰好从 D 点射出,其轨迹是抛物线,则过 D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过 P 点,所以粒子轨迹一定经过 PE之间某点,选项 A 错误, B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项 C 错误,D 正确.9 、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道 AB部分为倾角为30 °的斜面,AC 部分为竖直平面上半径为 R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为 m 的小球,带正电荷量为 q =E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,mg ′,大小为类比重力场,将电场力与重力的合力视为等效重力效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点” (D 点 )满足等效重力刚好提112mg ′R= mv 2D - mv 222 因此要使 小球安 全通过圆轨道, 初速度应满足 v ≥10 、在空间中水平面 MN 的下方存在竖直向下的匀强电场,质量为 m 的带电小球由 MN上方的 A 点以一定的初速度水平抛出,从 B 点进入电场,到达 C 点时速度方向恰好水 平, A 、B 、 C 三点在同一直线上,且 AB =2BC ,如图所示.由此可见 ( )mv 2D供向心力,即有:mg ′= ,因 θ=30 °与斜面的倾角相等,由几何关系可知 ADR2R ,令小球以最小初速度v 0 运动,由动能定理知:3,得 θ=30°,等3qE, tan θ=mgmg ′ = qE 2+ mgA.电场力为3mgB.小球带正电C.小球从 A 到 B 与从 B 到 C 的运动时间相等D.小球从 A到 B与从 B到 C的速度变化量的大小相等答案AD解析设 AC 与竖直方向的夹角为θ,带电小球从 A 到 C,电场力做负功,小球带负电,由动能定理,mg ·AC·cos θ-qE·BC·cos θ=0 ,解得电场力为 qE =3 mg ,选项 A 正确,B错误.小球水平方向做匀速直线运动,从 A到 B的运动时间是从B到 C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从 A到 B 与从 B到 C 竖直方向的速度变化量的大小相等,水平方向速度不变,小球从 A到 B与从B到 C的速度变化量的大小相等,选项 D 正确.。
带电粒子在静电场中的偏转角问题
带电粒子在静电场中的偏转角问题1.已知电荷情况及初速度如图所示,设带电粒子质量为m.带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U 1.若粒子飞出电场时偏转角为θ,则tan θ=v y v x ,式中v y =at =qU 1dm ·l v 0,v x =v 0,代入得tan θ=qU 1l mv 20d①. 结论:动能一定时tan θ与q 成正比,电荷量相同时tan θ与动能成反比.2.已知加速电压U 0若不同的带电粒子是从静止经过同一加速电压U 0加速后进入偏转电场的,则由动能定理有:qU 0=12mv 20②.由①②式得:tan θ=U 1l 2U 0d③. 结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度总是相同的.考点2 粒子的偏转量问题1.y =12at 2=12·qU 1dm ·⎝⎛⎭⎫l v 02④做粒子速度的反向延长线,设交于O 点,O 点与电场边缘的距离为x ,则x =y tan θ=qU 1l 22dmv 20qU 1l mv 20d=l 2⑤. 结论:粒子从偏转电场中射出时,就像是从极板间的l/2处沿直线射出.2.若不同的带电粒子是从静止经同一加速电压U 0加速后进入偏转电场的,则由②④式得:y =U 1l 24U 0d⑥. 结论:粒子的偏转角和偏转距离与粒子的q 、m 无关,仅取决于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的.典型例题1· 如图所示,真空中水平放置的两个相同极板Y 和Y ′长为l ,相距d ,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心;(2)求两板间所加偏转电压U YY ′的范围;(3)求粒子可能到达屏上区域的长度.1.(15年浙江一模)两平行导体板间距为d ,两导体板加电压U ,不计重力的电子以平行于极板的速度v 射入两极板之间,沿极板方向运动距离为L 时侧移为y.如果要使电子的侧移y′=y 4,仅改变一个量,下列哪些措施可行( ) A .改变两平行导体板间距为原来的一半B .改变两导体板所加电压为原来的一半C .改变电子沿极板方向运动距离为原来的一半D .改变电子射入两极板时的速度为原来的2倍2.