第7章其它抽样方法

合集下载

第七章 抽样调查技术

第七章 抽样调查技术

13
一、简单随机抽样

(一)具体操作步骤:
第一,对总体的每个单位进行编号,总体单位数 为10,000的总体可编为00 001到期10,000号;

第二,在随机数码表(一般的数理统计书中都有 此表)中从任意一个编号数开始,向上、向下或 跳跃选取编号,在00 001和10,000之间选出200个 (样本单位数);
5
2015/12/22
(二)样本总体


概念: 也称抽样总体(sampled population)或者“子 样”、“样本”,是指从全及总体中抽取出来的 单位集合。 大样本与小样本: 样本总体通常是有限总体,它所包含的的总 体单位数目称为样本容量(通常用英文字母n来表 示)。一般来说,样本单位数达到或者超过30个 称为大样本,而在30个以下的称为小样本。
第二,等距抽样的效率取决于对总体进行 排列时所使用的标志值。在等距抽样中, 调研人员假设总体是有序的。

2015/12/22
23
三、分层抽样

(一)分层抽样的具体步骤 (二)分层抽样的方法 (三)分层指标的选择 (四)分层抽样的优缺点 (五)分层抽样适用的范围
2015/12/22
24

假如我们要进行北京市居民家用电器的拥 有状况调查,采用整群抽样方法,那么, 我们在北京市3,600个居民委员会中随机抽 取20个居委会,这20个居委会中的所有户都 成为我们的调查样本。
2015/12/22
32
(二)采用整群抽样的原因


原因一:当缺少基本单位的名单而难以 直接从总体中抽取所要调查的基本单位。 原因二:即使容易获得个体的抽样框, 但从费用上考虑,直接从个体抽样获得 的样本可能比较分散。 原因三:采用整群抽样是抽样调查本身 目的的需要。 原因四:如果某些总体的各个子总体之 间的差异不大。

(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样第七章整群抽样第壹节整群抽样概述壹、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取壹部分群,对中选群内的所有单元进行全面调查。

确切地说,这种抽样组织形式应称为单级整群抽样。

如果总体中的单元能够分成多级,则能够对前几级单元采用多阶抽样,而在最后壹阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。

本章只讨论单级整群抽样。

设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。

当诸Mi都相等时,称为等群;否则,称为不等群。

采用整群抽样的俩个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中且不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。

整群抽样包括俩步:首先,总体被分为群;然后,在总体中抽取群的样本且访问群中的所有单元。

如果总体单元是自然分成组或群的,创建壹个这种关于群的抽样框且对它们进行抽样比创建总体中所有单元的名录框更为容易。

或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而能够创建地域框。

群的抽取能够采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。

二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。

同分层抽样壹样,整群抽样的前提是先要对总体进行分群。

关于群的划分,有俩个问题:壹是如何定义群,即当群且非是壹个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。

分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。

这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。

而整群抽样只是在各群之间抽取壹部分群进行调查,且在抽中的群内作全面调查。

抽样技术第7章-复合抽样

抽样技术第7章-复合抽样

• 我们已经知道了复合调查大部分的组成部 分:随机抽样,比估计,分层和整群。现 在来看怎样把它们综合应用于一个抽样设 计中。
7.1.1 构建调查的框架
• 1.有放回的整群抽样 选取一个包含n个群 (psu)的有放回的样本,群i被选取的概率为
• ψi,群i的总量估计用 表示,然后用n个
值.
作为对总值的估计,并以此作为
7.2.2 自加权和非自加权样本
• 在自加权调查中,各个观测单元的抽样权重是 相等的,在没有无回答误差的情况下,自加权样本 被认为能代表总体,因为样本中每个观测单元代表 了总体中相同数目的未观测单元。除此之外,自加 权样本通常有较小的方差,样本统计量也更精确 (Kish 1992)。
• 自加权设计与等概率抽样是不同的概念。等概 率抽样是要求在一次抽样过程中,每个单元具有相 同的入样概率;自加权设计要保证每个单元最终入 选样本的概率相同。
3、估计每个地区有诊所的村庄的蚊帐总数,由于村 庄是从人口比例适中的地区抽取的,所以应用第6 章中的相关公式来估计总数及其方差。在无诊所 的村庄中应用同样的方法。
4、将每层(有诊所和无诊所的村庄)的蚊帐 总数加起来,估计每个地区的蚊帐总数, 将每层的估计方差相加得到地区的估计方 差。
5、现在,我们得到了每个地区的蚊帐估计总 数,应用两阶段整群抽样的相关计算公式 来估计每种地理区域总的蚊帐数。
这里 Ωhj 抽样权重可以看作是样本观测值 所 代表的总体观测值的数目。第h层中第j个单元入样
的概率为
,因此,抽样权重就是单元入
样概率的倒数:

抽样权重的加总就是总体大小N,每个抽样单元代 表了总体中一定数量的单元,因此,整个样本就代 表了整个总体。
• 分层抽样中的估计 是:

(抽样检验)第七章整群抽样

(抽样检验)第七章整群抽样

第七章整群抽样第一节整群抽样概述一、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取一部分群,对中选群内的所有单元进行全面调查。

