山东潍坊中考数学试题及答案(高清版)
山东省潍坊市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2020年某某省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.(3分)下列图形,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点评】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下列运算正确的是()A.2a+3b=5ab B.a3•a2=a5C.(a+b)2=a2+b2D.(a2b)3=a6b【分析】根据合并同类项、幂的乘方,同底数幂乘法以及完全平方公式,逐项判断即可.【解答】解:A、不是同类项,不能合并,故选项A计算错误;B、a3•a2=a5,故选项B计算正确;C、(a+b)2=a2+2ab+b2,故选项C计算错误;D、(a2b)3=a6b3,故选项D计算错误.故选:B.【点评】本题考查合了并同类项,同底数幂的乘法和积的乘方、以及完全平方公式,解题关键是熟记运算法则和公式.3.(3分)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为()A.1.109×107B.1.109×106C.0.1109×108D.11.09×106【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故先将1109万换成11090000,再按照科学记数法的表示方法表示即可得出答案.【解答】解:∵1109万=11090000,∴11090000=1.109×107.故选:A.【点评】本题考查了科学记数法的简单应用,属于基础知识的考查,比较简单.4.(3分)将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在左视图中.【解答】解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个看不见的小正方形画为虚线,故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.(3分)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141 144 145 146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是()A.平均数是144 B.众数是141【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【点评】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.6.(3分)若m2+2m=1,则4m2+8m﹣3的值是()A.4 B.3 C.2 D.1【分析】把变形为4m2+8m﹣3=4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.【解答】解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.故选:D.【点评】此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m﹣3变形为4(m2+2m)﹣3.7.(3分)如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21 B.28 C.34 D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.【点评】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答8.(3分)关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式,再进行配方得到△=(k﹣1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解答】解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.9.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2 B.﹣2<x<0或x>1C.x>1 D.x<﹣2或0<x<1【分析】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的X围即可.【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.【点评】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1 D.【分析】延长CO交⊙O于点E,连接EP,交AO于点P,则PC+PD的值最小,利用平行线份线段成比例分别求出CD,PO的长即可.【解答】解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴,即,解得,PO=故选:B.【点评】此题主要考查了轴对称﹣﹣﹣最短距离问题,同时考查了平行线分线段成比例,掌握轴对称性质和平行线分线段成比例定理是解题的关键.11.(3分)若关于x的不等式组有且只有3个整数解,则a的取值X围是()A.0≤a≤2B.0≤a<2 C.0<a≤2D.0<a<2【分析】先求出不等式组的解集(含有字母a),利用不等式组有三个整数解,逆推出a 的取值X围即可.【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数求出关于a的不等式组12.(3分)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b=,可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.【点评】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)若|a﹣2|+=0,则a+b= 5 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α=55 °.【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出α.【解答】解:如图,∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠2=90°,∴∠AMQ=90°﹣∠2=90°﹣35°=55°,∵∠α与∠AMQ是对顶角,∴∠α=∠AMQ=55°.故答案为:55°.【点评】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.(3分)若关于x的分式方程+1有增根,则m= 3 .【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x的值,代入到转化以后的整式方程中计算即可求出m的值.【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.【点评】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.17.(3分)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AC,EG,AE,将△ABG 和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=.【分析】根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=90°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.【点评】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.18.(3分)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,再计算弧长.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.【点评】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.先化简,再求值:(1﹣)÷,其中x是16的算术平方根.【分析】先将括号里的进行通分运算,然后再计算括号外的除法,把除法运算转化为乘法运算,进行约分,得到最简分式,最后把x值代入运算即可.【解答】解:原式=,=,=,=.∵x是16的算术平方根,∴x=4,当x=4时,原式=.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥AB是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥AB的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥AB的长度.