高三数学二项式定理及应用PPT精品课件
合集下载
高中数学《二项式定理》课件
03
二项式定理的证明
数学归纳法的应用
数学归纳法是一种证明数学命题的重 要方法,尤其在证明二项式定理时, 它能够通过有限步骤来证明无限递推 关系。
然后,通过假设当$n=k$时二项式定 理成立,推导出当$n=k+1$时二项 式定理也成立。
在二项式定理的证明中,数学归纳法 首先证明基础步骤,即当$n=0$或 $n=1$时,二项式定理成立。
二项式定理的推导
二项式定理推导思路
通过组合数的性质,将二项式定理展开式中的每一项表示为组合数的形式,从而推导出二项式定理的 展开式。
二项式定理的推导过程
根据组合数的性质,将二项式定理展开式中的每一项表示为C(n, k)的形式,其中k表示二项式中某一 项的次数。通过计算,可以得到二项式定理的展开式为C(n, 0) + C(n, 1)x + C(n, 2)x^2 + ... + C(n, n)x^n。
C(n, m) = C(n, n-m),即从n个不同元素中取出m个元素和取出n-m个元素的 组合数相等。
组合数的性质2
C(n+1, m) = C(n, m-1) + C(n, m),即从n+1个不同元素中取出m个元素的组 合数等于从n个不同元素中取出m-1个元素的组合数加上从n个不同元素中取出 m个元素的组合数。
详细描述
二项式定理的应用场景非常广泛。在多项式的展开中,二项式定理可以用来求解形如$(x+y)^n$的多项式的展开 结果。在组合数学中,二项式定理可以用来计算组合数和排列数等。在概率论中,二项式定理可以用来计算事件 的概率和期望值等。此外,二项式定理在统计学、物理、工程等领域也有广泛的应用。
02
二项式定理的推导过程
2021届高三数学一轮复习-《第47讲 二项式定理及应用》课件 (共14张PPT)
不漏。
4.对于二项式系数问题,首先要熟记二项式系数 的性质,其次要掌握赋值法,赋值法是解决二项式系 数问题夫人一个重要手段.
5.近似计算首先要观察精确度,然后选取展开式 中的若干项.
6.用二项式定理证明整除问题,一般将被除式变 为有关除式的二项式的形式再展开,常采用“配凑 法”,“消去法”配合整除的有关知识来解决.
【知识要点】
【典例剖析 】 考点1 二项展开式中的特定项问题
例1:
例2:
考点2 多项展开式中的特定项或系数问题
例3:
考点3 二项式系数的和与性质
例4:
例5:
考点4 二式定理一定要牢记通项
Tr 1
C
r n
a
n
r
br
,
注意
(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项是不相
同的,我们一定要注意顺序问题,另外二项展开式二项式系数
与该项的(字母)系数是两个不同概念,前者只指Cnr ,而后者 是指字母外的部分.
2.求二项展开式中指定的项,通常是先根据已知条件求r,
再求Tr+1,有时还需先求n,再求r,才能求出Tr+1。 3.有些三项展开式问题可以通过变形,变成二项式问题加
以解决;有时也可以通过组合解决,但要注意分类清楚,不重
高考数学理一轮复习 10-3二项式定理及其应用精品课件
1 n 备选例题 1 在二项式( x- ) 的展开 3 2 x 式中,前三项系数的绝对值成等差数列.求: (1)展开式的常数项; (2)展开式中各项系数的和. 3
1 n 解: 由条件“二项式( x- ) 的展开式中, 3 2 x 前三项系数的绝对值成等差数列”可求出 n 的值. 1 n 3 ∵( x- ) 展开式的前三项系数的绝对值 3 2 x n(n-1) 1 为 1,2n, 8 , n(n-1) 1 ∴2×2n=1+ 8 ,∴n2-9n+8=0, ∴n=8 或 n=1(舍去). 3
[解] (1)令 x=0,则 a0=-1; 令 x = 1 ,则 a7 + a6 +…+ a1 + a0 = 27 = 128① ∴a7+a6+…+a1=129. (2)令 x=-1, 则-a7+a6-a5+a4-a3+a2-a1+a0=(- 4)7② ①-② 由 2 得: 1 a7+a5+a3+a1=2[128-(-4)7]=8 256. ①+② (3)由 2 得: 1 a6+a4+a2+a0=2[128+(-4)7]=-8 128.
[规律总结]
本题是先求二项式的指数,再求与通项
有关的其他问题.一般地,解此类问题可以分两步完成:第 一步是根据所给出的条件 ( 特定项 )和通项公式,建立方程来 确定指数(求解时要注意二项式系数中n和r均为非负整数,且
n≥r的隐含条件);第二步是根据所求的指数,再求所求解的
项.此外,解本题时,为减少计算中的错误,宜把根式化为 分数指数幂.