确切地说,这种抽样组织形式应称为单级整群抽样。

如果总体中的单元可以分成多级,则可以对前几级单元采用多阶抽样,而在最后一阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。

本章只讨论单级整群抽样。

设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。

当诸Mi都相等时,称为等群;否则,称为不等群。

采用整群抽样的两个理由:- 抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;- 从总体中直接抽选个体在实际中并不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。

整群抽样包括两步:首先,总体被分为群;然后,在总体中抽取群的样本并访问群中的所有单元。

如果总体单元是自然分成组或群的,创建一个这种关于群的抽样框并对它们进行抽样比创建总体中所有单元的名录框更为容易。

或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而可以创建地域框。

群的抽取可以采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。

二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。

同分层抽样一样,整群抽样的前提是先要对总体进行分群。

关于群的划分,有两个问题:一是如何定义群,即当群并非是一个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。

分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。

这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。

而整群抽样只是在各群之间抽取一部分群进行调查,并在抽中的群内作全面调查。

因此,群间差异的大小直接影响到抽样误差的大小,而群内差异的大小则不影响抽样误差。

抽样调查-第7章 系统抽样

抽样调查-第7章 系统抽样
返回
三、总体单元的排序
系统抽样时N个总体单元的排序情况 大致有以下三种:
(1)按无关标志排队 (2)按有关标志排队
(3)介于上述两者之间
返回
四、系统抽样的优缺点
系统抽样的优点: 1.简便易行,容易确定样本单元
2.样本单元在总体中分布比较均匀
系统抽样的缺点: 1.如果单元的排列存在周期性的变化,而抽样 者对此缺乏了解或缺乏处理经验,抽取的样本 的代表性就可能很差。
3,8,13。 7 8 9 10 11 12 6 5 4 3 2
1
13
循环等距抽样
返回
3. 不等概系统抽样法
不等概系统抽样中每个单元的入样概率不相等.最常用 也是最简单的不等概系统抽样是PS 抽样.即入样概率 i 与单元大小 M 成比例的系统抽样.令
i
Mi 表示总体所有单元大小的总和,则 i n M0

Y( n1) k r

yr
Y

yk
nk
返回
令 Yrj
Y( j 1) k r (r 1,2,, k ; j 1,2,, n) 得下表:
1 2
Y12
1 2
Y11 Y21

Y22

r

Yr1

Yr 2
k
层平均

Yk1

Yk 2

j Y Y
M0 Mi
i 1
N
实施不等概系统抽样最简单的方法是代码法: 下面以例7.1来说明 【例7.1】设总体由10个行政村组成,N=10,每个行政村 的人数 M i 见下表.利用PS 系统抽样抽取n=3个行政村.
返回
用PS系统抽样抽选行政村

第7章 抽样方法

第7章 抽样方法

分层抽样
所谓分层抽样,就是先依据某一种或某几种 特征,将总体划分成几个小的部分,每一个 部分称为一层或一类。然后,在每一个层次 中,采取简单抽样或系统抽样的方法抽取一 个子样本,最后,将这几个子样本合起来构 成总体的样本。
例如:某地共有居民20000户,按经济收入高低进 行分类,其中高收入的居民为4000户,占总体的 20%;中收入的居民为12000户,占总体的60%; 低收入的居民为4000户,占总体的20%。要从中抽 选200户进行购买力调查,则各类型应抽取的样本 单位数为: 经济收入高的样本单位数目为:200*20%=40户 经济收入中的样本单位数目为:200*60%=120户 经济收入底的样本单位数目为:200*20%=40户
较适用于同质性较高的总体
同学练习:
某学校有200位学生,采用等距离抽样方法抽 10个学生做样本。假设抽中的第一位学生排 在第三位,请问其他的样本单位的号码为?
整群抽样
整群抽样先要把调查总体划分为若干个群体, 然后用单纯随机抽样法,从中抽取某些群体 进行全面调查。 例如,要调查家庭副业发展情况,不是直接 抽取居民户.而是以村为单位,从中抽取若 干自然村,然后对中选村的全体居民户进行 调查。
• 样本平均数 x=∑xi / n • 样本标准差 S=√∑(xi- x)2 /n • 样本方差 S2=∑(xi - x)2 /n
6.总体与样本的相互关系 总体与样本的相互关系 样本是总体的缩影。 一次抽样时,一个样本单位必然同时又是一 个总体单位。但一个总体单位却不一定是一 个样本单位。 对一定的调查目的而言,总体是唯一的,样 本则不然。
第七章 抽样调查
胡林娜 温州职业技术学院
7.1抽样调查的基本概念
1.抽样调查的含义 抽样调查是按照一定的规则从总体中抽取 一部分个体单位作为样本,通过对样本的调 查研究所获得的信息资料,来推断总体的信 息资料的方法;因而抽样调查也称作抽样推 断。

