泛函分析复习指导

合集下载

泛函分析期末复习提要

泛函分析期末复习提要

泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1. 距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。

2. 距离空间中的点集:开集与闭集、稠密子集,可分距离空间。

3. 完备距离空间:Cauchy 列,完备性、闭球套定理、纲,纲定理、距离空间完备化。

4. 压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。

5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射,同胚、分离公理。

6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。

7.距离空间的紧性:列紧集,全有界集、Arzela 定理。

重点 掌握距离空间的基本概念、 距离空间中的点集、 完备距离空间、 压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。

难点 完备距离空间、 压缩映射原理。

(二)教学基本要求1.理解距离空间、距离空间中的点集等基本概念。

2.了解完备距离空间的概念,掌握压缩映射原理的证明。

3.理解拓扑空间的基本概念及其运算性质。

二、赋范线性空间(一)教学内容1. 赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。

2. 空间)1(≥p L p:Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞。

3. 赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

4. 有穷维赋范空间。

重点 赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

难点 Holder 不等式与Minkowski 不等式、赋范空间的完备化、空间)1)((≥p E L p 、空间)(E L ∞。

考研数学备考如何做好泛函分析的复习

考研数学备考如何做好泛函分析的复习

考研数学备考如何做好泛函分析的复习泛函分析是考研数学中的一门重要课程,对于数学相关专业的考研生来说,学好泛函分析是非常关键的。

然而,由于泛函分析的抽象性和难度较大,很多考生在备考过程中感到困惑。

下面将从如何理解泛函分析、合理安排复习时间以及选择合适的学习方法等方面给出几点建议,帮助考生更好地备考泛函分析。

一、理解泛函分析的基本概念和思想理解泛函分析的基本概念和思想是备考泛函分析的第一步。

首先,要熟悉泛函分析的基本概念,如拓扑空间、线性算子、连续性、紧算子等。

这些基本概念是学好泛函分析的基础。

其次,要掌握泛函分析的基本思想,了解泛函分析研究的对象、问题的关键,以及泛函分析在数学中的应用领域。

通过理清泛函分析的基本概念和思想,考生能够更好地把握学习重点,提高复习效果。

二、合理安排复习时间合理安排复习时间是备考泛函分析的关键。

首先,考生要有一个详细的复习计划,明确每天复习的内容和时间安排。

可以根据泛函分析的教材和考纲,将知识点分成若干部分,按照难易程度和重要程度进行排序,然后合理安排复习时间,每天专注复习一个或几个知识点。

其次,要注意分配好每天的复习时间和休息时间,保持良好的学习节奏和学习状态。

最后,要留出足够的时间进行综合复习和答题训练,巩固所学知识,并熟悉考试形式和要求。

三、选择合适的学习方法选择合适的学习方法是备考泛函分析的重要环节。

首先,要结合个人的学习习惯和特点,选择适合自己的学习方法。

有的学生喜欢通过阅读教材和笔记来学习,有的学生喜欢通过听课和上课笔记来学习,还有的学生喜欢通过讨论和解题来学习。

只有找到适合自己的学习方法,才能够事半功倍。

其次,可以参加相关的学习班或者辅导班,听取专业的老师的讲解和解题技巧,加深对于泛函分析的理解。

另外,可以加入相关的学习社群或者网络论坛,与他人进行交流和讨论,互相学习和帮助。

通过不同方式的学习,可以提高学习效果,更好地备考泛函分析。

四、重点强化解题能力泛函分析的考试往往以解答问题为主,因此解题能力的强弱直接影响考试成绩。

泛函分析复习与总结

泛函分析复习与总结

泛函分析复习与总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和线性算子的学科。

它的研究对象不再是有限维线性空间上的向量,而是函数或者函数空间,包括无限维的函数空间。

泛函分析在数学中有着广泛的应用,例如在微分方程的理论研究中,泛函分析有助于研究解的连续性、唯一性和存在性等问题;在概率理论中,泛函分析有助于研究随机过程的性质等。