如图所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,则下列结论正确的是( )第2题图A .板间电场强度大小为mg/qB .板间电场强度大小为2mg/qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间3.(14年南昌模拟)如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为45°,则此带电小球通过P 点时的动能为( )A .mv 20B .12mv 20 C .2mv 20 D .52mv 20第3题图4.(13年榆林模拟)如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷(即粒子的电荷量与质量之比)是( )A .1∶2B .2∶1C .1∶8D .8∶1第4题图举一反三 如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两极的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4B .T 2<t 0<3T 4C .3T 4<t 0<TD .T <t 0<9T 8。
高一物理电荷在电场中的偏转试题答案及解析
高一物理电荷在电场中的偏转试题答案及解析1.(12分)两平行金属板A、B水平放置,两板间距cm,板长cm,一个质量为kg的带电微粒,以m/s的水平初速度从两板间正中央射入,如图所示,取m/s2。
(1)当两板间电压V时,微粒恰好不发生偏转,求微粒的电量和电性。
(2)要使微粒不打到金属板上,求两板间的电压的取值范围?【答案】(1) C ,微粒带负电(2)-600V<UAB<2600V【解析】(1)微粒恰好不偏转时有:(2分)解得 C (1分)微粒带负电(1分)(2)粒子能穿过电场需用时间(1分)设粒子偏转的最大加速度,则最大侧移量解得m/s2(2分)当粒子恰好打在下极板边缘时,两板间的电压为U1则,解得V(2分)当粒子恰好打在上极板边缘,两极板间的电压为解得V(1分)则微粒不能打到金属板上的电压范围为-600V<UAB<2600V(2分)【考点】考查了带电粒子在电场中的偏转2.如图,板间距为d、板长为4d的水平金属板A和B上下正对放置,并接在电源上.现有一质量为m、带电量+q的质点沿两板中心线以某一速度水平射入,当两板间电压U=U,且A接负时,该质点就沿两板中心线射出;A接正时,该质点就射到B板距左端为d的C处.取重力加速度为g,不计空气阻力.求(1)质点射入两板时的速度;(2)当A接负时,为使带电质点能够从两板间射出,两板所加恒定电压U的范围.【答案】(1)(2)【解析】:(1)当两板加上电压且A板为负时,有:…①A板为正时,设带电质点射入两极板时的速度为v,向下运动的加速度为a,经时间t射到C点,有:…②又水平方向有…③竖直方向有…④由①②③④得:…⑤(2)要使带电质点恰好能从两板射出,设它在竖直方向运动的加速度为a1、时间为t1,应有:…⑥…⑦由⑥⑦⑧得:…⑧若的方向向上,设两板所加恒定电压为,有:…⑨若的方向向下,设两板所加恒定电压为,有:…⑩⑧⑨⑩解得:,所以,所加恒定电压范围为:【考点】考查了带电粒子在电场中的偏转3.如图所示,静止的电子在加速电压为U1的电场作用下从O经P板的小孔(位于P板的中点)射出,又垂直进入平行金属板间的电场,在偏转电压为U2的电场作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该 ()A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的倍D.使U2变为原来的【答案】A【解析】电子先经过加速电场加速,后经偏转电场偏转,根据结论,分析要使U1加倍,想使电子的运动轨迹不发生变化时,两种电压如何变化。
带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)
第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。
M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。
带电粒子在电场中运动题目及标准答案(分类归纳经典)
带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
带电粒子在匀强电场中的偏转(解析版)
带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。
【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。
(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。
【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。
专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动(解析版)