7第7章 质量检验及抽样技术

7第7章  质量检验及抽样技术

27
二、抽样检验常用术语
7.不合格品:有一个或一个以上不合格的单位产品。
不合格品类型 A类 含义 又叫致命不合格品。有一个或一个以上A类不合格的 单位产品,也可能其中还有B类和/或C类不合格。 又叫严重不合格品。有一个或一个以上B类不合格的 单位产品,也可能其中还有C类不合格,但没有A类 不合格。 又叫轻微或一般不合格品。有一个或一个以上C类不 合格的单位产品,但没有A类和B类不合格。
32
二、抽样检验常用术语
13、接收质量限AQL:当一个连续系列批被提交验 收抽样时,可允许的最差过程平均质量水平。 • 接收质量限是对生产方的过程质量提出的要求, 是允许的生产方过程平均(不合格品率)的最大 值。 14、连续批: 待检批可利用最近已检批所提供质量 信息的连续提交检查批 ,称为连续批。 15、孤立批:指脱离已生产或汇集的批系列,不属 于当前检验批系列的批次,如:虽然连续生产20 批,但被20个客户购买,对每个客户而言,都是 得到1个孤立批。
11、批每百单位产品不合格数(计点):批中每百个单位产
品平均包含的不合格数,即C(批中的不合格数) / N(总体
或批量) ×100
30
二、抽样检验常用术语
12、过程平均不合格品率:在规定的时段或生产 量内平均的过程质量水平,即一系列初次交检 批的平均质量。
• 假设有k批产品,其批量分别为N1,N2,…,Nk, 经检验,其不合格品数分别为D1,D2,…,Dk, 则过程平均不合格率为:
抽样检验是本章讨论的主要内容。
10
四、质量检验的分类
3、按最多抽取的样本数分
• 一次抽样检验:就是从检验批中只抽取一个样本就能够对 该批产品做出是否接收的判断; • 二次抽样检验:最多抽取两个样本就能够对该批产品做出 是否接收的判断; • 多次抽样:在我国,允许最多抽取5个样本就能够对检验 批作出接收与否的判断; • 序贯抽样检验:不限制抽样次数,每次只抽取一个单位产 品(即样本量为1 ),直至能够判断批产品是否合格为止。

第7章抽样

第7章抽样
29
随机抽样技术的优缺点
(1) 优点 ①随机抽样是从总体中按照随机原则抽取一部分单位进行的 调查。 ②随机抽样技术能够计算调查结果的可靠程度。 (2) 不足 ① 对所有调查样本都给予平等看待,难以体现重点。 ② 抽样范围比较广,所需时间长,参加调查的人员和费用多。 ③ 需要具有一定专业技术的专业人员进行抽样和资料分析。 一般调查人员难以胜任。 ④抽样框难以构建。 ⑤比其他概率抽样精确度低,标准差较大。 30
24
1.简单随机抽样 • 又称纯随机抽样,即对总体单位不进行任何分组 排列,仅按随机原则直接从总体中抽取样本,以 使总体中的每一个单位均有同等的被抽取的机会。
• 这是最基本,最简单的的机率抽样方法。它易于 理解,样本结果可以推断总体,大多数统计推论 方法都假定数据是由简单随机抽样法法获得的。
25
1.简单随机抽样 • 每个单位被选取的机会是相同的。就好像把各个 单位的名字写在大小相同的纸上,放到一个箱子 中,由我们抽取,每个个案都有被抽到的可能, 而且机会相同。如平日常见的摸彩或摇奖,在数 学上则会利用随机数表来抽取样本。
第七章
抽样
1
本章的学习目标 一、抽样的概念
二、抽样的基本过程
三、概率抽样
四、非概率抽样
五、样本量的确定
六、 PPS抽样简介
七、 KISH表的运用
2
一、抽样的概念
3
(一)什么是抽样?
• 抽样就在我们的日常生活中。抽血化验,尝试水 温,窥一斑而知全豹。
• 抽样,就是从研究总体中抽取一部分的过程。 • 抽样调查,就是从研究总体中抽取一部分代表加 以调查研究,然后用所得结果推论和说明总体的 特性。这也称为推论统计。
2.等距抽样
• 又称系统抽样或机械抽样。 • 具体做法: • 1)将总体的所有单位按一定顺序排列起来; • 2)计算抽样间隔R=N/n;