下面将对泛函分析的重要内容进行复习和总结。

1.线性空间与拓扑空间线性空间是指具有线性结构的集合,泛函分析研究的对象就是线性空间上的函数或者函数空间。

拓扑空间是指在集合中引入一个拓扑结构,使得可以定义连续性和收敛性等概念。

泛函分析的研究对象通常是拓扑线性空间,即同时具有线性结构和拓扑结构的空间。

2.赋范空间与完备空间赋范空间是指在线性空间上定义了一个范数(或称规范),从而使得该空间成为一个度量空间。

范数的引入使得我们可以定义距离,并且可以定义收敛性。

完备空间是指其中的Cauchy列总是收敛于该空间中的点。

泛函分析中,赋范空间和完备空间是重要的概念,在研究函数的连续性和收敛性时起到了关键的作用。

3.内积空间与希尔伯特空间内积空间是指在线性空间上定义了一个内积,从而可以定义长度和夹角。

希尔伯特空间是指满足内积空间中所有Cauchy列都收敛于该空间中的点的空间。

内积空间和希尔伯特空间在泛函分析中具有重要的作用,特别是在研究函数的正交性和投影等问题时。

4.线性算子与连续算子线性算子是指将一个线性空间映射到另一个线性空间的映射。

连续算子是指在拓扑空间上保持连续性的线性算子。

泛函分析中,线性算子和连续算子是重要的研究对象,它们可以用来描述函数之间的关系和映射。

5. Banach空间与可分空间Banach空间是指在完备的范数空间上定义了一个范数,从而构成一个完备空间。

可分空间是指线性空间中存在可数稠密子集的空间。

Banach空间和可分空间是泛函分析中重要的类别,它们在研究最优性,特别是最优解的存在性和表示性时起到了关键的作用。

实变函数与泛函分析基础(第三版)-----第三章_复习指导

实变函数与泛函分析基础(第三版)-----第三章_复习指导

实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。

(√ )2、对任意nE R ?,mE 都存在。

(× )3、设nE R ?,则*m E 可能小于零。

(× )4、设A B ?,则**m A m B ≤。

(√ ) 5、设A B ?,则**m A m B <。

(× ) 6、**11()n n n n m S m S ∞∞===∑。

考研数学泛函分析解题技巧整理:攻克泛函分析题型,提高解题效率

考研数学泛函分析解题技巧整理:攻克泛函分析题型,提高解题效率

总结解题步骤和方法,形成自己的解题套路
定期复习和练习,巩固知识点,提高解题速度和准确率
掌握解题技巧,提高解题速度
熟悉基本概念和定理,掌握解题方法
01
02
学会分析题目,找出关键信息
掌握解题技巧,提高解题速度
03
04
学会总结归纳,形成自己的解题方法
掌握解题思路,提高解题准确性
理解题目:明确题目要求,找出关键信息
掌握解题方法,提高解题效率
熟悉基本概念和定理,掌握解题的基本思路和方法
学会运用数学工具,如微积分、线性代数等,解决泛函分析问题
掌握解题技巧,如分类讨论、数形结合等,提高解题效率
注重实践,多做题,积累解题经验,提高解题能力
练习经典例题,巩固知识点
选取经典例题,进行深入研究
理解题目的考点和难点,掌握解题技巧
题目需要一定的逻辑思维和推理能力,需要反复练习和思考
练习题目的反馈与调整
题目难度:根据题目难度调整练习时间和方法
调整策略:根据错题分析结果,调整学习策略和练习计划
错题分析:分析错题原因,找出薄弱环节
解题技巧:总结解题技巧,提高解题效率
在数学竞赛中的应用
泛函分析解题技巧在数学竞赛中的难点和解决方法
考研数学泛函分析解题技巧整理
汇报人:XX
目录
01
目录标题
02
泛函分析题型解析
03
攻克泛函分析题型的策略
06
泛函分析解题技巧的实践应用
04
泛函分析解题技巧提升
05
泛函分析题型练习与巩固
常见题型及解题思路
解题思路:利用极限的定义和性质,结合函数的连续性和可导性进行求解。
解题思路:利用可导性的定义和性质,结合函数的极限和导数进行求解。