第三节
二项式定理及其应用
知识自主· 梳理
掌握二项式定理和二项展开式的性质 最新考纲 ,并能用它们计算和证明一些简单的 问题.
1.运用二项式定理的通项公式求指定 项或与系数有关的问题; 高考热点 2.赋值法、转化与化归思想等在二项 展开式中的应用问题.
二项式定理及应用ppt课件
• 【答案】 C
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
• 【答案】 9
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
联立①②得
a1+a3+…+a99=(2-
3)100-(2+ 2
3)100 .
(3)原式=[(a0+a2+…+a100)+(a1+a3+… +a99)]·[(a0+a2+…+a100)-(a1+a3+…+
a99)] =(a0+a1+a2+…+a100)(a0-a1+a2-a3 +…+a98-a99+a100) =(2- 3)100(2+ 3)100=1.
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】 2
求特定的项或特定项的系数
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
(4)方法一:∵展开式中,a0,a2, a4,…,a100大于零,而a1,a3,…,a99小 于零,
∴原式=a0-a1+a2-a3+…+a98-a99+
a100 =(2+ 3)100.
方法二:|a0|+|a1|+|a2|+…+|a100|, 即(2+ 3x)100展开式中各项的系数和, ∴|a0|+|a1|+|a2|+…+|a100|=(2+ 3)100.
• 【思路点拨】 本题给出二项式及其二项展开式求各系
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
• 【答案】 9
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
联立①②得
a1+a3+…+a99=(2-
3)100-(2+ 2
3)100 .
(3)原式=[(a0+a2+…+a100)+(a1+a3+… +a99)]·[(a0+a2+…+a100)-(a1+a3+…+
a99)] =(a0+a1+a2+…+a100)(a0-a1+a2-a3 +…+a98-a99+a100) =(2- 3)100(2+ 3)100=1.
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】 2
求特定的项或特定项的系数
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
(4)方法一:∵展开式中,a0,a2, a4,…,a100大于零,而a1,a3,…,a99小 于零,
∴原式=a0-a1+a2-a3+…+a98-a99+
a100 =(2+ 3)100.
方法二:|a0|+|a1|+|a2|+…+|a100|, 即(2+ 3x)100展开式中各项的系数和, ∴|a0|+|a1|+|a2|+…+|a100|=(2+ 3)100.
• 【思路点拨】 本题给出二项式及其二项展开式求各系
《二项式定理》ppt课件
பைடு நூலகம்
A.15
������ ������������
B.20������
-
������ ������
C.15
������
2
D.20
������ ������������
【解析】T3=������������ ������ ( ������) ( ) =15,故选 C.
4
������
2
10 (x- ������y) 的展开式中第 5 项的系数是( A ). A.840 B.-840 C.210 D.-210
二项展开式的通项和二项式系数 n 在二项式定理中,右边的多项式叫作(a+b) 的二 项展开式,展开式的第 r+1 项为 n-r r Tr+1=������������ a b (r=0,1,2…n),其中的系数 ������ 二项式系数 ������������ . ������ (r=0,1,2…n)叫作
������
������
n
于 37,求展开式中的第 5 项的系数.
������ ������ 【解析】由������������ ������ +������������ +������������ =37 得 1+n+ n(n-1)=37, ������ ������
得 n=8.
������������ 4 ������������ 4 ������ ������ 又∵T5=������������ ������(2x) = x ,∴该项的系数为 . ������ ������ ������
������ ������ b) +������������ (4a) (b) + ������ (4a) (b) + ������ ������ ������ ������ (4a) (1 3 2 2 3 1
A.15
������ ������������
B.20������
-
������ ������
C.15
������
2
D.20
������ ������������
【解析】T3=������������ ������ ( ������) ( ) =15,故选 C.
4
������
2
10 (x- ������y) 的展开式中第 5 项的系数是( A ). A.840 B.-840 C.210 D.-210
二项展开式的通项和二项式系数 n 在二项式定理中,右边的多项式叫作(a+b) 的二 项展开式,展开式的第 r+1 项为 n-r r Tr+1=������������ a b (r=0,1,2…n),其中的系数 ������ 二项式系数 ������������ . ������ (r=0,1,2…n)叫作
������
������
n
于 37,求展开式中的第 5 项的系数.
������ ������ 【解析】由������������ ������ +������������ +������������ =37 得 1+n+ n(n-1)=37, ������ ������
得 n=8.
������������ 4 ������������ 4 ������ ������ 又∵T5=������������ ������(2x) = x ,∴该项的系数为 . ������ ������ ������
������ ������ b) +������������ (4a) (b) + ������ (4a) (b) + ������ ������ ������ ������ (4a) (1 3 2 2 3 1
二项式定理ppt课件
$(a+b)^4$ 的中间项是 什么?
$(a-b)^5$ 的展开式中 ,$a^4$ 的系数是多少
?