(抽样检验)第七章第一次课抽样原理与方法

(抽样检验)第七章第一次课抽样原理与方法

(抽样检验)第七章第⼀次课抽样原理与⽅法第⼀节抽样⽅案的制定在科学研究中,除了进⾏控制试验外,有时也要进⾏调查研究。

调查研究是对已有的事实通过各种⽅式进⾏了解,然后⽤统计的⽅法对所得数据进⾏分析,从⽽找出其中的规律性。

例如,了解畜禽品种及⽔产资源状况;探索和分析对某种疾病有效的防治规律、措施以及新的检验⼿段和⽅法等。

由于现场调查⽴⾜于⽣产实际,所以它是研究和解决实际问题的⼀种重要研究⽅法。

同时,控制试验的研究课题,往往是在调查研究的基础上确定的;试验研究的成果,⼜必须在其推⼴应⽤后经调查得以验证。

为了使调查研究⼯作有⽬的、有计划、有步骤地顺利开展,必须事先拟定⼀个详细的调查计划。

调查计划应包括以下⼏个内容:(⼀) 调查研究的⽬的任何⼀项调查研究都要有明确的⽬的,即通过调查了解什么问题,解决什么问题。

例如,家畜健康状况的调查的⽬的是评定家畜健康⽔平;畜禽品种资源调查的⽬的是了解畜禽品种的数量、分布与品种特征特性等情况。

同时,调查研究的⽬的还应该突出重点,⼀次调查应针对主要问题收集必要的数据,深⼊分析,为主要问题的解决提出相应的措施和办法。

(⼆) 调查的对象与范围根据调查的⽬的,确定调查的对象、地区和范围,划清调查总体的同质范围、时间范围和地区范围。

例如,四川省家禽品种资源调查,调查地区为四川省,调查总体和对象为全省各市、县的家禽,调查时间从2000年1⽉到2000年12⽉。

(三) 调查的项⽬调查项⽬的确定要紧紧围绕调查⽬的。

调查项⽬确定的正确与否直接关系到调查的质量。

因此,项⽬应尽量齐全,重要的项⽬不能漏掉;项⽬内容要具体、明确,不能模棱两可。

应按不同的指标顺序以表格形式列⽰出来,以达到顺利完成搜集资料的⽬的。

例如,家禽品种资源调查项⽬有:种类(鸡、鸭、鹅等)、品种(柴鸡、来航、⽩洛克等),数量、体重、产蛋性能等项⽬。

调查项⽬有⼀般项⽬和重点项⽬之分。

⼀般项⽬主要是指调查对象的⼀般情况,⽤于区分和查找,如畜主姓名、住址及编号等。

抽样技术第7章

抽样技术第7章
抽样技术第7章
n 表7—1 某银行客户的样本数据
抽样技术第7章
抽样技术第7章
抽样技术第7章
4.二重分层抽样样本量的最优分配
n 二重分层抽样中有两次抽样,这两次抽样的样本量,即 n'和 n,直接影响估计的精度。
n 第一重抽样 n'越大,对分层信息的了解和估计就越精 确,从而可以减少估计量的方差;同样,第二重抽样 n越 大,估计量的方差越小。
抽样技术第7章
二重抽样与两阶段抽样
n 二者都可被视为分阶段抽样方法; n 差异:
n 两阶段抽样是先从总体N个单元(初级单元)中抽出n个样 本单元,却并不对这n个样本单元中的所有小单元(二级 单元)都进行调查;二重抽样则不同,要对第一重(相)样本
进行调查以获取总体的某些辅助信息。
n 两阶段抽样的第一阶段抽样单位和第二阶段抽样单位往 往是不同的;而二重抽样的第二重样本则往往是第一重 样本的子样本。
n 关于二重抽样对无回答数据的调整估计量参见第10章的相关 内容。
抽样技术第7章
三、为比率的二重抽样
抽样技术第7章
1.二重抽样比估计的抽样方法
抽样技术第7章
2.二重抽样的比估计及其性质
抽样技术第7章
抽样技术第7章
抽样技术第7章
抽样技术第7章
【例7.2】
n 某住宅小区共有200个住户,现欲估计小区住户家庭月平均收入 的平均水平。家庭收入的数据不易调查,而家庭支出的资料相 对容易获取,而且家庭月平均收入与家庭月平均支出之间强相 关,因此拟采用二重抽样比估计方法。先从住户中随机抽取100 个住户作为第一重样本,调查家庭月平均支出,结果家庭月平均 支出的样本均值为1 500元;然后从这100个住户中随机抽选10 户作为第二重样本,调查家庭月平均收入和家庭月平均支出,资 料见表7—2。试估计该小区家庭月平均收入,并计算估计量标 准误差。

第七章市场调查方式(抽样技术)

第七章市场调查方式(抽样技术)

具体做法: A、抽签法(有重复和不重复抽样两种选择)
先给调查总体的每个单位编号,然后将号码写在卡片上搅拌均匀, 任意从中抽选,抽到一个号码,就对上一个单位,直到抽足预先 规定的项目为止。适用于总体单位较少的情况。
B、乱数表(随机数表)法 优点:完全排除了抽样中主观因素的干扰、简单易行 缺点:在调查总体单位差异小(同质总体)情况下,调查结果 具有代表性,否则会产生较大误差 适用范围:总体单位明确、总体单位数较少、总体各单位间差 异程度较小
14
1
合 计
1 30
50
20
100
第四步:具体抽样 优点:较简单易行、准确度较高;节省费用, 能较快地获得市场信息 缺点:若调查者对调查总体不了解,会产生较 大误差 适用范围:调查者对调查总体了解
(二)随机抽样
严格按随机原则从调查总体中 抽取样本单位的调查方式。
1、简单随机抽样(纯随机抽样)
含义:在总体单位中,不进行任何有目的 的选择,完全按随机原则抽取样本单位 的方式。
具体做法:
第一步:对样本总体进行分类; 第二步:确定每类样本的分配数额; 第三步:编制样本交叉配额分配表; 第四步:具体抽样 仍以上例为例,采用相互控制配额抽样 第一步、第二步(略) 第三步:编制样本交叉配额分配表
高收入 民族 汉 族 回 族 其他民族
中收入
低收入
合计
21 8
35
14 6 0
70 28 2
2、分层随机抽样(类型随机抽样、分类 随机抽样)
( 1 )含义:将总体单位按某一标准(有关标 志)分组,然后在各个类型组中,按随机原 则抽取样本单位的方式。 (2)具体做法: 第一步:选择有关标志对总体进行划分; 第二步:确定各组的样本分配数额 方法:等比例和不等比例 等比例:ni = n× (Ni / N) 不等比例: ni = n×(Ni· Si /∑Ni· S i)