《应用泛函分析》前四章重点复习大纲

《应用泛函分析》前四章重点复习大纲

《应用泛函分析》前四章重点复习大纲1第1章预备知识1.1集合的一般知识1.1.1概念、集合的运算上限集、上极限下限集、下极限1.1.2映射与逆映射1.1.3可列集可列集集合的对等关系~(定义1.1)1.2实数集的基本结构1.2.1建立实数的原则及实数的序关系阿基米德有序域(定义1.4)1.2.2确界与确界原理上确界sup E(定义1.5)下确界inf E确界原理(定理1.7)1.2.3实数集的度量结构数列极限与函数极限单调有界原理区间套定理Bolzano-Weierstrass定理Heine-Bore定理Cauchy收敛准则1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛逐点收敛(定义1.11)一致收敛(定义1.12)Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质极限与积分可交换次序1.4 Lebesgue积分1.4.1一维点集的测度开集、闭集有界开集、闭集的测度m G m F外测度内测度可测集(定义1.16)1.4.2可测函数简单函数(定义1.18)零测度集按测度收敛1.4.3 Lebesgue积分有界可测集上的Lebesgue积分Levi引理Lebesgue控制收敛定理(性质1.9)R可积、L可积1.4.4 Rn空间上的Lebesgue定理1.5 空间Lp空间(定义1.28)Holder不等式Minkowski不等式(性质1.16)2第2章度量空间与赋范线性空间2.1度量空间的基本概念2.1.1距离空间度量函数度量空间(X,ρ)2.1.2距离空间中点列的收敛性点列一致收敛按度量收敛2.2度量空间中的开、闭集与连续映射2.2.1度量空间中的开集、闭集开球、闭球内点、外点、边界点、聚点开集、闭集2.2.2度量空间上的连续映射度量空间中的连续映射(定义2.7)同胚映射2.3度量空间中的可分性、完备性与列紧性2.3.1度量空间的可分性稠密子集(定义2.9)可分性2.3.2度量空间的完备性度量空间中Cauchy列(定义2.11)完备性完备子空间距离空间中的闭球套定理(定理2.9)闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性列紧集、紧集(定义2.13)全有界集2.4 Banach压缩映射原理压缩映像不动点Banach压缩映射原理(定理2.16)2.4.1应用隐函数存在性定理(例2.31)2.5 线性空间2.5.1线性空间的定义线性空间(定义2.17)维数与基、直和2.5.2线性算子与线性泛函线性算子线性泛函(定义2.18)零空间ker(T)与值域空间R(T) 2.6 赋范线性空间2.6.1赋范线性空间的定义及例子赋范线性空间Banach空间(定义2.20)2.6.2赋范线性空间的性质收敛性——一致收敛绝对收敛连续性与有界性2.6.3有限维赋范线性空间N维实赋范线性空间3Riesz定理(引理2.2)第3章连续线性算子与连续线性泛函3.1连续线性算子与有界线性算子算子、线性算子、泛函、线性泛函线性算子连续←→有界有解线性算子的范数(定义3.3)有界线性算子空间L(X, Y)L(X, Y)的完备性3.2共鸣定理及其应用有界线性算子列的一致收敛、强收敛稀疏集、第一纲Baire纲定理算子列的一致有界原理(定理3.8)算子范数的有界→强收敛3.3 Hahn-Banach定理次可加正齐次泛函Hahn-Banach定理(定理3.12)Banach保范延拓定理(定理3.14)3.4共轭空间与共轭算子3.4.1共轭空间共轭空间(注定理3.6 p.93)嵌入子空间、等距同构(定义3.7)自反空间(定义3.8)嵌入算子(定理3.15)弱收敛点列(定义3.9)共轭空间上泛函的收敛(定义3.10)线性算子列弱收敛3.4.2共轭算子共轭算子(定义3.12)共轭算子的性质3.5开映射、逆算子及闭图像定理逆算子的有界性开映射Banach开映射定理Banach逆算子定理乘积赋范线性空间闭图像闭算子闭图像定理→算子连续3.6算子谱理论简介复Banach 空间线性算子的正则点谱点:特征值、连续谱、剩余谱正则集——开集谱——有界闭集谱半径(定义3.17)全连续算子(定义3.18)Riesz-Schauder定理4第4章内积空间4.1基本概念内积空间Schwaraz不等式内积空间 Hilbert空间4.2内积空间中元素的直交与直交分解4.2.1直交及其性质直交、直交补(定义4.2)直交投影最佳逼近元极小化向量定理(定理4.2)4.2.2投影定理投影定理(定理4.3)直交分解4.3直交系标准直交系元素x 关于的Fourier级数(定义4.6)Bessel不等式(定理4.5)标准直交系是完全的(定义4.7)Parseval等式(定理4.7)Gram-Schmidt标准正交化法4.4 Hilbert空间上的有界线性泛函4.4.1 Riesz定理Riesz定理4.4.2Hilbert空间上的共轭算子共轭算子(定义4.8)共轭算子的性质4.5自共轭算子自共轭算子(定理4.13)4.6投影算子、正算子和酉算子投影算子(定义4.10)投影算子<->自共轭算子<->幂等算子(定理4.19)正算子(定义4.11)平方根算子(定理4.21)酉算子(定理4.22)。