【分析】过点C作CD⊥AB,垂足为D,根据在C处测得桥两端A,B两点的俯角分别为60°和45°,可得∠CAD=∠MCA=60°,∠CBD=∠NCB=45°,利用特殊角懂得三角函数求解即可.【解答】解:如图示:过点C作CD⊥AB,垂足为D,由题意得,∠MCA=∠A=60°,∠NCB=∠B=45°,CD=120,在Rt△ACD中,AD===40(米),在Rt△BCD中,∵∠CBD=45°,∴BD=CD=120(米),∴AB=AD+BD=(40+120)(米).答:桥AB的长度为(40+120)米.【点评】本题考查了特殊角的三角函数的运算,熟悉特殊角的三角函数值是解题的关键.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;(2)先求出B档所占百分比,再乘以1200即可得到结论;(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.【解答】解:(1)由于A档和D档共有12个数据,而D档有4个,因此A档共有:12﹣4=8人,8÷20%=40人,补全图形如下:(2)1200×=480(人),答:全校B档的人数为480.(3)用A表示七年级学生,用B表示八年级学生,用C和D分别表示九年级学生,画树状图如下,因为共有12种等可能的情况数,其中抽到的2名学生来自不同年级的有10种,所以P(2名学生来自不同年级)==.【点评】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.【分析】(1)连接BF,证明BF∥CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【解答】解:(1)连接BF,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵AB=4,∴FO=OC=OB=2,∴S扇形FOC=,即阴影部分的面积为:.【点评】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)【分析】(1)设y与x之间的函数表达式为y=kx+b,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w关于x的二次函数,根据二次函数的性质即可求解.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为W元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.【点评】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.24.如图1,在△ABC中,∠A=90°,AB=AC=+1,点D,E分别在边AB,AC上,且AD =AE=1,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α(0°<α<360°),如图2,连接CE,BD,CD.(1)当0°<α<180°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【分析】(1)利用“SAS”证得△ACE≌△ABD即可得到结论;(2)利用“SAS”证得△ACE≌△ABD,推出∠ACE=∠ABD,计算得出AD=BC=,利用等腰三角形“三线合一”的性质即可得到结论;(3)观察图形,当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,利用等腰直角三角形的性质结合三角形面积公式即可求解.【解答】(1)证明:如图2中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴CE=BD;(2)证明:如图3中,根据题意:AB=AC,AD=AE,∠CAB=∠EAD=90°,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD,∵∠ACE+∠AEC=90°,且∠AEC=∠FEB,∴∠ABD+∠FEB=90°,∴∠EF B=90°,∴CF⊥BD,∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,∴BC=AB=,CD=AC+AD=,∴BC=CD,∵CF⊥BD,∴CF是线段BD的垂直平分线;(3)解:△BCD中,边BC的长是定值,则BC边上的高取最大值时△BCD的面积有最大值,∴当点D在线段BC的垂直平分线上时,△BCD的面积取得最大值,如图4中:∵∵AB=AC=,AD=AE=1,∠CAB=∠EAD=90°,DG⊥BC于G,∴AG=BC=,∠GAB=45°,∴DG=AG+AD=,∠DAB=180°﹣45°=135°,∴△BCD的面积的最大值为:,旋转角α=135°.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25.如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)直接将A(﹣2,0)和点B(8,0)代入y=ax2+bx+8(a≠0),解出a,b 的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得,∴抛物线解析式为:;(2)当x=0时,y=8,∴C(0,8),∴直线BC解析式为:y=﹣x+8,∵,∴,过点P作PG⊥x轴,交x轴于点G,交BC于点F,设,∴F(t,﹣t+8),∴,∴,即,∴t1=2,t2=6,∴P1(2,12),P2(6,8);(3)∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,当△NME~△COB时,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,连接CM,故当N为C关于对称轴l的对称点时,△MNE~△COB,此时四边形CMNE为正方形,∴CM=CE,∵C(0,8),E(3,5),M(3,m),∴,∴,解得:m1=11,m2=5(舍去),此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8),或(3,11).【点评】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。
2022年山东省潍坊市中考数学试题(解析版)
一、选择题:本大题共12小题,每题3分1.计算:20•2﹣3=〔〕A.﹣18B.18C.0 D.8【答案】B. 【解析】试题分析:20•2﹣3=1×18=18.故答案选B.考点:实数的运算.2.以下科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是〔〕【答案】D.考点:轴对称图形与中心对称图形的概念.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是〔〕【答案】C.【解析】试题分析:根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中可得:图中几何体的俯视图是C选项中的图形.故答案选C.考点:几何体的三视图.4.近日,记者从潍坊市统计局得悉,2022年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为〔精确到百亿位〕〔〕A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,用这个数的整数位数减1即可,即将1256.77亿用科学记数法可表示为1.3×1011.故答案选B.考点:科学计数法.5.实数a,b在数轴上对应点的位置如下列图,化简|a|+的结果是〔〕A.﹣2a+b B.2a﹣b C.﹣b D.b【答案】A.考点:二次根式的性质与化简;实数与数轴.6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,那么锐角α等于〔〕A.15° B.30° C.45° D.60°【答案】B.【解析】试题分析:关于x 的一元二次方程x 2﹣2x+sinα=0有两个相等的实数根,可得△=2﹣4sinα=0,解sinα=21,因α为锐角,由特殊角的三角函数值可得α=30°.故答案选B . 考点:根的判别式;特殊角的三角函数值.7.木杆AB 斜靠在墙壁上,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆的底端B 也随之沿着射线OM 方向滑动.以下列图中用虚线画出木杆中点P 随之下落的路线,其中正确的选项是〔 〕 【答案】D.考点:直角三角形斜边上的中线.8.将以下多项式因式分解,结果中不含有因式a+1的是〔 〕 A .a 2﹣1 B .a 2+a C .a 2+a ﹣2 D .〔a+2〕2﹣2〔a+2〕+1 【答案】C. 