抽样方法

  抽样方法

5. 修正的概率抽样
修正的概率抽样是概率抽样与非概 率抽样的结合。主要用于多阶段抽 样,前几个阶段用概率抽样,最后 用非概率抽样,一般是配额抽样。
实用文档
21
二、概率抽样
在需要根据样本的结果对总体进行推断时 应使用概率抽样。
最简单的概率抽样设计是等概率抽样,包 括简单随机抽样和系统抽样。
不等概率抽样比较复杂且大多需要辅助抽 样框信息。不等概率抽样有:概率与大小 成比例的抽样,整群抽样,分层抽样,多 阶段抽样和多相抽样。不等概率抽样通常 用来提高抽样设计方案的效率,或降低抽 样费用。
简单随机抽样的缺点是:
抽样框中即使有现成的辅助信息也不 加利用,使得估计的统计效率较其他 利用辅助信息的样本设计低;
由于样本在总体中的地理分布范围比 较广,如果采用面访,费用较高;有 可能抽到一个“差的”样本;
如果不用计算机,而用随机数表抽一 个大样本将十分单调劳神。
实用文档
31
系统抽样(SYS)
能计算出各个单元的入样概率。从而
无法得到总体目标量的可靠估计值及
其抽样误差估计值。
实用文档
4
非概率抽样能用在下面几个方面的研 究中:
用来形成一种想法; 作为设计开发概率抽样调查的初始步骤; 在后续步骤中帮助理解概率抽样调查结
果。 有时,非概率抽样是唯一可行的选择。
例如,在医学实验中,采用志愿者抽样 可能是取得数据的唯一途径。
其抽样单元是从总体中等距抽出的。 它需要一个抽样间距和一个随机起点。
抽样间距是k=N/n,随机起点r是介 于1到k之间的一个随机数。 被抽中的单元是:r,r十k,r+2k, r+3k,…,r+(n-1)k。
实用文档

第7章抽样调查

第7章抽样调查

二、抽样误差的基本要求
无偏性 一致性 有效性
评价估计量优良性的三个标准:
1、无偏性: 样本统计量的期望值等于被估计 的总体参数。
设 表示总体的待估参数,ˆ 是估计 的样本
统计量,无偏估计指的是ˆ 满足:
E

如:由于 E x X ,所以样本平均数是总体平
x
9.13
n3
2.在不重复抽样下
抽样平均误差
x
2 1 n n N
σ为总体标准差,n为样本单位数,N为总体单位数。
例:从40、50、70、80中抽取3个组成样本,在不重 复抽样下,求抽样平均误差。
求总体标准差,直接用计算器统计功能键可以求出:
X X 2 15.81
N
求抽样平均误差
x
2 N n n N 1
15.812 4 3 5.27 3 41
练习:
1、随机重复抽选某校学生100人,调查他们的体 重得到平均体重为58公斤,标准差为10公斤。问 抽样推断的平均误差是多少?
练习:
1、随机重复抽选某校学生100人,调查他们的体重得到平 均体重为58公斤,标准差为10公斤。问抽样推断的平均误 差是多少?
设它们的平均数为 X,方差为,2 即 Exi ,X u
2 xi 2(i=1,2,…)。则对任意的正数ε,有:
limBiblioteka n p1 n
n i 1
xi
u




1
中心极限定理
正态分布的再生定理:
只要在样本容量n充分大的条件下,不论全 及总体的变量分布是否属于正态分布,其抽样 平均数也趋近正态分布。

第七章 抽样

第七章 抽样

第七章抽样本章讨论抽样。

对抽样的统计学原理我们不作详细介绍,重点讨论抽样的过程和具体的操作。

抽样是一项非常重要的技术,在自然科学和社会科学的各个领域广泛运用。

自然科学方面包括化学、天文学、机械工程学和动物学等。

在社会科学研究中,抽样技术可用于实验、调查、内容分析等研究。

7.1 抽样原理7.1.1 为什么要抽样抽样是从一大批研究对象中选出一小群作为研究对象,如从20000人中选出150人。

用抽样方法获得的研究对象称为样本(sample)。

研究中用样本作为具体操作对象比用所有对象要经济得多。

然而研究者感兴趣的不仅仅是样本,他的目的是以小见大,希望把从样本得出的结论推广至全体研究对象。

“管中窥豹,可见一斑”。

数学理论和科学研究的实践业已表明,抽样是非常有效的技术。

如果使用正确,两千多个个体的样本,可有效地代表有两亿个成员的研究对象总体,出错的概率不超过百分之二到四。

这种以小见大,以少胜多并非无稽之谈,而是有缜密的统计学原理为依据,并已一再被经验证据所证实。

并非所有样本都可使结论推而广之,抽取样本必须遵守严密的程序,而且从任何样本得出的结论都必须附带说明,表明其局限性。

7.1.2 总体、个体和抽样框架研究者从一大批研究对象中抽取样本。

这些研究对象是一个个的个体(elements),有时称作个案(cases),可以是个人、群体或组织,也可以是信息、文档,甚至是社会行为(如离婚、吸毒、乱扔垃圾)。