高二物理期末综合复习(特训专题+提升模拟)专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动一、带电粒子在匀强电场中的偏转1.如图所示,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,间距为d =0.125L 。
质子由静止开始经加速电场加速后。
沿平行于极板的方向射入偏转电场,并从另一侧射出。
已知质子的比荷为k ,加速电场电压为U 0,忽略质子所受重力。
质子射入偏转电场时的初速度v 0和从偏转电场射出时沿垂直板面方向的偏转距离Δy 分别是( )A2ULU B 04ULU C2ULU D 04ULU 【答案】C【详解】质子在加速电场中,根据动能定理有20012mv qU = ①解得0v =②根据牛顿第二定律可得质子在偏转电场中的加速度大小为qUa md= ③根据运动学规律可得质子在偏转电场中的运动时间为0L t v = ④并且21Δ2y at = ⑤由题意知d =0.125L ⑥联立①③④⑤⑥解得2ΔULy U =⑦故选C 。
2.示波器是一种多功能电学仪器,如图所示。
大量电性相同的带电粒子在电压为U 1的电场中由静止开始加速,从M 孔射出,然后水平射入电压为U 2的平行金属板间的电场中,在满足带电粒子能射出平行板电场区域的条件下(不计粒子重力和粒子之间的相互作用),下列说法正确的是( )A .若电荷量q 相等,则带电粒子在偏转场板间的加速度大小相等B .若电荷量q 相等,则带电粒子从M 孔射出的动能不相等C .无论比荷qm是否相等,全过程中电场力做功均相同 D .无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出 【答案】D【详解】A .根据牛顿第二定律得带电粒子在偏转电场中的加速度大小2qU qE a m md==知电荷量相等,质量未知,则带电粒子在偏转电场中的加速度大小不一定相等,故A 错误;B .带电粒子在加速度电场中加速过程,根据动能定理得21k 012qU E mv ==解得0v =电粒子电荷量相等,则带电粒子从M 孔射出的动能相等,故B 错误;D .带电粒子进入平行金属板间做类平抛运动,设极板长度为L ,板间距离为d ,粒子在水平方向做匀速直线运动,则有0L v t =得0Lt v =粒子射出电场时偏转角度正切值00tan y v at v v θ==结合0v =2qU a md =;0L t v =联立得21tan 2U L U d θ=可知tan θ与q m 无关,因为位移偏转角的正切值总为速度偏转角正切值的二分之一,即tan 2tan θα=可得无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出,故D 正确;C .由D 选项可知,所有带电粒子在电场偏转电场中沿着电场方向的位移相等设为y ,则电场力对带电粒子所做的功为21qU yW qU d=+知只有电荷量相等时,电场力做功相等,故C 错误。
带电粒子在电场中的偏转(题_详细)
l 2
强化练习
5、如图所示,有一电子(电量为e、质量为 m)经电压U0加速后,沿平行金属板A、B中 心线进入两板,A、B板间距为d、长度为L, A、B板间电压为U,屏CD足够大,距离A、 B板右边缘2L,AB板的中心线过屏CD的中 心且与屏CD垂直。试求电子束打在屏上的 位置到屏中心间的距离。
1、三个电子在同一地点沿同一直线垂直飞 入偏转电场,如图所示。则由此可判断 ( ) BCD A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
√ √ √
强化练习 2、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( B ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
1.9 带电粒子在电场中的运动
辛集市第一中学
仪器名称:示波器 型 号:COS5100
北京正负电子对撞机加速器的 起点
系统运行时,数以10亿计的电子就 将从这条加速管中以接近光速冲进 储存环中发生碰撞
1.9 带电粒子在电场 中的运动
电场中的带电粒子一般可分为两类:
1、带电的基本粒子:如电子,质子,α粒子,正负 离子等。这些粒子所受重力和电场力相比小得多,除 非有说明或明确的暗示以外,一般都不考虑重力。 (但并不能忽略质量)。
二. 带电粒子在电场中的偏转
+ + + + + + + + +
带电粒子在电场中偏转
·O
U2
D.使U2变为原来的1/2倍
U1
解:电子先经加速电场加速后进入偏转电场做类平抛运动.
qU 1
1 2
mv
2 0
①
y 1 at2 2
联立①②两式可得电子的偏移量
y
q U2 x 2 2mUd2 xv022
② ③
电学搭 台,力 学唱戏。
要使电子的轨迹不变,则应使电子进入偏4U转1d电场后,任一水
平位移x所对应的侧移距离y不变. U2 U1 由此选项A正确.