上海市考研数学四十三复习资料泛函分析(统考)重点梳理与案例分析

上海市考研数学四十三复习资料泛函分析(统考)重点梳理与案例分析

上海市考研数学四十三复习资料泛函分析(统考)重点梳理与案例分析一、泛函分析概述泛函分析是数学中的一个重要分支,它研究的对象是函数的推广,即泛函。

泛函分析在数学理论和实际应用中都具有广泛的意义。

在上海市考研数学四十三中,泛函分析作为一门必修课程,对于考生来说是一个具有较高难度和重要性的知识点。

下面将从重点概念、定理与证明、重要案例等几个方面进行梳理与分析。

二、重点概念1. Banach空间与Hilbert空间Banach空间是一个完备的赋范向量空间,满足了度量空间的完备性和线性空间的结构特点。

Hilbert空间是一个内积空间,具有完备性和正交性的性质,是泛函分析中较为重要的空间。

根据Banach空间和Hilbert空间的特点,可以推导出许多重要的定理和结论。

2. 连续性与可测性在泛函分析中,连续性和可测性是两个重要概念。

连续性是指函数在某个点附近变化不大,可测性是指函数在某个测度空间上的可观测性。

这两个概念在泛函分析中应用广泛,对于理解和证明定理具有重要意义。

3. 紧算子与谱分析紧算子是泛函分析中一个重要的概念,它具有正规性和有界性。

谱分析是研究算子特征值和特征向量的理论,包括有界线性算子、紧算子和自伴算子等。

这些概念在泛函分析的定理与证明中具有重要作用。

三、定理与证明1. Hahn-Banach定理Hahn-Banach定理是泛函分析中的一大重要定理,它是推广了线性泛函的存在性和唯一性的定理。

定理的证明通常采用分离集和有限子集的方法,通过构造一个满足条件的线性泛函来证明存在性。

这个定理的应用十分广泛,是泛函分析中必须掌握的内容之一。

2. Banach-Steinhaus定理Banach-Steinhaus定理是推广了一致有界原理的定理。

在定理的证明中,一般采用Baire范畴定理和Baire范畴性质来证明。

这个定理的应用范围广泛,例如在泛函分析中的均一化原理和有界线性算子定理中都有应用。

3. 开放映射定理与闭图像定理开放映射定理和闭图像定理都是泛函分析中的重要定理,它们分别给出了开映射和闭图像的条件和性质。

泛函分析复习提要

泛函分析复习提要

泛函分析复习提要一、填空1. 设X是度量空间,E和M是X中两个子集,如果 _______ ,那么称集M在集E中稠密。

如果X有一个可数的稠密子集,那么称X是_____ 空间。

2. 设X是度量空间,M是X中子集,假设________________ ,那么称M是第一纲集。

3. 设T为复Hilbert空间X上的有界线性算子,假设对任何x X,有T X T,那么T为_________ 算子。

(Hilbert 空间H上的有界线性算子T是正常算子的充要条件是____________________ 。

)4. 假设复Hilbert空间X上有界线性算子T满足对一切X,::: Tx,x •是实数,那么T为________ 算子。

(Hilbert 空间H上的有界线性算子T是自伴算子的充要条件是____________________ 。

)5. 设X是赋范线性空间,X ■是X的共轭空间,泛函列fn • X (n=1,2,||(),如果存在f • X ',使得对任意的X • X,都有______________ ,那么称{ f n}弱*收敛于f。