深化习题
01
02
03
04
深化习题1
利用二项式定理展开 $(a+b)^5$,并找出所有项
的系数。
深化习题2
求 $(a+b+c)^3$ 的展开式中 $a^2b$ 的系数。
深化习题3
利用二项式定理证明 $(a+b)^n$ 的展开式中,中
组合数学是研究组合问题的一 门数学分支,与二项式定理密 切相关。
在二项式定理的推导过程中, 组合数学原理提供了组合数的 计算方法和组合公式的应用。
通过组合数的计算,我们可以 得到二项式展开的各项系数, 进一步验证二项式定理的正确 性。
幂级数的展开与收敛
幂级数是数学分析中的重要概念 ,与二项式定理的推导密切相关
微积分中的应用
二项式定理在微积分中有着广泛的应用,如在求极限、求导和积分等运算中。
概率论中的应用
在概率论中,二项式定理可以用于计算组合数学中的一些概率分布,如二项分 布和超几何分布等。
05
习题与思考题
基础习题
基础习题1
基础习题2
基础习题3
基础习题4
$(a+b)^2$ 的展开式是 什么?
$(a-b)^3$ 的展开式是 什么?
概率分布
利用二项式定理,可以推 导二项分布的概率分布函 数和概率密度函数。
概率推断
在贝叶斯推断中,二项式 定理可以用于计算后验概 率和预测概率。Leabharlann 二项式定理在组合数学中的应用
01
组合数的计算
利用二项式定理,可以计算组合数$C(n, k)$,即从n个不同元素中取出
二项式定理ppt课件
与幂级数的联系
二项式定理与幂级数有密切的联系,通过二项式定理可以推 导幂级数的展开式,反之亦然。
与微积分的联系
二项式定理在微积分中有重要的应用,例如在求解微分方程 和积分方程时,可以利用二项式定理进行近似计算。
二项式定理在实际问题中的应用
组合数学问题
二项式定理在组合数学中有广泛的应用,例如排列、组合、概率等问题中都可以用到二项式定理。
欧洲的发展
欧洲数学家在文艺复兴时 期开始深入研究二项式定 理,其中帕斯卡和贾法尼 等人都做出了重要贡献。
现代应用
二项式定理在现代数学、 物理、工程等领域都有广 泛的应用,是解决各种问 题的重要工具。
二项式定理的定义与公式
二项式定理定义
二项式定理描述了两个数 相乘时,各项的系数变化 规律。
二项式定理公式
总结词
二项式定理的展开形式是 $(a+b)^n$,其中$a$和$b$是常数 ,$n$是正整数。
详细描述
二项式定理的展开形式是$(a+b)^n$ ,其中$a$和$b$是常数,$n$是正整 数。这个公式可以展开为多项式,各 项的系数由组合数决定。
二项式展开的系数规律
总结词
二项式展开的系数规律是使用组合数 来表示的。
组合数学中的应用
排列组合公式
二项式定理可以用于推导排列组 合公式,例如C(n,k)=n!/(k!(nk)!),通过二项式定理可以推导
出该公式。
组合恒等式
利用二项式定理可以证明一些组 合恒等式,例如C(n,k)=C(n,n-k) 和C(n+1,k)=C(n,k)+C(n,k-1)等
。
组合数性质
利用二项式定理可以推导出组合 数的一些性质,例如C(n,k)总是 非负的,当k>n时,C(n,k)=0等
二项式定理与幂级数有密切的联系,通过二项式定理可以推 导幂级数的展开式,反之亦然。
与微积分的联系
二项式定理在微积分中有重要的应用,例如在求解微分方程 和积分方程时,可以利用二项式定理进行近似计算。
二项式定理在实际问题中的应用
组合数学问题
二项式定理在组合数学中有广泛的应用,例如排列、组合、概率等问题中都可以用到二项式定理。
欧洲的发展
欧洲数学家在文艺复兴时 期开始深入研究二项式定 理,其中帕斯卡和贾法尼 等人都做出了重要贡献。
现代应用
二项式定理在现代数学、 物理、工程等领域都有广 泛的应用,是解决各种问 题的重要工具。
二项式定理的定义与公式
二项式定理定义
二项式定理描述了两个数 相乘时,各项的系数变化 规律。
二项式定理公式
总结词
二项式定理的展开形式是 $(a+b)^n$,其中$a$和$b$是常数 ,$n$是正整数。
详细描述
二项式定理的展开形式是$(a+b)^n$ ,其中$a$和$b$是常数,$n$是正整 数。这个公式可以展开为多项式,各 项的系数由组合数决定。
二项式展开的系数规律
总结词
二项式展开的系数规律是使用组合数 来表示的。
组合数学中的应用
排列组合公式
二项式定理可以用于推导排列组 合公式,例如C(n,k)=n!/(k!(nk)!),通过二项式定理可以推导
出该公式。
组合恒等式
利用二项式定理可以证明一些组 合恒等式,例如C(n,k)=C(n,n-k) 和C(n+1,k)=C(n,k)+C(n,k-1)等