运动的位移和初速度为零的匀加速运动的分运动的位移大小相等均为两板间的距离d.
过加速后以速度v0垂直进入偏转电场,离开偏转电场时 偏移量为h,两平行板间距为d,电压为U,板长为L,每
单位电压引起的偏移量(h/U)叫做示波管的灵敏度,
为了提高灵敏度,可采用的办法是( C )
A.增加两极板间的电势差U
B.尽可能缩短板长L C.尽可能减小板间距d
v0
D.使电子的入射速度v0大些
h
h 1 (eU )( L )2 2 m d v0
2U0 d ④ U
⑵对电子运动的整个过程根据动能定理可求出电子穿出电场
时的动能
EK
eU
0
e
U 2
e(U 0
U 2
)
⑤
提升物理思想:整个过程运用动能定理解题
例5.空间某区域有场强大小为E的匀强电场,电场的边
界MN和PQ是间距为d的两个平行平面,如果匀强电场的
方向第一次是垂直于MN指向PQ界面,第二次是和MN界面
④
联立②④两式可得
y1 4 y2
⑤
模型化归:带电粒子在匀强 电场中做“类平抛运动”
高二物理电荷在电场中的偏转试题答案及解析
高二物理电荷在电场中的偏转试题答案及解析1.如图所示,一带电粒子以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场. 电场强度大小为E,方向竖直向上. 当粒子穿出电场时速度大小变为原来的倍. 已知带电粒子的质量为m,电量为q,重力不计. 粒子进入磁场前的速度与水平方向成60°角,如图. 试解答:(1)粒子带什么电?(2)带电粒子在磁场中运动时速度多大?(3)该圆形磁场区域的最小面积为多大?【答案】(1)负电(2)(3)S=【解析】(1)已知磁场垂直纸面向里,粒子在磁场中向右偏转600垂直进入电场,由左手定则判断:粒子一定带负电---------------2分(2)粒子在电场中做类平抛运动,水平方向: ----------1分竖直方向: ---------1分其中,; ---------2分解得: -------------------2分(3) 粒子在磁场中做匀速圆周运动,由洛伦兹力完全提供向心力:,即:将v代入,得: ----------------2分已知速度偏向角为600,磁场面积最小值是以R为直径的圆:整理得: S= ------------------2分【考点】考查了带电粒子在电磁场中的运动2.(12分)如图所示,水平放置的两块长直平行金属板a、b相距为d,b板下方整个空间存在着磁感应强度大小为B、方向垂直纸面向里的匀强磁场.今有一质量为m、电荷量为+q的带电粒子(不计重力),从a板左端贴近a板处以大小为v的初速度水平射入板间,在匀强电场作用下,刚好从b板的狭缝P处穿出,穿出时的速度方向与b板所成的夹角为θ=30°,之后进入匀强磁场做圆周运动,最后粒子碰到b板的Q点(图中未画出)。
求:(1)a、b板之间匀强电场的电场强度E和狭缝P与b板左端的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l 2
强化练习
5、如图所示,有一电子(电量为e、质量为 m)经电压U0加速后,沿平行金属板A、B中 心线进入两板,A、B板间距为d、长度为L, A、B板间电压为U,屏CD足够大,距离A、 B板右边缘2L,AB板的中心线过屏CD的中 心且与屏CD垂直。试求电子束打在屏上的 位置到屏中心间的距离。
y U 2l
与粒子的电量q、 质量m无关
2
4U 1d
与粒子的电量q、 质量m无关
U 2l y 4U1d
2
强化练习 4、试证明:带电粒子垂直进入偏转电场,离开电 场时就好象是从初速度所在直线的中点沿直线离 开电场的。
x
θ
qUl y 2 2mv0 d
2
qUl tan 2 mv0 d
2
qUl 2 y 2mv0 d x qUl tan 2 mv0 d
1、三个电子在同一地点沿同一直线垂直飞 入偏转电场,如图所示。则由此可判断 ( ) BCD A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
√ √ √
强化练习 2、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( B ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
1 qU mv 2 2 2 qU v m
粒子加速后的速度只与加速电压有关
思考题
如两极板间不是匀强电场该 用何种方法求解?为什么?