这些都是研究者拟测量或可以测量的事物。

拟定研究对象的全体叫做总体(population)或全域(universe)。

总体是抽样的基础,必须严格界定,没有定义清晰的总体就谈不上抽样。

总体有三个要素:内容、范围和时间。

内容即组成总体的个体单位是什么:人、物还是机构等;范围即总体所处的空间界限,包括地理位置;时间即总体存在的时间界限。

表7.1举例说明了抽样的个体单位(人、企业、医院住院人次、商业广告),地理位置和时间界限。

第7章 抽样调查及答案

第7章  抽样调查及答案

第七章 抽样调查一、本章重点1.抽样调查也叫做抽样推断或参数估计,必须坚持随机抽样的原则。

它是一种非全面调查,其意义在于对总体的推断上,存在可控制性误差。

是一种灵活快捷的调查方式。

2.抽样调查有全及总体与样本总体之区分。

样本容量小于30时一般称为小样本。

对于抽样调查来讲全及总体的指标叫做母体参数,是唯一确定的未知的量,样本指标是根据样本总体各单位标志值计算的综合性指标,是样本的一个函数,是一个随机变量,抽样调查就是要用样本指标去估计相应的总体指标。

样本可能数目与样本容量有关也与抽样的方法有关。

抽样方法可以分为考虑顺序的抽样与不考虑顺序的抽样;重复抽样与不重复抽样。

3.大数定律、正态分布理论、中心极限定理是抽样调查的数理基础。

正态分布的密度函数有两个重要的参数(σ;x )。

它有对称性、非负性等特点。

中心极限定理证明了所有样本指标的平均数等于总体指标如X x E =)(。

推出了样本分布的标准差为:1--=N n N n x σμ。

4.抽样推断在逻辑上使用的是归纳推理的方法、在方法上使用的是概率估计的方法、存在着一定误差。

无偏性、一致性和有效性是抽样估计的优良标准。

抽样调查既有登记性误差,也有代表性误差,抽样误差是一个随机变量,而抽样的平均误差是一个确定的值。

抽样误差受总体标志值的差异程度、样本容量、抽样方法、抽样组织形式的影响。

在重复抽样下抽样的平均误差与总体标志值的差异程度成正比,与样本容量的平方根成反比即n x σμ=,不重复抽样的抽样平均误差仅与重复抽样的平均误差相差一个修正因子即N nn x -=1σμ。

在通常情况下总体的方差是未知的,一般要用样本的方差来代替。

把抽样调查中允许的误差范围称作抽样的极限误差x ∆或p ∆。

μt =∆,用抽样的平均误差来度量抽样的极限误差。

把抽样估计的把握程度称为抽样估计的置信度。

抽样的极限误差越大,抽样估计的置信度也越大。

抽样估计又可区分为点估计和区间估计。

07章抽样调查基础知识

07章抽样调查基础知识


1.14%
n
150
若按不重复抽样方式:
p(1p) n 0.98(10.98) 150
p
(1 )
(1 )1.137%4
nN
150
15000
三、抽样误差的允许范围
(一)抽样极限误差 抽样极限误差也叫允许误差,是指样本指标与
总体指标之间抽样误差的可能范围。
x x X p pP 将上式等价转换为下列不等式:
抽样误差
一、抽样误差的概念 (一)代表性误差
代表性误差是指在抽样调查中,用部分样 本推断总体时,由于样本各单位的结构情况不 足以代表总体状况而产生的误差。
代表性误差有两种:系统误差和随机误差。
1、系统误差是指破坏了抽样的随机原则而产生 的误差。例如有意识的选取好的单位或较差单 位进行调查造成的误差。
4、抽样组织方式(分层抽样误差较小,整群抽 样误差较大)。
二、抽样平均误差的计算 (一)样本平均数的抽样的平均误差
的计算 重复抽样条件下:
不重复抽样条件下:
(二)样本成数的抽样平均误差的计算 重复抽样条件下: 不重复抽样条件下:
(三)总体方差未知时的解决办法 1.用样本方差、成数代替 2.用过去的资料代替 3.用估计值代替 4.用小规模试验性调查资料代替 见书例2.
例:
某灯泡厂从一天所生产的产品10,000个 中抽取100个检查其寿命,得平均寿命为 2000小时,根据以往资料:σ =20小时, 分别按重复抽样和不重复抽样求抽样平 均误差
重复抽样平均误差为:
202 202(小时 )
x 100 100