。
组合数性质
利用二项式定理可以推导出组合 数的一些性质,例如C(n,k)总是 非负的,当k>n时,C(n,k)=0等
二项式定理及应用PPT教学课件
2、( 1 3 x )20展开式中,不含x的项是第____ 项 x
3、(x2 - 1 )9展开式中x9的系数是 _________(03年 2x
全国高考)
例1(x 1)5 5(x 1)4 10(x 1)3 10(x 1)2 5(x 1)
(A)x5 (C)x5+1
(B)x5-1 (D)(x-1)5-1
(1) a1+a2+a3+ a4 + a5的值 (2) a1+a3+ a5的值 (3) |a1|+|a2|+|a3|+ |a4| + |a5|的值
评注:涉及展开式的系数和的问题,常用赋值法解决
练习:
若(2 x 3 )4 a0 a1 x a2 x2 a3 x3 a4 x4 ,则 (a0 a2 a4 )2 (a1 a3 )2 ______ (99年全国)
作业: 指导与学习P74-75
T1-10
重庆遇罕见蝗灾
2001年夏,重庆壁山县古老城遭受了 罕见的蝗虫灾害,铺天盖地的蝗虫像 收割机一样把当地近千亩的农作物和 果树林吞食得面目全非,眼看数年心 血就要化为泡影。
重 庆 遇 罕 见 蝗 灾
请你帮助
古老城人可以怎样消灭 蝗虫,控制蝗灾?
古老城紧急呼救
1、已知
x
2 x
n
展开式中第五项的系数与
第三项的系数比是10 : 1,求展开式中含x的项
2、如果: 1+2C
1 n
22 Cn2 L
2n
C
n n
2187
求:Cn1 L Cnr L Cnn 的值
小结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
3、(x2 - 1 )9展开式中x9的系数是 _________(03年 2x
全国高考)
例1(x 1)5 5(x 1)4 10(x 1)3 10(x 1)2 5(x 1)
(A)x5 (C)x5+1
(B)x5-1 (D)(x-1)5-1
(1) a1+a2+a3+ a4 + a5的值 (2) a1+a3+ a5的值 (3) |a1|+|a2|+|a3|+ |a4| + |a5|的值
评注:涉及展开式的系数和的问题,常用赋值法解决
练习:
若(2 x 3 )4 a0 a1 x a2 x2 a3 x3 a4 x4 ,则 (a0 a2 a4 )2 (a1 a3 )2 ______ (99年全国)
作业: 指导与学习P74-75
T1-10
重庆遇罕见蝗灾
2001年夏,重庆壁山县古老城遭受了 罕见的蝗虫灾害,铺天盖地的蝗虫像 收割机一样把当地近千亩的农作物和 果树林吞食得面目全非,眼看数年心 血就要化为泡影。
重 庆 遇 罕 见 蝗 灾
请你帮助
古老城人可以怎样消灭 蝗虫,控制蝗灾?
古老城紧急呼救
1、已知
x
2 x
n
展开式中第五项的系数与
第三项的系数比是10 : 1,求展开式中含x的项
2、如果: 1+2C
1 n
22 Cn2 L
2n
C
n n
2187
求:Cn1 L Cnr L Cnn 的值
小结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
6.3.1二项式定理课件共15张PPT
和 (a b)3 a 3 3a 2b 3ab 2 b3的概括和推广,
它是以多项式的乘法公式为基础,以组合知识为工具,
用不完全归纳法得到的,其证明可用数学归纳法.
(2)对二项式定理的理解和掌握,要从项数、系数、指
数、通项等方面的特征去熟悉他的展开式.通项公式
Tr 1 C a
r
率9%,按复利计算,10年后收回本金和利息。
试问,哪一种投资更有利?这种投资比另一种投资10年后大约
可多得利息多少元?
分析:本金10万元,年利率11%,按单利计算,10年后的本利和是
10×(1+11%×10)=21(万元);
本金10万元,年利率9%,按复利计算,10年后的本利和是10×(1+
9%)10;
x
60 12 1
64 x 192x 240x 160
2 3
x x
x
3
2
0 n
1 n 1
a
b
C
a
C
n
例题讲评
例2: 求 (2 x
解:
1 6
) 的展开式中
x
的展开式的通项:
根据题意,得
因此, 2 的系数是
x
x 的系数。
艾萨克·牛顿 Isaac
Newton (1643—1727) 英国
科学家.他被誉为人类历史上
最伟大的科学家之一.他不仅
是一位物理学家、天文学家,
还是一位伟大的数学家.