由于电场力做功与场强是 否匀强无关,与运动路径也 无关,第二种方法仍适用!
例1
所以
结论:由于电场力做功与场强是否 匀强无关,与运动路径也无关,所 以在处理电场对带电粒子的加速问 题时,一般都是利用动能定理进行 处理。
qUl tan 2 mv0 d
与电量成正比
qUl y 2 2mv0 d
与电量成正比
2
强化练习
2、下列粒子由静止经加速电压为U的电场加速 后,哪种粒子动能最大 ( D) 哪种粒子速 度最大 ( )B A、质子 B、电子 e/m(质子 ) C、氘核 D、氦核
1 2 Ek mv qU v 2
l y' ( l L)U 2 2dU 1 2 K yU y
偏移量与YY׳偏 转电极的电压U2 成正比
四、示波器的原理
1)、如果在电极XX’之间不加电压,而在 YY’之间加不变电压,使Y的电势比Y’高, 电子将打在荧光屏的什么位置?
电子沿Y方 波器的原理
结论:带电粒子初速度垂直于电场方向飞入 匀强电场的问题就是一个类平抛的问题。 粒子在与电场垂直的方向上做匀速直线运动
粒子在与电场平行的方向上做初速为零的匀 加速运动
例3
Y
+ + + + + +
v0
L
U
q
d
1.受力分析:粒子受到竖直向 下的静电力F=Eq=qU/d。
2.运动规律分析:粒子作类平抛运动。 v0 x方向:匀速直线运动 qU Y方向:加速度为 a 的匀加速直线 vy v md 运动。 3. x方向
y
F Y′
- - - - - θ
v0 v
vx v0
qU L vy md v0
vy v0
L v0t
4. y方向
vy
1 qU L2 y 2 2 md v0
5、离开电场时的偏转角度的正切:
tanθ =
qUL
2 mdv0
强化练习
1、质子(质量为m、电量为e)和二价氦离子 (质量为4m、电量为2e)以相同的初动能垂 直射入同一偏转电场中,离开电场后,它 们的偏转角正切之比为 2:1 ,侧移之 比为 。 2:1
例3: 一束电子流经 U=5000V 的电 压加速后,在距两极板等间距处垂直进 入平行板间的匀强电场中,若两板间距 d=1.0cm,板长 l=5.0cm,那么,要使电 子能从平行板间飞出,两个板之间的电 压最多能加多少?