6•设X,Y是赋范线性空间,T n • B(X,Y),n =1,2,川,假设存在「B(X,Y)使得对任意的x • X,有 ______________ ,那么称和强收敛于T。

7. 完备的赋范线性空间称为________ 空间,完备的内积空间称为_________ 空间8. 赋范线性空间X到赋范线性空间Y上的有界线性算子T的范数T二____________9. 设X是内积空间,那么称________ 是由内积导出的范数。

10. 设X是赋范空间,X的范数是由内积引出的充要条件是 ______________ 。

11. 设Y是Hilbert空间的闭子空间,贝U Y与Y--满足_______________ 。

12. 设X是赋范空间,T:D(T) X > X的线性算子,当T满足__________________ 时,那么T是闭算子。

实变函数与泛函分析基础(第三版)----第五章_复习指导

实变函数与泛函分析基础(第三版)----第五章_复习指导

主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有(3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理,勒贝格控制收敛定理(定理,和法都定理(定理同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

泛函分析知识点

泛函分析知识点

泛函分析知识点 SANY GROUP system office room 【SANYUA16H-泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间第一节度量空间的进一步例子1.距离空间的定义:设X是非空集合,若存在一个映射d:X×X→R,使得∀x,y,z∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x与y的距离,X为以d为距离的距离空间,记作(X,d)2.几类空间例1离散的度量空间例2序列空间S例3有界函数空间B(A)例4可测函数空M(X)例5C[a,b]空间即连续函数空间例6l2第二节度量空间中的极限,稠密集,可分空间1.开球定义设(X,d)为度量空间,d是距离,定义U(x0,ε)={x∈X|d(x,x0)<ε}为x0的以ε为半径的开球,亦称为x0的ε一领域.2. 极限定义若{x n }⊂X,∃x ∈X,s.t.()lim ,0n n d x x →∞=则称x 是点列{x n }的极限. 3. 有界集定义若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节连续映射1.定义设X=(X,d),Y=(Y,~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x ,有()~0,d Tx Tx ε<,则称T 在0x 连续.2.定理1设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节柯西(cauchy )点列和完备度量空间1.定义设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

应用泛函分析复习

应用泛函分析复习

泛函分析复习1、设M 是n R 中的有界闭集,映射M M T →:满足),(),(y x Ty Tx ρρ<()y x M y x ≠∈∀,,。

求证T 在M 中存在唯一的不动点。

证明: 因为),(),(00x x Tx Tx ρρ<,所以0),(0),(00→⇒→Tx Tx x x ρρ。

再由三角不等式,得到),(),(),(),(0000Tx Tx x x Tx x Tx x ρρρρ+≤-。

由此可见,),()(Tx x x f defρ==在M上连续。

因为M是n R 中的有界闭集,所以Mx ∈∃0,使得),(m i n )(m i n )(),(000Tx x x f x f Tx x Mx Mx ρρ∈∈===。

如果0),(00=Tx x ρ,那么0x 就是不动点。

今假设0),(00>Tx x ρ。

根据假设,我们有),(min ),(),(00020Tx x Tx x x T Tx Mx ρρρ∈=<。

但是M x T Tx ∈020,,这与),(00Tx x ρ是最小值矛盾。

故0),(00=Tx x ρ,即存在不动点0x 。

不动点的唯一性是显然的。

事实上,如果存在两个不动点1x ,2x ,则从),(),(),(212121x x Tx Tx x x ρρρ<<即得矛盾。

2、对于积分方程)()()(1t y ds s x e t x s t =∈⎰-λ,其中]1,0[)(C t y ∈为一给定函数,λ为常数,1<λ,求证存在唯一解]1,0[)(C t x ∈。

证明: 考虑由)()()(1t y ds s x e t x s t =∈⎰-λ),()()(10t y e ds s x e t x e tst---=-⇒⎰λ),()(),()(t y e t t x e t z t t def--===ζ则原方程等价于ds s z t t z ⎰+=1)()()(λζ。

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March泛函分析一,距离空间定义设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。

设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。

(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y 的数列收敛到y,则这个距离关于x,y的二元函数也收敛。