牛顿二项式定理
新课引入
某人投资10万元,有两种获利的可能供选择。一种是年
利率11%,按单利计算,10年后收回本金和利息。另一种是年利
《二项式定理》(共17张)-完整版PPT课件全文
展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x
高中数学二项式定理 (2)公开课精品PPT课件
3.二项式系数的和为2n,即Cn0+Cn1+…+Cnk+…+Cnn= 2n.
4.奇数项的二项式系数的和等于偶数项的二项式系数的 和,即Cn0+Cn2+Cn4+…=Cn1+Cn3+Cn5+…=2n-1.
二项式系数的性质
1.Cn+1r=Cnr+Cnr-1. 2.对称性:与首末两端等距离的两个二项式系数相等.
例4 (1- x)6(1+ x)4的展开式中x的系数是( )
A.-4
B.-3
C.3
D.4
【解析】 方法一:(1- x )6的展开式的通项为C6m(- x )m=
m
n
C6m(-1)mx 2 ,(1+ x)4的展开式的通项为C4n( x)n=C4nx2,其中m
=0,1,2,…,6,n=0,1,2,3,4.
【解析】 (1)展开式中,二项式系数和为210=1 024. (2)令x=1,y=1,各项系数和为(2-3)10=1. (3)(2x-3y)10=C100(2x)10+C101(2x)9(-3y)1+…+C10k(2x)10- k(-3y)k+…+C1010(-3y)10, 奇数项的二项式系数和为C100+C102+C104+C106+C108+ C1010=29, 偶数项的二项式系数和为C101+C103+C105+C107+C109=29.
=321x5(x+ 2)10.
求原式的展开式中的常数项,转化为求(x+ 2)10的展开式中含
x5项的系数,即C105·( 2)5.
所以所求的常数项为C105·3(2
2)5=632
2 .
方法二:要得到常数项,可以对5个括号中的选取情况进行
分类:
①5个括号中都选取常数项,这样得到的常数项为( 2)5.
探究1 (1)求展开式的系数和关键是给字母赋值,赋值的选 择则需根据所求的展开式系数和特征来赋值.
第三节 二项式定理 课件(共36张PPT)
其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )
二项式定理PPT教学课件
12n n
(2)当 3 q 1 时,求 lim An
n 2n
【思维点拨】:本题逆用了二项式定理及
C
0 n
C
1 n
C
n n
2n
例4、若 2x 3 4= a0 a1x a2 x 2 a3 x3 a4 x 4,
求(1) a0 a2 a4 2― a1 a3 2的值。
(2) a0 a1 a2 a3 的值。
【思维点拨】 用赋值法时要注意展开式的形式。
思考题:设
x 14x 25 a0 a1x 3 a2x 32 a9x 39
则 a0 a2 a4 a6 a8 ―2 a1 a3 a5 a7 a9 2
0
备用题:
例5已知( (1 2x)n ,
2 (1) 若展开式中第5项、第6项与第7项的二 项式系数成等差数列,求展开式中二项式系 数最大项的系数。
稚参培育环境
• 水温 • 光照 • 盐度 • PH值 • 溶解氧
稚参敌害与病害的防治技术
• 桡足类 • 细菌
x
1120 (3)求 (1 x)3 (1 x)4 (1 x)5 … (1 x)50
的展开式中 x 3的系数。 C541
例3(优化设计P180例3)、设an=1+q+q2+… +qn-1(n∈N*,q≠±1),
An= Cn1a1 Cn2a2 ...... Cnnan
(1) 用q 和n 表示An
即可求第五个元素。
③注意二项式系数与某一项系数的异同。
④当n不是很大,|x|比较小时可以用展开式的 前几项求 (1 x)n的近似值。
二、问题讨论
例1.(1) Cn1 3Cn2 9Cn3 3n1Cnn
等于 ( D )
A 、4n
二项式定理课件ppt
二项式定理的应用举例
04
求解某些特定形式的幂级数展开式
01
幂级数展开式的求解
二项式定理可以用于求解某些特定形式的幂级数展开式 ,例如$(a+b)^n$的展开式。
02
泰勒级数展开
利用二项式定理,我们可以求解一些函数的泰勒级数展 开,从而得到函数在某个点的近似值。
03
幂级数的求和
对于一些特定的幂级数,我们可以利用二项式定理找到 其求和的方法。
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数。
二项式系数的性质
二项式系数是组合数的推广 ,它具有与组合数相同的性 质,例如
1. 对称性:对于任何自然数n ,C(n,k) = C(n,n-k)。
2. 递推性:C(n+1,k) = C(n,k-1) + C(n,k)。
3. 组合恒等式:C(n,k) + C(n,k-1) = C(n+1,k)。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的基本工具之一。
二项式定理的意义与应用
01
二项式定理是组合数学的基础,可以帮助我们理解和分 析一些组合问题的内在规律。
02
在统计学中,二项式定理可以用于计算样本数量较少时 的置信区间和置信度。
深化理解的进阶题目
总结词
深入理解概念
详细描述
在基本掌握二项式定理的基础上,通过解决 一些相对复杂的进阶题目,帮助学生深入理 解二项式定理的概念和变形方式,进一步提 高解题能力。
有趣的开放性问题
总结词
激发学习兴趣
高中数学二项式定理公开课精品PPT课件
1.3 二项式定理 第一课时 二项式定理
1.二项式定理 公式(a+b)n=Cn0an+Cn1an-1b+…+Cnran-rbr+…+Cnn-1abn- 1+Cnnbn所表示的规律叫作二项式定理. 2.(1)(a+b)n的二项展开式中共有n+1项; (2)二项式系数:Cnk(k∈N); (3)二项展开式的通项公式:Tk+1=Cnkan-kbk(其中0≤k≤n, k∈N,n∈N*)它是展开式的第k+1项.