不重复抽样平均误差为: x

400(1 100 ) 1.99(小时) 100 10000

第七章 抽样调查

第七章 抽样调查

第七章抽样调查一、抽样原理1、定义抽样调查是按照随机原则从被研究对象的总体中(全部研究对象)抽取一部分单位进行调查观察,并运用数理统计的原理,以调查所得的指标(实际观察数值)来推断被研究总体的相应指标达到对总体的认识。

简言之,抽样调查就是从总体中抽取一定数量的样本来推断总体的情况。

2、抽样调查的特点⑴随机原则。

所谓随机原则,就是说在我们所研究的总体中,每一个个案都有被选中、抽取的机会。

也即我们在总体中抽样时,哪一个个案能被抽取,哪一个个案不能被抽取,不是人为主观决定的,而完全是偶然碰机会的。

⑵从数量上推算全体。

抽样调查是抽取部分个案进行调查,但它的主要目的不是为了了解这部分单位本身,而是为了据此从数量上推算全体。

⑶抽样调查使我们有可能用更少的人力、物力、时间、费用达到对总体的认识,而且可以起到丢普查资料进行修正补充,提高大范围调查的准确程度的作用,因而在理论上和方法上都具有重要的意义。

3、几个概念⑴总体也称为母体、一般总体等。

是指具有某种统计特征的一类事物的全部个案。

也即,研究对象的全体称为总体。

例如,某批产品、某类病人、某个生产过程等。

总体的单位数通常用符号N来表示。

⑵个体也称为个案、元素。

组成总体的每个元素称为个体。

有时也称具有某种统计特征的每一个对象为个案构成一个总体的个案,可以是人或物,也可以指个性、心理反应等。

⑶样本也称为抽样总体、样本总体等从总体中抽取一部分代表进行研究分析时,这一部分被抽取的个案称为总体中的一个样本。

也就是说,从总体中抽取的若干个案所组成的群体,称之为样本。

总体是大群体,样本是小群体。

在社会研究中,资料的收集工作往往是在样本中完成的。

样本的单位数(即样本容量)常用符号n来表示。

⑷抽样从组成某个总体的所有元素的集合中,按一定的方式选择或抽取一部分元素(即抽取总体的一个子集)的过程,或者说,抽样是从总体中按一定方式选择或抽样样本的过程。

(5)抽样单位就是一次直接的抽样所使用的基本单位。

其他的抽样方法

其他的抽样方法

其他的抽样方法
除了随机抽样和非随机抽样,还有一些其他的抽样方法,包括以下几种:
1. 整群抽样(Cluster Sampling):整群抽样是将总体划分为若干个群体,然后以群体为抽样单位,从中随机抽取若干个群体作为样本,对抽中的群体内的所有个体都进行调查。

这种方法适用于调查对象分布范围广、数量大、不易集中调查的情况。

2. 多阶段抽样(Multistage Sampling):多阶段抽样是将抽样过程分为多个阶段,每个阶段都使用不同的抽样方法。

例如,在第一阶段采用整群抽样,第二阶段在抽中的群体内采用简单随机抽样等方法。

多阶段抽样通常用于调查对象分布范围广、数量大、内部差异明显的情况。

3. 系统抽样与等距抽样(Systematic Sampling and Interval Sampling):系统抽样是将总体中的单位按照一定的顺序排列,然后按照固定的抽样间隔选取样本。