(利用三角不等式证明)开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。

有界集:称A为有界集,若存在一个开球,使得A属于这个开球。

内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。

开集:称G为开集,若G中的每一个点都是它的内点。

闭集:开集的补集就是闭集。

(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。

)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。

全空间和空集即使开集也是闭集。

任意个开集的并是开集,有限个开集的交是开集。

任意个闭集的交是闭集,有限个闭集的并是闭集。

等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。

连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。

若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。

映射T是连续的等价于值域里的开集的原像仍然是开集。

泛函分析复习与总结汇编

泛函分析复习与总结汇编

泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。

泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。

本文将对泛函分析的基本概念、定理与应用进行复习与总结。

一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。

赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。

2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。

希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。

3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。

二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。

2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。

具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。

3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。

常见的算子包括线性算子、连续算子和紧算子等。

4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。

具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。

三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

高考数学应试技巧之泛函分析

高考数学应试技巧之泛函分析

高考数学应试技巧之泛函分析泛函分析是数学中一个重要的分支,它在实际应用中有许多的应用。

作为学习数学的学生,我们在学习的时候需要知道一些相应的技巧和方法。

一. 理解泛函分析的基本概念泛函分析是集函数与函数空间、算子(变换)与算子空间、线性方程与严格线性极限过程、序列空间及广义函数等多种方面为一体的数学科目。

通过研究泛函空间,我们可以对数学问题进行更加深入的了解。

比如,它可以更加深入地探讨某些函数空间之间的联系,以及函数之间的关系。

掌握基本概念,是学习泛函分析的前提。

二. 熟悉泛函分析的基本定理泛函分析中有许多基本的定理,如开映射定理、闭图定理、零点定理和紧算子定理等等。

这些定理可以帮助我们更好地理解泛函分析的基本原理和概念,同时在题目分析和数学建模等方面也有重要的应用。

三. 提高证明定理的能力泛函分析中的基本理论和定理需要通过证明才能够够得到充分的理解。

这需要我们对数学的基本技巧及逻辑推理有着更高的要求。

四. 学会进行应用学习泛函分析并不仅仅是为了解决某些抽象的问题,它还有很多实际的应用。

比如,泛函分析可以用于工程学、物理学、控制理论等等方面。

在具体应用中,我们可以将其应用到相关领域中,以提高实际问题的求解能力。

五. 培养解题的思维方式和操作技巧学习泛函分析还需要培养我们解题的思维方式和操作技巧。

这需要我们具备一定的数学基础和综合运用能力。

同时,我们需要不断地积累经验和总结,以开发更多有效的解题方法和技巧。

六. 注意实际问题的处理与建模泛函分析不仅是数学的一部分,同时也是实际问题解决的重要工具。

因此,在学习泛函分析的过程中,我们需要注意实际问题的处理与建模。