3 2x2
)0+C51(2x)4(-
3 2x2
)+C52(2x)3(-
3 2x2
)2+C53(2x)2(-
3 2x2
)3+C54(2x)(-
3 2x2
)4+C55(-
3 2x2
)5=32x5-120x2
+18x0-1x345+480x57 -3224x310.
例4 已知在(3 x- 3 )n的展开式中,第6项为常数项. 3 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
【思路】 解答本题可先借助通项公式,利用第6项为常数项 求n,然后再根据通项公式即可求得(2),(3).
【解析】 (1)通项公式为 Tk+1=Cnkxn-3 k(-3)kx-k3=Cnk(-3)kxn-32k. ∵第6项为常数项,∴k=5时有n-32k=0,即n=10. (2)令n-32k=2,得k=12(n-6)=2. ∴所求的系数为C102(-3)2=405.
【答案】 C
探究3 (1)求二项展开式的特定项的常见题型: ①求第k项,Tk=Cnk-1an-k+1bk-1; ②求含xk的项(或xpyq的项); ③求常数项; ④求有理项. (2)求二项展开式的特定项的常用方法: ①对于常数项,隐含条件是字母的指数为0(即0次项);
1.二项式定理 公式(a+b)n=Cn0an+Cn1an-1b+…+Cnran-rbr+…+Cnn-1abn- 1+Cnnbn所表示的规律叫作二项式定理. 2.(1)(a+b)n的二项展开式中共有n+1项; (2)二项式系数:Cnk(k∈N); (3)二项展开式的通项公式:Tk+1=Cnkan-kbk(其中0≤k≤n, k∈N,n∈N*)它是展开式的第k+1项.
3 2x2
)0+C51(2x)4(-
3 2x2
)+C52(2x)3(-
3 2x2
)2+C53(2x)2(-
3 2x2
)3+C54(2x)(-
3 2x2
)4+C55(-
3 2x2
)5=32x5-120x2
+18x0-1x345+480x57 -3224x310.
例4 已知在(3 x- 3 )n的展开式中,第6项为常数项. 3 x
(1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
【思路】 解答本题可先借助通项公式,利用第6项为常数项 求n,然后再根据通项公式即可求得(2),(3).
【解析】 (1)通项公式为 Tk+1=Cnkxn-3 k(-3)kx-k3=Cnk(-3)kxn-32k. ∵第6项为常数项,∴k=5时有n-32k=0,即n=10. (2)令n-32k=2,得k=12(n-6)=2. ∴所求的系数为C102(-3)2=405.
【答案】 C
探究3 (1)求二项展开式的特定项的常见题型: ①求第k项,Tk=Cnk-1an-k+1bk-1; ②求含xk的项(或xpyq的项); ③求常数项; ④求有理项. (2)求二项展开式的特定项的常用方法: ①对于常数项,隐含条件是字母的指数为0(即0次项);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 【答案】
B
2021/02/25
8
2.二项式(a+2b)n展开式中的第二项的系 数是8,则它的第三项的二项式系数为
() A.24 B.18 C.16 D.6 【解析】 T2=Cn1an-1(2b)1=C1n·2an-1b, 所以2n=8,n=4,所以Cn2=C24=6.
• 【答案】 D
2021/02/25
9
3.(2x+
1 x2
)7的展开式中倒数第三项的系数
是( )
A.C76·2 B.C76·26
C.C75·22 D.C75·25 【解析】 由于n=7,可知展开式共有8项.
∴倒数第三项即为正数第六项.
由通项公式Tr+1=Crn·an-r·br可得
T6=C57·(2x)2·x12)5=C75·4·x2·x110
2021/02/25
17
二项展开式的通项公式Tr+1=
C
r n
an-rbr(r=0,1,2,…,n)集中体现了二项
展开式中的指数、项数、系数的变化,它
在求展开式的某些特定项(如含指定幂的
项、常数项、中间项、有理项、系数最大
=C57·4·x18,
∴倒数第三项的系数是C57·22.