【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=〔a+1〕〔a ﹣1〕,a 2+a=a 〔a+1〕,a 2+a ﹣2=〔a+2〕〔a ﹣1〕,〔a+2〕2﹣2〔a+2〕+1=〔a+2﹣1〕2=〔a+1〕2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.9.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A 〔8,0〕,与y 轴分别交于点B 〔0,4〕和点C 〔0,16〕,那么圆心M 到坐标原点O 的距离是〔 〕 A .10 B .8C .413D .241【答案】D.考点:切线的性质;坐标与图形性质. 10.假设关于x 的方程333x m mx x++--=3的解为正数,那么m 的取值范围是〔 〕 A .m <92B .m <92且m≠C .m >﹣D .m >﹣且m≠﹣ 【答案】B. 【解析】试题分析:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,关于x 的方程333x m mx x ++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .考点:分式方程的解.11.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,那么图中阴影局部的面积是〔 〕A .﹣B .﹣C .﹣D .﹣【答案】A.考点:扇形面积的计算;含30度角的直角三角形.12.运行程序如下列图,规定:从“输入一个值x〞到“结果是否>95〞为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是〔〕A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【答案】C.【解析】试题分析:由题意得,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故答案选C.考点:一元一次不等式组的应用.二、填空题:本大题共6小题,每题3分13.计算:〔+〕=.【答案】12.【解析】试题分析:原式3•3333.考点:二次根式的化简.14.假设3x2n y m与x4﹣n y n﹣1是同类项,那么m+n=.【答案】5 3.考点:同类项的定义.15.超市决定招聘广告筹划人员一名,某应聘者三项素质测试的成绩如表:测试工程创新能力综合知识语言表达测试成绩〔分数〕70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,那么该应聘者的总成绩是分.【答案】77.4.【解析】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×510+80×310+92×210=77.4分.考点:加权平均数.16.反比例函数y=kx〔k≠0〕的图象经过〔3,﹣1〕,那么当1<y<3时,自变量x的取值范围是.【答案】﹣3<x<﹣1.考点:反比例函数的性质.17.∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,那么点P到点M与到边OA的距离之和的最小值是.【答案】23.【解析】试题分析:如图,过M作MN′⊥OB于N′,交OC于P,那么MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,因∠ON′M=90°,OM=4,所以MN′=OM•sin60°=23,即点P到点M 与到边OA的距离之和的最小值为23.考点:轴对称-最短路线问题.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如下列图依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,那么点B n的坐标是.【答案】〔2n﹣1,2n﹣1〕.考点:一次函数图象上点的坐标特征;正方形的性质.三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【答案】另一个根是﹣4,m的值为10.【解析】试题分析:x=23是方程的一个根,把它代入方程即可求出m的值,再由根与系数的关系来求方程的另一根即可.试题解析:设方程的另一根为t.依题意得:3×〔23〕2+23m﹣8=0,解得m=10.又23t=﹣83,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.考点:根与系数的关系.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n〔分〕评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答以下问题:〔1〕求m的值;〔2〕在扇形统计图中,求B等级所在扇形的圆心角的大小;〔结果用度、分、秒表示〕〔3〕从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.【答案】〔1〕25;〔2〕8°48′;〔3〕5 6.【解析】试题分析:〔1〕由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;〔2〕首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;〔3〕首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.试题解析:〔1〕∵C等级频数为15,占60%,∴m=15÷60%=25;〔2〕∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:225×360°=28.8°=28°48′;〔3〕评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:1012=56.考点:频数〔率〕分布表;扇形统计图;列表法与树状图法.21.正方形ABCD内接于⊙O,如下列图,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:〔1〕四边形EBFD是矩形;〔2〕DG=BE.【答案】〔1〕详见解析;〔2〕详见解析.∴∠EDF=90°,∴四边形EBFD 是矩形;〔2〕〕∵正方形ABCD 内接于⊙O, ∴的度数是90°,∴∠AFD=45°, 又∵∠GDF=90°, ∴∠DGF=∠DFC=45°, ∴DG=DF,又∵在矩形EBFD 中,BE=DF , ∴BE=DG.考点:正方形的性质;矩形的判定;圆周角定理.22.如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得BC=6米,CD=4米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,试求电线杆的高度〔结果保存根号〕【答案】〔3+4〕米.试题解析:延长AD 交BC 的延长线于E ,作DF⊥BE 于F , ∵∠BCD=150°, ∴∠DCF=30°,又CD=4, ∴DF=2,22CD DF 3 由题意得∠E=30°, ∴EF=tan DFE3, 3, ∴AB=BE×tanE=〔3〕×33=〔3+4〕米,答:电线杆的高度为〔23+4〕米.考点:解直角三角形的应用.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x〔元〕是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.所有观光车每天的管理费是1100元.〔1〕优惠活动期间,为使观光车全部租出且每天的净收入为正,那么每辆车的日租金至少应为多少元〔注:净收入=租车收入﹣管理费〕〔2〕当每辆车的日租金为多少元时,每天的净收入最多【答案】〔1〕每辆车的日租金至少应为25元;〔2〕当每辆车的日租金为175元时,每天的净收入最多是5025元.【解析】由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;〔2〕设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=〔50﹣1005x〕x﹣1100=﹣15x2+70x﹣1100=﹣15〔x﹣175〕2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.〔1〕如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;〔2〕如图2,将△EDF 以点D 为旋转中心旋转,其两边DE′、DF′分别与直线AB 、BC 相交于点G 、P ,连接GP ,当△DGP 的面积等于3时,求旋转角的大小并指明旋转方向.【答案】〔1〕详见解析;〔2〕将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于33. 