这需要我们具备一定的专业知识,同时也需要我们具备一定的经验和实践能力,只有在实践中不断总结经验,才能建立一套有效的解题方法和技巧。

七. 总结以上是学习泛函分析的基本技巧和方法。

学习数学需要注重理论和实际并重,培养严谨的分析和解题能力,在实践中总结经验和方法,形成属于自己的解决问题的思维方式和操作技巧。

数学考研泛函分析重点复习

数学考研泛函分析重点复习

数学考研泛函分析重点复习泛函分析是数学中的一个重要分支,广泛应用于物理学、工程学和经济学等领域。

对于数学考研来说,泛函分析是一个重要的考点,考生需要充分理解泛函分析的概念和定理,并能够熟练运用相关的数学工具和方法。

本文将重点介绍数学考研泛函分析的复习内容,以帮助考生们取得好的考试成绩。

一、范数空间和内积空间范数空间和内积空间是泛函分析的基础概念,考生需要了解其定义和性质。

范数空间是一个线性空间,配备了一个范数函数,满足非负性、齐次性和三角不等式等性质。

内积空间是一个线性空间,配备了一个内积函数,满足对称性、线性性和正定性等性质。

在复习中,考生需要掌握范数空间和内积空间的典型例子,如欧氏空间、连续函数空间和离散函数空间等。

此外,还需要了解不同范数之间的关系,如等价范数和共轭空间等概念。

二、线性算子和算子的谱线性算子是泛函分析中的重要概念,它是一个从一个线性空间到另一个线性空间的映射。

考生需要了解线性算子的定义和性质,包括线性性、有界性和紧性等方面。

此外,还需要学习算子的特征值和特征向量的概念,以及线性算子的谱半径和谱半径公式等内容。

在复习中,考生需要重点掌握线性算子的几个典型例子,如恒等算子、零算子和正规算子等。

此外,还需要了解算子的谱分解定理和函数解析表示定理等重要定理。

三、泛函分析的基本定理泛函分析中有一些重要的基本定理,这些定理被广泛应用于实际问题的求解中。

在复习中,考生需要重点学习这些基本定理的内容和证明过程。

其中,哈尔滨预测系数定理是泛函分析中的经典定理之一,它是关于具有最佳逼近性质的问题。

考生需要了解哈尔滨预测系数定理的条件和结论,并能够应用该定理解决具体问题。

此外,邓庄子定理和泛函分析的反射原理也是泛函分析中的重要定理。

考生需要了解这两个定理的内容和证明过程,并能够应用于实际问题的求解中。

四、弱收敛和弱*收敛弱收敛和弱*收敛是泛函分析中的重要概念,用于描述函数序列或算子序列的收敛性质。

泛函分析复习(大字体原简化1)

泛函分析复习(大字体原简化1)



为 x0 的以 为半径的开球,亦称为 x0 的 邻 域. 于是可定义:内点、外点、边界点、聚 点,以及导集、闭包、开集、闭集等概念.
二、距离空间中的稠密集、可分空间 定义 2.4 设 X 是度量空间,N 和 M 是 X 的两个子集, 令 M 表示 M 的闭包, 若N M , 则称集 M 在集 N 中稠密,当 N X 时,称 M 为 X 的一个稠密子集. 定义 2.5 若 X 有一个可列的稠密子集,
2.
连续函数空间 Ca, b

设 xn n1 C[a, b] , x C a, b ,
xn t x t 0 n 则 d ( xm , x) max at b
xt . x n n 1 在 a, b 一致收敛于
n 1 2
因此对 R 按上述距离是一个距离空间. 2.
C a, b 空间
2
n
续函数的全体.对 Ca, b 中任意两点 x, y ,定 义
d ( x, y ) max x t y t . a t b
C a, b 表闭区间 a, b 上实值(或复值)连
3. l p 空间
x, y B ( A) ,定义
d ( x, y ) sup x t y t . tA
例 4 可测函数空间 M X 设 M X 为 X 上实值(或复值)的 Lebesgue 可测函数的全体, m 为 Lebesgue 测度, 若 m X , 对任意两个可测函数 f t
m
n
中的
n x x , x , , x R 1 2 n 点列, ,
d(xm, x) x1 x1 x2 x2 xn xn .

实变函数与泛函分析基础(第三版)第五章 复习指导

实变函数与泛函分析基础(第三版)第五章 复习指导

主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有ε<⎰ex x f d )((3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使εϕ<-⎰],[d )()(b a x x x f此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4.1),勒贝格控制收敛定理(定理5.4.2),和法都定理(定理5.4.3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

山东省考研数学复习资料复分析与泛函分析重点知识点

山东省考研数学复习资料复分析与泛函分析重点知识点

山东省考研数学复习资料复分析与泛函分析重点知识点山东省考研数学复习资料:复分析与泛函分析重点知识点复分析是数学中一门重要的分支学科,它研究的是复数域上的函数,是实分析的拓展和一般化。