• 【答案】
C 2021/02/25
10
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
当 n 是偶数时,__中__间__的__一__项__C_n2_n__取得最
大值.
2021/02/25
5
当 n 是奇数时,中间两项______和_______
相等,且同时取得最大值.
(3)各二项式系数的和 (a+b)n 的展开式的各个二项式系数的和等 于 2n,即_C_n0_+__C_1n_+__C__2n+__…__+__C__rn_+__…__+__C_nn_ =2n.
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
2021/02/25
13
【思路点拨】 写出展开式的通项公式
根据第6项为常数项求n 由n值令x的指数 为2,求r 求出x2的项的系数 令x的指数 为整数k 根据0≤r≤n,r∈Z,求k 根 据k值求出展 开式的有理项
• 【答案】 9
2021/02/25
11
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】
2
2021/02/25
12
求特定的项或特定项的系数
二项展开式中,偶数项的二项式系数的和 _等__于___ 奇 数 项 的 二 项 式 系 数 的 和 , 即 ___C_n1_+__C_3n_+__C_5n_+__…_____ = C__n0+__C__2n_+__C_4n_+__…_ =__2_n-_1_.
2021/02/25
6
二项式定理中,项的系数与二项式系数有什 么区别? 【提示】 二项式系数与项的系数是完全不同的
(n∈ N*)叫 做 二 项 式 定 理 . 其 中
C
k n
(k
=
0,1,2, … , n)叫做 _二__项__式__系__数__. Tk + 1= ____C__nk_a_n-_k_b_k______ 叫 做 二 项 展 开 式 的 通
项,它表示第__k_+__1__项.
2021/02/25
3
• 在公式中,交换a,b的顺序是否有 【提影示响】?从整体看,(a+b)n 与(b+a)n 相同,
两个概念.二项式系数是指 C0n,C1n,…,Cnn,它
只与各项的项数有关,而与 a,b 的值无关;而项
的系数是指该项中除变量外的常数部分,它不仅
与各项的项数有关,而且也与 a,b 的值有关.
2021/02/25
7
1.若对于任意实数 x,有 x3=a0+a1(x-2) +a2(x-2)2+a3(x-2)3,则 a2 的值为( ) A.3 B.6 C.9 D.12 【解析】 ∵x3=[2+(x-2)]3, ∴展开式中含(x-2)2 项的系数为 a2=T2+1=C23×23-2=3×2=6.
2021/02/25
14
【自主解答】 (1)通项公式为 Tr+1=Crnxn-3 r(-12)rx-3r=Crn(-12)rxn-32r. 因为第6项为常数项, 所以r=5时,有n-3 2r=0,即n=10.
2021/02/25
15
(2)令n-3 2r=2,得r=12(n-6)=12×(10-6) =2, ∴所求的系数为C210(-12)2=445.
10-3 2r∈Z (3)根据通项公式,由题意0≤r≤10 .
r∈Z
2021/02/25
16
令
10-2r 3
=k(k∈Z),则10-2r=3k,即r
=5-32k. ∵r∈Z,∴k应为偶数. ∴k可取2,0,-2,即r可取2,5,8.
所以第3项,第6项与第9项为有理项,它
们分别为
C120(-12)2x2,C150(-12)5,C180(-12)8x-2.
但具体到某一项是不同的,如第 k+1 项 Tk+1=
knan-kbk,T′k+1=Cknbn-kak.
2021/02/25
4
2.二项式系数的性质 (1)对称性:与首末两端__“__等__距__离__”__的两 个二项式系数相等,即 Cmn =Cnn-m. (2)增减性与最大值:二项式系数 Ckn,当 __k_<__n_+_2_1___时,二项式系数是递增的;当 __k_>__n_+_2_1___时,二项式系数是递减的.
• 第三节 二项式定理及 应用
2021/02/25
1
考 纲 点 击
掌握二项式定理和二项展开式 的性质,并能用它们计算和 证明一些简单的问题.
1.运用二项式定理的通项公式
热 求指定项或与系数有关的问
点 题;
2021/02/25 提 2.赋值法、转化与化归思想等
2
1.二项式定理
公式(a+b)n= _C_n0_a_n_+__C_n1_a_n_-_1_b_+__…__+__C_kn_a_n_-_kb_k_+__…__+__C__nnb_n
B
2021/02/25
8
2.二项式(a+2b)n展开式中的第二项的系 数是8,则它的第三项的二项式系数为
() A.24 B.18 C.16 D.6 【解析】 T2=Cn1an-1(2b)1=C1n·2an-1b, 所以2n=8,n=4,所以Cn2=C24=6.
• 【答案】 D
2021/02/25
9
3.(2x+
1 x2
)7的展开式中倒数第三项的系数
是( )
A.C76·2 B.C76·26
C.C75·22 D.C75·25 【解析】 由于n=7,可知展开式共有8项.