【解析】在菱形ABCD 中,∠BAD=60°,AD=AB , ∴△ABD 为等边三角形, ∵DE⊥AB, ∴AE=EB, ∵AB∥DC, ∴==21, 同理, =21, ∴MN=13AC ; 综上所述,将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于33. 考点:旋转的性质;菱形的性质.25.如图,抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A 〔0,1〕,点B 〔﹣9,10〕,AC ∥x 轴,点P 时直线AC 下方抛物线上的动点.〔1〕求抛物线的解析式;〔2〕过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;〔3〕当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,假设存在,求出点Q 的坐标,假设不存在,请说明理由.【答案】〔1〕y=13x 2+2x+1;〔2〕P 〔﹣92,﹣54〕;〔3〕〔﹣4,1〕或〔3,1〕.试题解析:〔1〕∵点A 〔0,1〕.B 〔﹣9,10〕在抛物线上, ∴,∴b=2,c=1, ∴抛物线的解析式为y=13x 2+2x+1, 此时点P 〔﹣92,﹣54〕. 〔3〕∵y=13x 2+2x+1=13〔x+3〕2﹣2,∴P〔﹣3,﹣2〕,∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q〔t,1〕且AB=92,AC=6,CP=32∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q〔﹣4,1〕②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q〔3,1〕.考点:二次函数综合题.。
山东省潍坊市2022年中考数学试题(含解析)
山东省潍坊市2022年中考数学试题一、单项选择题(共8小题,每小题3分,共24分.)1. 下列物体中,三视图都是圆的是()A. B. C. D.2. 秦兵马俑发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是()A. B. C. D.3. 不等式组的解集在数轴上表示正确的是()A. B.C. D.4. 抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A. B. C. D. 45. 如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为()A. B. C. D.6. 地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是()A. 海拔越高,大气压越大B. 图中曲线是反比例函数的图象C. 海拔为4千米时,大气压约为70千帕D. 图中曲线表达了大气压和海拔两个量之间的变化关系7. 观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:).2022年3月当月增速为,设2021年3月原油进口量为x万吨,下列算法正确的是()A. B.C. D.8. 如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A. B. C.D.二、多项选择题(共4小题,每小题3分,共12分.每小题的四个选项中,有多项正确,全部选对得3分,部分选对得2分,有错选的得0分)9. 小莹所在班级10名同学的身高数据如表所示.身高()下列统计量中,能够描述这组数据集中趋势的是()A. 平均数B. 方差C. 众数D. 中位数10. 利用反例..的是()..可以判断一个命题是错误的,下列命题错误A. 若,则B. 对角线相等的四边形是矩形C. 函数的图象是中心对称图形D. 六边形的外角和大于五边形的外角和11. 如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是()A. B. C. D.12. 如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是()A. 射线一定过点OB. 点O是三条中线的交点C. 若是等边三角形,则D. 点O不是..三条边的垂直平分线的交点第Ⅱ卷(非选择题共84分)三、填空题(共4小题,每小题3分,共12分.只写最后结果)13. 方程组的解为___________.14. 小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为___________.15. 《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形,若,则四边形的外接圆的周长为___________.16. 如图,在直角坐标系中,边长为2个单位长度的正方形绕原点O逆时针旋转,再沿y轴方向向上平移1个单位长度,则点的坐标为___________.四、解答题(共7小题,共72分.请写出必要的文字说明、证明过程或演算步骤)17. 在数学实验课上,小莹将含角直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.18. (1)在计算时,小亮的计算过程如下:解:小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①;②;③;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:,其中x是方程的根.19. 2022年5月,W市从甲、乙两校各抽取10名学生参加全市语文素养水平监测.【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率.样本学生语文测试成绩(满分100分)如下表:表中___________;___________.请从平均数、方差、中位数、众数中选择合适的统计量,评判甲、乙两校样本学生的语文测试成绩.【问卷调查】对样本学生每年阅读课外书的数量进行问卷调查,根据调查结果把样本学生分为3组,制成频数直方图,如图所示.A组:;B组:;C组:.请分别估算两校样本学生阅读课外书的平均数量(取各组上限与下限的中间值近似表示该组的平均数).【监测反思】①请用【学科测试】和【问卷调查】中的数据,解释语文测试成绩与课外阅读量的相关性;②若甲、乙两校学生都超过2000人,按照W市抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平可行吗?为什么?20. 【情境再现】甲、乙两个含角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接,如图③所示,交于E,交于F,通过证明,可得.请你证明:.迁移应用】延长分别交所在直线于点P,D,如图④,猜想并证明与的位置..关系.【拓展延伸】小亮将图②中的甲、乙换成含角的直角三角尺如图⑤,按图⑤作出示意图,并连接,如图⑥所示,其他条件不变,请你猜想并证明与的数量..关系.21. 某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.小亮认为,可以从y=kx+b(k>0) ,y=(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选.你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量....在哪一年最大?最大是多少?22. 筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线方向泻至水渠,水渠所在直线与水面平行;设筒车为,与直线交于P,Q两点,与直线交于B,C两点,恰有,连接.(1)求证:为的切线;(2)筒车的半径为,.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到,参考值:).23. 为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点,且不经过第一象限,写出满足这些条件的一个函数表达式.[观察发现]请完成作业,并在直角坐标系中画出大致图象.[思考交流]小亮说:“满足条件函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.[概括表达]小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.2022年山东省潍坊市中考数学试题一、单项选择题(共8小题,每小题3分,共24分.)1. 下列物体中,三视图都是圆的是()A. B. C. D.【答案】C【解析】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B.圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;C.球的三视图都是圆,符合题意;D.正方体的三视图都是正方形,不符合题意.