等距抽样是系统抽样的一种特殊形式,它要求抽样间隔相等。

这种方法适用于总体数量较大、内部差异较小的情况。

4. 滚雪球抽样(Snowball Sampling):滚雪球抽样是通过初始调查对象引荐其他调查对象的方式,不断扩大样本范围。

这种方法适用于调查对象难以直接接触到的情况,如调查社会网络、人际关系等。

需要注意的是,不同的抽样方法各有优缺点,应根据具体的调查
目的、总体特征、调查资源等因素选择合适的抽样方法。

同时,无论采用何种抽样方法,都需要注意样本的代表性和抽样误差的控制,以确保调查结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 样本轮换
一、样本轮换的原因
如果是单纯地估计现值的情况,当然最好每次重新抽取 新样本,这样必然会增加费用;
如果要逐期地与上期比较,则采用固定样本的方法为好, 固定样本可以消除样本的因素而只观察动态的变化。
然而,样本长期不变,随着时间的推移,固定样本会显 露它的弊端,既难以反映总体的变化,而且受访者也会产生厌 烦心理,出现不合作或回答质量下降等问题,从而影响调查质 量。另外,无论是采用固定样本还是全新样本都难以正确地反 映总体在各个不同时间上的水平及变化,因此,一种广泛采用 的方法是样本轮换,即每隔一定时间(一个月、一季或一年) 更换一定比例的单元,保留其余单元。
第7章 其它抽样方法
第一节 样本轮换 第二节 双重抽样 第三节 随机化装置
问题提出
时间序列数据以及随后出现的面板数据 都是经济统计分析和计量分析中非常重要的 数据类型。当我们在研究应该应用什么统计 和计量的方法去分析既定的时间序列数据时, 是否考虑过以下几个问题?
时间序列数据是如何产生的? 所产生的时间序列数据是否准确? 如何让时间序列数据更加准确?
一次性抽样调查与截面数据
连续性抽样调查与时间序列数据及面板数据
第一节 样本轮换
抽样调查除了对总体的一次性抽样以外,很多重要的 调查是隔一段时间重复进行的,对于这种经常性的抽样问 题,就必须重视其样本轮换问题的研究。
对于样本轮换问题,我们至少应考虑以下问题:每次 调查的样本如何组成?是采用固定样本还是采用全新的 样本,或者是部分保留部分替换,即样本轮换;在估计 后期的总量或均值时,是否需要利用前期的信息来改进 现期的估计,以及如何利用;如果采用样本轮换的方法, 如何确定最优的保留比例或替换比例。
可以较大地提高 yw的效率。表7.1给出了不同的q,ρ值
时 V ( y w ) V ( y ) 的值。
第一节 样本轮换
表7.1
不同的q,ρ值时V(yw)V(y)的值
x
若对上式关于q求偏导,并使之等于0,那么便可得 到最优轮换比:
期中保留样本、不保留样本和后期新补充样本的加权平均数。
第一节 样本轮换
设我们希望得到的估计量 y w 是两期估计量的线性函数,即
y w = a x+b x+c y + y d
(7.1)
要求估计其参数a,b,c,d。
因为E(x)=E(x)=X ,E( y )=E(y )=Y , 所
以E( y w )=(a+b)X+(c+d)Y 。要使 y w 成为Y 的无偏估计
x 为第一个时期与第二个时期相同的np个单元在第一个时期
的均值。
为第一个时期nq个单元在第x 一个时期的均值。
y 为np个单元在第二个时期的样本均值。 y 为nq个补充单元在第二个时期的样本均值。
x ρ为 和 y之 间的相关系数。
如果希望估计第二个时期的样本均值并充分利用第一个
时期的信息,令该估计量为 yw,那么它应该是充分利用前后
与传统的一次性抽样调查相比,轮换的 抽样调查具有以下特有的优势: 节省调查费用和调查资源 在一定程度上减轻被调查者回答负担 利用前后各期之间的相关关系提高估计精度
我国抽样调查制度与方法改革的方向
我国1996年新修订的《统计法》第十条明确规定: “统计调查应当以周期性普查为基础,以经常性抽 样调查为主体,以必要的统计报表、重点调查、综 合分析等为补充,搜集、整理基本统计资料。”
量,需a+b=0,c+d=1,也即b=-a,d=1-c。代入(7.1),有
y w =a( x- x)+c y+(1-c)y
第一节 样本轮换
该估计量的方差可以求得为:
V(yw)
a2(1 q
1)x2
pn
c2 p
2
.yx
n
(1c)2
q
.y2
n
2ac. p
xy
n
其中
x 2是第一个时期的方差,
2 是第二个时期的方差。我
yq1(1qq222)
y
该估计量的方 样本轮换
如果不利用前期信息,只根据第二期的结果来估 计均值,那么 :
y p y q y
其方差为 :
2
V ( y ) y
n
第一节 样本轮换
故利用前期信息后的设计效果为 :
V(yw) x 1 2q V(y) 1 2q2
从上式可以看出,当ρ的值比较大时,利用上期信息
y
们要求出a和c,使得 V (y w )达到最小,就要以上公式分别对a
和c求偏微分并使之等于0,即可求出a和c的最优值分别为:
第一节 样本轮换
该估计量的方差可以求得为:
a1qp2q2. xy
p
c 1 q22
第一节 样本轮换
将其代入公式(7.1),就得到
yw
y x
pq 1q22
x
(xx)
p
1q22
第一个时期采用有放回简单随机抽样方式抽出样本量为n 的样本;在第二个时期采用有放回简单随机抽样方式选 出样本量为nq的旧有样本点以便替换掉,即保留的样本 量为np,保留样本的比例为p,同时独立地依有放回简单 随机样本方式补充新的nq个新样本点,这里p+q=1,这样 第二个时期的样本量仍旧为n。设:
第一节 样本轮换
因此,在今后我国政府统计部门开展的统计调查制 度与方法改革的过程中,最重要的就是围绕如何更 好地发挥经常性抽样调查的主体作用,研究并应用 更加符合我国国情的经常性抽样调查方法,以此得 出更加准确的统计数据,为我国政府部门、研究机 构以及各类企事业单位等社会各界服务。
第一节 样本轮换
二、样本轮换的最优比例
连续性抽样设计方法
单水平轮换
不完全的单水平轮换
多水平轮换
轮换模式应用举例
加拿大劳动力调查(LFS)使用6~0单水平轮 换模式
美国现时人口调查(CPS)使用4~8~4不完全 单水平轮换模式
美国消费者支出的季度调查(CEQ)便采用 4~0三水平轮换模式 中国城市住户抽样调查
中国规模以下工业企业抽样调查 中国农产量抽样调查
随着社会经济现象的不断变化和发展,很多调 查对象的总体也在不断变化和发展。为了能够及时 反映调查总体的这种变化和发展,调查部门就需要 对同一总体在不同时间上进行连续性抽样调查 (Successive Sampling Survey ),并定期公布调查结 果,形成一系列时序统计数据。因此,社会经济抽 样调查一般都应该是连续性的定期调查。
相关文档
最新文档