∴倒数第三项即为正数第六项.
由通项公式Tr+1=Crn·an-r·br可得
T6=C57·(2x)2·x12)5=C75·4·x2·x110
2021/02/25
17
二项展开式的通项公式Tr+1=
C
r n
an-rbr(r=0,1,2,…,n)集中体现了二项
展开式中的指数、项数、系数的变化,它
在求展开式的某些特定项(如含指定幂的
项、常数项、中间项、有理项、系数最大
=C57·4·x18,
∴倒数第三项的系数是C57·22.
• 【答案】
C 2021/02/25
10
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
当 n 是偶数时,__中__间__的__一__项__C_n2_n__取得最
大值.
2021/02/25
5
当 n 是奇数时,中间两项______和_______
相等,且同时取得最大值.
(3)各二项式系数的和 (a+b)n 的展开式的各个二项式系数的和等 于 2n,即_C_n0_+__C_1n_+__C__2n+__…__+__C__rn_+__…__+__C_nn_ =2n.
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
2021/02/25
13
【思路点拨】 写出展开式的通项公式
根据第6项为常数项求n 由n值令x的指数 为2,求r 求出x2的项的系数 令x的指数 为整数k 根据0≤r≤n,r∈Z,求k 根 据k值求出展 开式的有理项
• 【答案】 9
2021/02/25
11
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】
2
2021/02/25
12
求特定的项或特定项的系数
二项展开式中,偶数项的二项式系数的和 _等__于___ 奇 数 项 的 二 项 式 系 数 的 和 , 即 ___C_n1_+__C_3n_+__C_5n_+__…_____ = C__n0+__C__2n_+__C_4n_+__…_ =__2_n-_1_.
2021/02/25
6
二项式定理中,项的系数与二项式系数有什 么区别? 【提示】 二项式系数与项的系数是完全不同的
(n∈ N*)叫 做 二 项 式 定 理 . 其 中
C
k n
(k
=
0,1,2, … , n)叫做 _二__项__式__系__数__. Tk + 1= ____C__nk_a_n-_k_b_k______ 叫 做 二 项 展 开 式 的 通
项,它表示第__k_+__1__项.
2021/02/25
3
• 在公式中,交换a,b的顺序是否有 【提影示响】?从整体看,(a+b)n 与(b+a)n 相同,
两个概念.二项式系数是指 C0n,C1n,…,Cnn,它
只与各项的项数有关,而与 a,b 的值无关;而项
的系数是指该项中除变量外的常数部分,它不仅
与各项的项数有关,而且也与 a,b 的值有关.
2021/02/25
7
1.若对于任意实数 x,有 x3=a0+a1(x-2) +a2(x-2)2+a3(x-2)3,则 a2 的值为( ) A.3 B.6 C.9 D.12 【解析】 ∵x3=[2+(x-2)]3, ∴展开式中含(x-2)2 项的系数为 a2=T2+1=C23×23-2=3×2=6.
2021/02/25
14
【自主解答】 (1)通项公式为 Tr+1=Crnxn-3 r(-12)rx-3r=Crn(-12)rxn-32r. 因为第6项为常数项, 所以r=5时,有n-3 2r=0,即n=10.
2021/02/25
15
(2)令n-3 2r=2,得r=12(n-6)=12×(10-6) =2, ∴所求的系数为C210(-12)2=445.
10-3 2r∈Z (3)根据通项公式,由题意0≤r≤10 .
r∈Z
2021/02/25
16
令
10-2r 3
=k(k∈Z),则10-2r=3k,即r
=5-32k. ∵r∈Z,∴k应为偶数. ∴k可取2,0,-2,即r可取2,5,8.
所以第3项,第6项与第9项为有理项,它
们分别为
C120(-12)2x2,C150(-12)5,C180(-12)8x-2.
但具体到某一项是不同的,如第 k+1 项 Tk+1=
knan-kbk,T′k+1=Cknbn-kak.
2021/02/25
4
2.二项式系数的性质 (1)对称性:与首末两端__“__等__距__离__”__的两 个二项式系数相等,即 Cmn =Cnn-m. (2)增减性与最大值:二项式系数 Ckn,当 __k_<__n_+_2_1___时,二项式系数是递增的;当 __k_>__n_+_2_1___时,二项式系数是递减的.
• 第三节 二项式定理及 应用
2021/02/25
1
考 纲 点 击
掌握二项式定理和二项展开式 的性质,并能用它们计算和 证明一些简单的问题.
1.运用二项式定理的通项公式
热 求指定项或与系数有关的问
点 题;
2021/02/25 提 2.赋值法、转化与化归思想等
2
1.二项式定理
公式(a+b)n= _C_n0_a_n_+__C_n1_a_n_-_1_b_+__…__+__C_kn_a_n_-_kb_k_+__…__+__C__nnb_n