故选:C.2. 秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是()A. B. C. D. 【答案】C【解析】解:4<5<9,∴2<<3,∴1<1<2,∴<<1,故选:C.3. 不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【解析】解:解不等式①得,;解不等式②得,;则不等式组的解集为:,数轴表示为:,故选:B.4. 抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A. B. C. D. 4【答案】B【解析】解:∵y=x2+x+c与x轴只有一个公共点,∴x2+x+c=0有两个相等的实数根,∴△=1-4c=0,解得:c=.故选:B.5. 如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为()A. B. C. D.【答案】C【解析】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∵∴∴∵//∴故选:C6. 地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是()A. 海拔越高,大气压越大B. 图中曲线是反比例函数的图象C. 海拔为4千米时,大气压约为70千帕D. 图中曲线表达了大气压和海拔两个量之间的变化关系【答案】D【解析】解:A.海拔越高,大气压越小,该选项不符合题意;B.∵图象经过点(2,80),(4,60),∴2×80=160,4×60=240,而160≠240,∴图中曲线不是反比例函数的图象,该选项不符合题意;C.∵图象经过点(4,60),∴海拔为4千米时,大气压约为60千帕,该选项不符合题意;D.图中曲线表达了大气压和海拔两个量之间的变化关系,该选项符合题意;故选:D.7. 观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:).2022年3月当月增速为,设2021年3月原油进口量为x万吨,下列算法正确的是()A. B.C. D.【答案】D【解析】解:设2021年3月原油进口量为x万吨,则2022年3月原油进口量比2021年3月增加(4271-x)万吨,依题意得:,故选:D.8. 如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A. B. C.D.【答案】A【解析】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.二、多项选择题(共4小题,每小题3分,共12分.每小题的四个选项中,有多项正确,全部选对得3分,部分选对得2分,有错选的得0分)9. 小莹所在班级10名同学的身高数据如表所示.身高()下列统计量中,能够描述这组数据集中趋势的是()A. 平均数B. 方差C. 众数D. 中位数【答案】ACD【解析】解:平均数、众数、中位数都能反映这组数据的集中趋势,∴能够描述这组数据集中趋势的是平均数、众数、中位数.故选:ACD.10. 利用反例..的是()..可以判断一个命题是错误的,下列命题错误A. 若,则B. 对角线相等的四边形是矩形C. 函数的图象是中心对称图形D. 六边形的外角和大于五边形的外角和【答案】ABD【解析】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.11. 如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是()A. B. C. D.【答案】AD【解析】解:由题意可知,a<0<b,且|a|>|b|,A、,故本选项符合题意;B、-a>b,故本选项不符合题意;C、a-b<0,故本选项符合题意;D、,故本选项符合题意.故选:A D.12. 如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是()A. 射线一定过点OB. 点O是三条中线的交点C. 若是等边三角形,则D. 点O不是..三条边的垂直平分线的交点【答案】AC【解析】A、以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线,由此可得BP是角平分线,所以射线一定过点O,说法正确,选项符合题意;B、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;C、当是等边三角形时,可以证得D、F、E分别是边的中点,根据中位线概念可得,选项符合题意;D、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;故选:AC.第Ⅱ卷(非选择题共84分)三、填空题(共4小题,每小题3分,共12分.只写最后结果)13. 方程组的解为___________.【答案】【解析】解:,①×2+②×3,得13x=26,解得:x=2,把x=2代入②,得6-2y=0,解得y=3,故方程组的解为.故答案为:.14. 小莹按照如图所示步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为___________.【答案】:1【解析】解:∵四边形ABCD是矩形,∴∠D=∠B=∠DAB=90°,由操作一可知:∠DAB′=∠D′AB′=45°,∠AD′B′=∠D=90°,AD=AD′,∴△AB′D′是等腰直角三角形,∴AD=AD′= B′D′,由勾股定理得AB′=AD,又由操作二可知:AB′=AB,∴AD=AB,∴=,∴A4纸的长AB与宽AD的比值为:1.故答案为::1.15. 《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形,若,则四边形的外接圆的周长为___________.【答案】【解析】解:正方形ABCD的面积为4,,,,,所求周长;故答案为:.16. 如图,在直角坐标系中,边长为2个单位长度的正方形绕原点O逆时针旋转,再沿y轴方向向上平移1个单位长度,则点的坐标为___________.【答案】【解析】解:如图:连接OB,,作⊥y轴∵是正方形,OA=2∴∠COB=45°,OB=∵绕原点O逆时针旋转∴∠=75°∴∠=30°∵=OB=∴,∴∵沿y轴方向向上平移1个单位长度∴故答案为:四、解答题(共7小题,共72分.请写出必要的文字说明、证明过程或演算步骤)17. 在数学实验课上,小莹将含角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.【答案】不认同,理由见详解【解析】解:甲圆锥的底面半径为BC,母线为AB,,乙圆锥的底面半径为AC,母线为AB,,∵,∴,故不认同小亮的说法.18. (1)在计算时,小亮的计算过程如下:解:小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①;②;③;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:,其中x是方程的根.【答案】(1)④tan30°=;⑤(-2)-2=,⑥(-2)0=1;28;(2),.【解析】(1)其他错误,有:④tan30°=;⑤(-2)-2=,⑥(-2)0=1,正确的计算过程:解:=28;(2)=,∵x2-2x-3=0,∴(x-3)(x+1)=0,x-3=0或x+1=0,∴x1=3,x2=-1,∵x=3分式没有意义,∴x的值为-1,当x=-1时,原式==.19. 2022年5月,W市从甲、乙两校各抽取10名学生参加全市语文素养水平监测.【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率.样本学生语文测试成绩(满分100分)如下表:表中___________;___________.请从平均数、方差、中位数、众数中选择合适的统计量,评判甲、乙两校样本学生的语文测试成绩.【问卷调查】对样本学生每年阅读课外书的数量进行问卷调查,根据调查结果把样本学生分为3组,制成频数直方图,如图所示.A组:;B组:;C组:.请分别估算两校样本学生阅读课外书的平均数量(取各组上限与下限的中间值近似表示该组的平均数).【监测反思】①请用【学科测试】和【问卷调查】中的数据,解释语文测试成绩与课外阅读量的相关性;②若甲、乙两校学生都超过2000人,按照W市的抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平可行吗?为什么?