强化练习
1.电子在同一地点沿同一直线垂直飞入偏 转电场,如图所示。则由此可判断( ) A、 b和c同时飞离电场 B、在b飞离电场的瞬间,a刚好打在下极 板上 C、进入电场时,c速度最大,a速度最小 D、c的动能增量最小, a和b的动能增量一样大
三、示波管的原理
产生高速飞 行的电子束
锯齿形扫 描电压
使电子沿x 方向偏移
待显示的 电压信号
使电子沿Y 方向偏移
3.原理
已知:U1、l、YY׳偏转电极的电压U2、板间距d 、 板端到荧光屏的距离L。 求:电子射出偏转电场时的偏向角正切值tanφ及打 到屏上电子的偏移量y。׳ y' U 2l U 2l y' tan tan l L 2dU 1 2dU 1 l L 2 2
解析
qUl y 2 2mv0 d
2
而yc yb
t c tb t a tb
l v0c v0b 又t v0 ya yb 又y 1 at 2 2
而la lb
v0 a v0b
Ek W qEy Eka Ekb Ekc
强化练习
+ + v0
+
+ θ
+
d 2
- -
-
l/2
-
-
二. 带电粒子在电场中的偏转
3.示波管的原理
(1)示波器:用来观察电信号随时间变化的电子仪器 。其核心部分是示波管 (2)示波管的构造:由电子枪、偏转电极和荧光屏组 成(如图)。 (3)原理:利用了带电粒子在电场中偏转的规律,灵 敏、直观地显示出电信号随时间变化的图线。
解析
对加速过程由动能定理:
1 2 eU0 mv0 2 Ul tan 2U 0 d
mv0 2eU 0
2
电子离开电场,就好象从中点沿直线离开的:
l y' ( 2l ) tan 2 2 5Ul 4U 0 d
y'
θ
强化练习
6、质量为1×10-25kg、电量为1×10-16C 的带电粒子以2×106m/s速度从水平放置的 平行金属板A、B中央沿水平方向飞入板间, 如图所示。已知板长L=10cm,间距d= 2cm,当AB间电压在 范围内时, 此带电粒子能从板间飞出。
二. 带电粒子在电场中的偏转
+ + + + + + + + +
d
q、 m +
v0
- - - - - - - -
U
l
二. 带电粒子在电场中的偏转
+ + + + + + + + + + +
d
q、 m +
v0
y
+ θ - - - - - - - - - - -
侧移
U F
v0 v
l
vy
偏转角
试根据类平抛运动的知识,推导偏移量 y和偏转角θ
例2:如图所示,在P板附近有一电子由静止开始 向Q板运动,则关于电子在两板间的运动情况,下列 叙述正确的是:( AC ) A.两板间距越大,加速的时间越长 B.两板间距离越小,加速度就越大, 则电子到达Q板时的速度就越大 C.电子到达Q板时的速度与板间距 离无关,仅与加速电压有关 D.电子的加速度和末速度都与板间 距离无关
解析
对加速过程由动能定理:
1 2 qU1 mv0 2
mv0 2qU1
2
对偏转过程由偏转角正切公式:
eU 2l U 2l tan 2 mv0 d 2U 1d
与粒子的电量q、 质量m无关
U 2l y 4U1d
2
强化练习
3、如图所示,二价氦离子和质子的混合体, 经同一加速电场加速后,垂直射入同一偏 转电场中,偏转后,打在同一荧光屏上, 则它们( )ABC A、侧移相同 B、偏转角相同 C、到达屏上同一点 D、到达屏上不同点
2、带电微粒:如带电小球、液滴、尘埃等。除非有 说明或明确的暗示以外,一般都考虑重力。
3、某些带电体是否考虑重力,要根据题目暗示或运 动状态来判定
带电粒子在匀强电场中
受力情况:受到恒定的电场力
运动情况: 做匀变速运动
一. 带电粒子在电场中的加速
v0 0
E1
vt ?
用动能定理分析
用牛顿运动定律分析
1.9 带电粒子在电场中的运动
遂川县瑶厦中学 康小军
仪器名称:示波器 型 号:COS5100
北京正负电子对撞机加速器的 起点
系统运行时,数以10亿计的电子就 将从这条加速管中以接近光速冲进 储存环中发生碰撞
1.9 带电粒子在电场 中的运动
电场中的带电粒子一般可分为两类:
1、带电的基本粒子:如电子,质子,α粒子,正负 离子等。这些粒子所受重力和电场力相比小得多,除 非有说明或明确的暗示以外,一般都不考虑重力。 (但并不能忽略质量)。
U (加速电压)
U
1、受力分析:
+ q m F _
水平向右的电场力 F=Eq=qU/d
d 带电粒子的加速
2、运动分析: 初速度为零,加速度 为a=qU/md的向右匀 加速直线运动。
解法二 运用能量知识求解
解法一 运用运动学知识求解
qU 2qU v 2ad 2 d md m