泛函分析则是研究函数空间以及这些空间上的线性算子的数学理论和方法。

在山东省考研数学复习中,复分析与泛函分析是考生们需要着重掌握的考点。

本文将为大家整理总结复分析与泛函分析的重点知识点,希望能对广大考生的复习备考有所帮助。

一、复分析的重点知识点1. 复数与复变函数复数的定义及运算规则,复平面及其表示方法,复变函数的极限、连续性和导数等基本概念。

2. 级数与幂级数复数级数的收敛与发散判定方法,常见级数的性质,幂级数的收敛域及其收敛半径的计算方法。

3. 解析函数与调和函数解析函数的定义及性质,调和函数的定义及性质,调和函数的调和性质和最大模原理。

4. 牛顿-莱布尼茨公式与柯西定理牛顿-莱布尼茨公式的证明及应用,柯西定理及柯西积分公式的应用。

5. 解析函数的展开与留数定理解析函数的泰勒展开、幂级数展开和洛朗展开,留数定理及留数的计算方法。

6. 解析函数的全纯性与辐角原理全纯函数的定义及性质,辐角原理及其应用,全纯函数的最大模原理。

7. 积分变换与解析函数的性质拉普拉斯变换、傅里叶变换的定义与性质,解析函数的唯一性定理及其应用。

二、泛函分析的重点知识点1. 数学分析回顾度量空间、赋范空间、内积空间和希尔伯特空间的定义及性质,开集、闭集、紧集、连通集的概念与性质。

2. 巴拿赫空间与算子巴拿赫空间的定义及性质,完备性定理,线性算子的定义及性质,算子的范数及算子空间的性质。

3. 正交性与正交变换正交性的概念及正交集、正交基和正交补空间的定义与性质,正交变换的定义及性质。

4. 内积空间的正交投影与最小二乘逼近内积空间中的正交投影与投影定理,最小二乘逼近的定义及性质。

5. 可分希尔伯特空间与自伴算子可分希尔伯特空间的定义及性质,自伴算子的定义及性质,谱定理与谱分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014-2泛函分析复习参考题
一、名词解释
1.度量空间;
2.可分空间;
3.压缩映射原理;
4.线性空间;
5.范数线性空间;
6.内积空间;
7.贝塞尔不定式以及帕塞瓦尔等式。

二、填空题
1. l ∞
空间为_____________________,其标准距离为___________________________ 2. 2l 空间为_____________________,其标准距离为___________________________ 3. 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为___________________ 4. {}n x 为度量空间X 中的柯西列是指____________________________________________
5.完备度量空间X 的子空间M 是完备空间的充要条件为____________________________
6.M 为线性空间X 的一个非空子集,spanM 表示_______________;如果X spanM ⊆,那么_____________________________
7. 2[,]L a b 空间为____________________,其标准范数为____________________________,2[,]L a b ________(是或不是)巴拿赫空间
8.设X 是n 维赋线性空间,{}12,,
,n e e e 是X 的一组基,则存在常数M 和M ',使得对一切1n k k k x e
ξ==∑都有_____________________________成立
9.设T 是赋范线性空间X 到Y 中的线性算子,则T 为有界算子的充要条件为___________,算子T 的范数为___________________________________________
10.设X 是赋范线性空间,f 是X 上线性泛函,那么f 是X 上连续泛函的充要条件为f 的零空间()N f 是X 中的_________________________
11. 1l 的共轭空间为________,(1)p l p <<∞的共轭空间为_______________________
12.设X 是内积空间,M 是X 的线性子空间,M x ∈,若存在M y ∈,使得()M x d y x ,=-,那么______________
13.设{}k e 为希尔伯特空间X 中可数规范正交系,那么:
(1)级数∑∞
=1i i
i e α收敛的充要条件为__________________; (2)若∑∞==1i i i e
x α,则=i α___________________________;
(3)对任何X x ∈,级数i i i e e x ∑∞
=1,都是_______________(收敛或发散)。

14.设T 为复内积空间X 上有界线性算子,那么对一切X x ∈,有0,=x Tx 成立当且仅当______________________________
15.设)(X B T ∈,则T 为自伴算子的充要条件___________________________________
16.设)(2l B T ∈并且算子T 定义如下:),,,,0(),,,(321321 x x x x x x T =,那么=),,,(321* x x x T ______________________________________
三、解答题
1. l ∞是不可分空间;
2. [,]C a b 是无限维空间;
3. Holder 不等式与Minkowski 不等式的内容;
4. Schwarz 不等式的内容;
5. 当2p ≠时,p l 不是内积空间;
6. [,]C a b 按内积诱导的范数max ()a t b
x x t ≤≤=不是内积空间;
7. 里斯定理的内容;
8. 给出正常(正规)算子的两个充分必要条件;。

相关文档
最新文档