【答案】学科测试:小亮、小莹作答相同试卷的概率为;,;评判见解析;问卷调查:甲校样本学生阅读课外书的平均数为32本,乙校样本学生阅读课外书的平均数量为30本;监测反思:①答案见解析;②不可行,原因见解析【解析】学科测试:设3套不用的试卷分别为1、2、3,列表如下:(21)一共有9种情况,而满足题意的有三种情况,∴小亮、小莹作答相同试卷的概率为,由表可得甲校的中位数,乙校的众数;从平均数看量两校的成绩一样;从方差看乙校的成绩比较均衡;从中位数看甲校的成绩好于乙校;从众数看乙校的成绩好于家校;问卷调查:根据频数分布直方图可得,甲校样本学生阅读课外书的平均数量为本,乙校样本学生阅读课外书的平均数量为本;监测反思:①从语文测试成绩来看:甲乙平均数一样大,乙校样本学生成绩比较稳定,甲校的中位数比乙校高,但从众数来看乙校成绩要好一些;从课外阅读量来看:虽然甲校学生阅读课外书的平均数较大,但整体来看,三个组的人数差别较大,没有乙校的平稳;综上来说,课外阅读量越大,语文成绩就会好一些,所以要尽可能的增加课外阅读量;②甲、乙两校学生都超过2000人,不可以按照W市抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平,因为W市的抽样方法是各校抽取了10人,样本容量较小,而甲乙两校的学生人数太多,评估出来的数据不够精确,所以不能用这10个人的成绩来评估全校2000 多人的成绩.20. 【情境再现】甲、乙两个含角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接,如图③所示,交于E,交于F,通过证明,可得.请你证明:.【迁移应用】延长分别交所在直线于点P,D,如图④,猜想并证明与的位置..关系.【拓展延伸】小亮将图②中的甲、乙换成含角的直角三角尺如图⑤,按图⑤作出示意图,并连接,如图⑥所示,其他条件不变,请你猜想并证明与的数量..关系.【答案】证明见解析;垂直;【解析】证明:,,,,,,;迁移应用:,证明:,,,,,,,;拓展延伸:,证明:在中,,在中,,,由上一问题可知,,,,.21. 某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.小亮认为,可以从y=kx+b(k>0) ,y=(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选.你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量....在哪一年最大?最大是多少?【答案】(1)认同,理由见解析(2)①号田的函数关系式为y=0.5x+1(k>0);②号田的函数关系式为y=−0.1x2+x+1;(3)在2024年或2025年总年产量最大,最大是7.6吨.【解析】解:认同,理由如下:观察①号田的年产量变化:每年增加0.5吨,呈一次函数关系;观察②号田的年产量变化:经过点(1,1.9),(2,2.6),(3,3.1),∵1×1.9=1.9,2×2.6=5.2,1.9≠5.2,∴不是反比例函数关系,小莹认为不能选是正确的;【解析】解:由(1)知①号田符合y=kx+b(k>0),由题意得,解得:,∴①号田的函数关系式为y=0.5x+1(k>0);检验,当x=4时,y=2+1=3,符合题意;②号田符合y=−0.1x2+ax+c,由题意得,解得:,∴②号田的函数关系式为y=−0.1x2+x+1;检验,当x=4时,y=-1.6+4+1=3.4,符合题意;【解析】解:设总年产量为w,依题意得:w=−0.1x2+x+1+0.5x+1=−0.1x2+1.5x+2=−0.1(x2-15x+-)+2=−0.1(x-7.5)2+7.625,∵−0.1<0,∴当x=7.5时,函数有最大值,∴在2024年或2025年总年产量最大,最大是7.6吨.22. 筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线方向泻至水渠,水渠所在直线与水面平行;设筒车为,与直线交于P,Q两点,与直线交于B,C两点,恰有,连接.(1)求证:为的切线;(2)筒车的半径为,.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到,参考值:).【答案】(1)答案见解析(2)【解析】证明:连接并延长交于,连接BM,为的直径,,,,,又∵∠D=∠D,,,又,,,为的切线;【解析】解:如图所示,,,,是的直径,,,,,,,,,,过作交于,为等腰直角三角形,,,.23. 为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点,且不经过第一象限,写出满足这些条件的一个函数表达式.[观察发现]请完成作业,并在直角坐标系中画出大致图象.[思考交流]小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.[概括表达]小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.【答案】[观察发现] ,图象见解析;[思考交流] 不认同他们的说法,举例见解析;[概括表达] 探究过程见解析【解析】解:[观察发现]根据题意,得:抛物线经过点,且不经过第一象限,画出图象,如下:[思考交流]不认同他们的说法,举例如下:抛物线的对称轴为y轴,故小亮的说法不正确,抛物线图象经过x轴,故小莹的说法不正确;[概括表达]设过点的抛物线解析式为,,,,经过,,根据题意,抛物线不经过第一象限,,,,,综上所述:且.。
山东省中考数学真题试题(含解析)
山东省中考数学真题试题(含解析)山东省潍坊市中考数学试卷一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D. 3.〔3分〕〔2022?潍坊〕2022年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来〞××××10 4.〔3分〕〔2022?潍坊〕如图汽车标志中不是中心对称图形的是〔〕A. B. C. D.5.〔3分〕〔2022?潍坊〕以下运算正确的选项是〔〕 22 A. += B. 3xy ﹣xy=3 2363 C. D.〔ab〕=ab =a+b 6.〔3分〕〔2022?潍坊〕不等式组的所有整数解的和是〔〕A. 2 B. 3 C. 5 D. 6 7.〔3分〕〔2022?潍坊〕如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,那么∠C的度数是〔〕1A. 70° B. 50° C. 45° 0D. 20° 8.〔3分〕〔2022?潍坊〕假设式子的图象可能是〔〕 A. B. +〔k﹣1〕有意义,那么一次函数y=〔k﹣1〕x+1﹣kC. D. 9.〔3分〕〔2022?潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A. 2 B. 4 C. 6 D. 8 10.〔3分〕〔2022?潍坊〕将一盛有缺乏半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如下图,水杯内径〔图中小圆的直径〕是8cm,水的最大深度是2cm,那么杯底有水局部的面积是〔〕A.〔2π﹣42B.〕cm 〔π﹣82C.〕cm 〔π﹣42D.〕cm 〔π﹣2〕cm 211.〔3分〕〔2022?潍坊〕如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,那么该纸盒侧面积的最大值是〔〕A. cm 2B. cm 2C. cm 2D. cm 2 212.〔3分〕〔2022?潍坊〕二次函数y=ax+bx+c+2的图象如下图,顶点为〔﹣1,0〕,2以下结论:①abc<0;②b﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是〔〕A. 1 B. 2 C. 3 D. 4 二、填空题〔本大题共6小题,每题3分,共18分,只要求填写最后结果.〕 13.〔3分〕〔2022?潍坊〕“植树节〞时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.这组数据的众数是5,那么该组数据的平均数是. 14.〔3分〕〔2022?潍坊〕如图,等腰梯形ABCD 中,AD∥BC,BC=50,AB=20,∠B=60°,那么AD= .215.〔3分〕〔2022?潍坊〕因式分解:ax﹣7ax+6a= . 16.〔3分〕〔2022?潍坊〕观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D处的俯角是30°.楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是 m.317.〔3分〕〔2022?潍坊〕如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共局部的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共局部的面积记为S2;?,以此类推,那么Sn= .〔用含n的式子表示〕18.〔3分〕〔2022?潍坊〕正比例函数y1=mx〔m>0〕的图象与反比例函数y2=〔k≠0〕的图象交于点A〔n,4〕和点B,AM⊥y轴,垂足为M.假设△AMB 的面积为8,那么满足y1>y2的实数x的取值范围是.三、解答题〔本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.〕 19.〔9分〕〔2022?潍坊〕为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.〔1〕求A、B两种型号家用净水器各购进了多少台;〔2〕为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.〔注:毛利润=售价﹣进价〕420.〔10分〕〔2022?潍坊〕某校了解九年级学生近两个月“推荐书目〞的阅读情况,随机抽取了该年级的局部学生,调查了他们每人“推荐书目〞的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少〞;当3≤n<5时,为“一般〞;当5≤n<8时,为“良好〞;当n≥8时,为“优秀〞.将调查结果统计后绘制成不完整的统计图表:阅读本数n〔本〕 1 2 3 4 5 6 7 8 9 人数〔名〕 1 2 6 7 12 x 7 y 1 请根据以上信息答复以下问题:〔1〕分别求出统计表中的x、y的值;〔2〕估计该校九年级400名学生中为“优秀〞档次的人数;〔3〕从被调查的“优秀〞档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.〔10分〕〔2022?潍坊〕如图,在△ABC中,AB=AC,以AC为直径的⊙O 交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.〔1〕求证:直线DF与⊙O相切;〔2〕假设AE=7,BC=6,求AC的长.522.〔11分〕〔2022?潍坊〕“低碳生活,绿色出行〞的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v〔米/分钟〕随时间t〔分钟〕变化的函数图象大致如下图,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T〔t,0〕,直线l 左侧局部的面积即为t分钟内王叔叔行进的路程s〔米〕.〔1〕①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.〔2〕当0≤t≤3和3<t≤15时,分别求出路程s〔米〕关于时间t〔分钟〕的函数解析式;〔3〕求王叔叔该天上班从家出发行进了750米时所用的时间t. 23.〔12分〕〔2022?潍坊〕如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.〔1〕求证:DE⊥AG;〔2〕正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角〔0°<α<360°〕得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②假设正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.624.〔14分〕〔2022?潍坊〕如图,在平面直角坐标系中,抛物线y=mx﹣8mx+4m+2〔m>2〕与y轴的交点为A,与x轴的交点分别为B〔x1,0〕,C〔x2,0〕,且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E〔t,0〕过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.〔1〕求抛物线的解析式;〔2〕当0<t≤8时,求△APC面积的最大值;〔3〕当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?假设存在,求2出此时t的值;假设不存在,请说明理由.7山东省潍坊市中考数学试卷解析一、选择题〔本大题共12小题,在每个小题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对的3分,选错、不选或选出的答案超出一个均记0分.〕0﹣11.〔3分〕〔2022?潍坊〕在|﹣2|,2,2,这四个数中,最大的数是〔〕 0﹣1 A. |﹣2| B. 2 C. 2 D.考点:实数大小比拟;零指数幂;负整数指数幂.. 分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的 0﹣1反而小,首先求出|﹣2|,2,2的值是多少,然后根据实数比拟大小的方法判断即可. 0﹣1解答:解:|﹣2|=2,2=1,2=0.5,∵∴0﹣1,,∴在|﹣2|,2,2,这四个数中,最大的数是|﹣2|.应选:A.点评:〔1〕此题主要考查了实数大小比拟的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.〔2〕此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=﹣p 〔a≠0,p为正整数〕;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. 0〔3〕此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a=10〔a≠0〕;②0≠1. 2.〔3分〕〔2022?潍坊〕如下图几何体的左视图是〔〕A. B. C. D.考点:简单组合体的三视图.. 分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.应选C.点评:此题考查了三视图的知识,左视图是从物体的左面看得到的视图. 8。
2023山东省潍坊市中考数学真题试卷和答案
泰安市2023年初中学业水平考试化学试题本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
满分100分,考试时间60分钟。
注意事项:1.答卷前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答。
2.考试结束后,监考人员将本试卷和答题卡一并收回。
相对源子质量:H1 C12 O16 Na23 S32 Cl35.5 Fe 56 Cu 64 Zn 65第I卷(选择题共40分)一、选择题(本题包括20小题,每小题2分,共40分。
每小题只有一个选项符合题意。
)1. 下列过程没有涉及化学变化的是A. 酒精消毒B. 金属冶炼C. 海水晒盐D. 镁条燃烧2. 材料是人类社会物质文明进步的标志之一。
下列材料属于有机高分子材料的是A. 玻璃B. 青铜C. 玻璃钢D. 聚乙烯3. 正确的实验操作是实验安全和成功的重要保证。
下列图示的实验操作正确的是A. 蒸发氯化钠溶液B. 加热液体C. 稀释浓硫酸D. 测溶液的pH4. 下列有关做法不利于“促进人与自然和谐共生”的是A. 开发清洁新能源,防治大气污染B. 使用可降解塑料,减少白色污染C. 研制无污染农药,减轻水体污染D. 深埋废铅蓄电池,防止土壤污染5. 对下列事实的解释不合理的是A. 通过气味区别氮气和氨气——分子是运动的,不同分子的性质不同B. 干冰升华为二氧化碳气体——状态变化,分子大小随之变化C. 氧气经压缩储存在钢瓶中——压强增大,分子之间的间隔变小D. 蔗糖在热水中溶解更快——温度升高分子的运动速率加快6. 如图所示,概念之间存在着包含、并列、交叉等关系。
下列概念间的关系正确的是A. 纯净物与化合物属于包含关系B. 饱和溶液与浓溶液属于并列关系C. 分解反应与化合反应属于交叉关系D. 糖类与油脂属于交叉关系7. 下列关于化学肥料的说法正确的是A. 尿素()22CO NH ⎡⎤⎣⎦属于复合肥料B. 大量施用化肥以提高农作物产量C. 棉花叶片枯黄,应施用硫酸钾等钾肥D. 铵态氮肥与碱性物质混用,会降低肥效8. 关于下列符号或图示的说法正确的是①2H ②3Al + ③ ④A. ①表示2个氢元素B. ②表示铝元素的化合价为+3价C. ③表示镁离子的结构示意图D. 由④可知硒的相对原子质量为78.96g9. 实验室用固体氯化钠配制50g 溶质质量分数为6%的氯化钠溶液。
2022年山东潍坊中考数学试题及答案
∵
∴
∴
∵ //
∴
故选:C
【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.
6. 地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )
A. 海拔越高,大气压越大
B. 图中曲线是反比例函数的图象
C. 海拔为4千米时,大气压约为70千帕
D. 图中曲线表达了大气压和海拔两个量之间的变化关系
【答案】D
【解析】
【分析】根据图象中的数据回答即可.
【详解】解:A.海拔越高,大气压越小,该选项不符合题意;
B.∵图象经过点(2,80),(4,60),
则2022年3月原油进口量比2021年3月增加(4271-x)万吨,
依题意得: ,
故选:D.
【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.
8. 如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是( )
10. 利用反例可以判断一个命题是错误的,下列命题错误的是( )
A. 若 ,则 B. 对角线相等的四边形是矩形
C. 函数 的图象是中心对称图形D. 六边形的外角和大于五边形的外角和
【答案】ABD
【解析】
【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.
潍坊市中考数学试卷含答案解析
2017年山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分■在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1 •下列算式,正确的是()A. a3x a2=a6B. a3十a=a3C. a2+a2=a4D. (a2)2=a【考点】48:同底数幕的除法;35:合并同类项;46:同底数幕的乘法;47:幕的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2护,故C错误;故选(D)2 •如图所示的几何体,其俯视图是()【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3•可燃冰,学名叫天然气水合物”,是一种高效清洁、储量巨大的新能源•据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量•将1000亿用科学记数法可表示为()A. 1 X 103B. 1000X 108C. 1 X 1011D. 1 X 1014【考点】11:科学记数法一表示较大的数.【分析】科学记数法的表示形式为a x 10n的形式,其中K | a| v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同•当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n 是负数.【解答】解:将1000亿用科学记数法表示为:1x 1011.故选:C.4. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,- 1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (-2, 1)B. (- 1, 1)C. (1,- 2)D. (- 1,- 2)【考点】P6:坐标与图形变化-对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(-1, 0)表示,则这点所在的横线是x轴, 右下角方子的位置用(0, - 1),则这点所在的纵线是y轴,则当放的位置是(- 1, 1)时构成轴对称图形.故选B.5. 用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.”___ _____ _ . A B C D E FFH叼rn 1二i &虫玄;s f扌新A. B与CB. C与DC. E与FD. A与B【考点】25:计算器一数的开方;29:实数与数轴.【分析】此题实际是求-[的值.【解答】解:在计算器上依次按键转化为算式为- "=;计算可得结果介于-2与-1之间.故选A.6. 如图,/ BCD=90, AB// DE,贝a与/ B满足()A.Z a+Z P =180°B./ P-Z a =90°C./ P =/ aD./ a+/ B =90°【考点】JA平行线的性质.【分析】过C作CF/ AB,根据平行线的性质得到/ 仁/ a, / 2=180°-/ P,于是得到结论.【解答】解:过C作CF/ AB,••• AB// DE,••• AB// CF/ DE,• ••/ 1=/ a, / 2=180°-/ P,•••/ BCD=90 ,•••/ 1+/ 2=/ a+1800-/ P =90;.・./ P_/ a =90,故选B.8.—次函数y=ax+b 与反比例函数其中ab v 0,a 、b 为常数, 它们在同 \£7•甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示•丙、丁两人的成绩如图所示•欲选一名运动员参赛,从平均 数与方差两个因素分析,应选()甲乙 平均数9 8 方差11A .甲 B.乙 C.丙 D . 丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断. [1+1+1=1] =0.4,乙的平均数=「:「「「=8.2, 由题意可知,丙的成绩最好, 故选C .【解答】解: 丙的平均9+8+9+10+9+8+9+10+9-i- 10=9,丙的方差=T- y=.,C【考点】G2:反比例函数的图象;F3: —次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab v0,计算a- b 确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b v 0,满足ab v0,a- b>0,•••反比例函数y二」的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a v0,交y轴正半轴,则b>0, 满足ab v0,a- b v 0,反比例函数y= 的图象过二、四象限,所以此选项不正确;C由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b v0, 满足ab v0,.a- b>0,反比例函数y= 的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a v0,交y轴负半轴,贝U b v0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9 .若代数式宁」有意义,则实数x的取值范围是()A. x> 1B. x>2C. x> 1D. x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知: •••解得:x > 2 故选(B )10•如图,四边形 ABCD 为O O 的内接四边形•延长 AB 与DC 相交于点G , AO 丄CD,垂足为E,连接BD,Z GBC=50,则/ DBC 的度数为( )A . 50° B. 60° C. 80° D . 90° 【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:/ GBC=/ ADC=50,由垂径定理得:“ n, 则/ DBC=2/ EAD=80.【解答】解:如图A B 、D 、C 四点共圆, •••/ GBC W ADC=50, ••• AE 丄 CD, •••/ AED=90,•••/ EAD=90 - 50°=40°, 延长AE 交。
2022年山东省潍坊市中考数学真题试题及答案
(1)小莹认为不能选 .你认同吗?请说明理由;
(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;
(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?
17.解:甲圆锥的底面半径为BC,母线为AB, ,
乙圆锥的底面半径为AC,母线为AB, ,
∵ ,
∴ ,
故不认同小亮的说法.
18.解:(1)其他错误,有:④tan30°= ;⑤(-2)-2= ,⑥(-2)0=1,
正确的计算过程:
解:
=28;
(2)
= ,
∵x2-2x-3=0,
∴(x-3)(x+1)=0,
23.为落实“双减”,老师布置了一项这样的课后作业:
二次函数的图象经过点 ,且不经过第一象限,写出满足这些条件的一个函数表达式.
[观察发现]
请完成作业,并在直角坐标系中画出大致图象.
[思考交流]
小亮说:“满足条件 函数图象的对称轴一定在y轴的左侧.”
小莹说:“满足条件的函数图象一定在x轴的下方.”
你认同他们的说法吗?若不认同,请举例说明.
请写出正确的计算过程.
(2)先化简,再求值: ,其中x是方程 的根.
19.2022年5月,W市从甲、乙两校各抽取10名学生参加全市语文素养水平监测.
【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率.
2022年山东省潍坊市中考数学试卷和答案解析
2022年山东省潍坊市中考数学试卷和答案解析一、单项选择题(共8小题,每小题3分,共24分。
每小题四个选项中只有一项正确)1.(3分)下列几何体中,三视图都是圆的为()A.B.C.D.2.(3分)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是()A.0<<B.<<C.<<1D.>13.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.4.(3分)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.45.(3分)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40'B.99°80'C.99°40'D.99°20' 6.(3分)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系7.(3分)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:×100%≈6.6%).2022年3月当月增速为﹣14.0%,设2021年3月原油进口量为x万吨,下列算法正确的是()A.×100%=﹣14.0%B.×100%=﹣14.0%C.×100%=﹣14.0%D.×100%=﹣14.0%8.(3分)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y 与x之间函数关系的图象是()A.B.C.D.二、多项选择题(共4小题,每小题3分,共12分.每小题的四个选项中,有多项正确,全部选对得3分,部分选对得2分,有错选的得0分)(多选)9.(3分)小莹所在班级10名同学的身高数据如表所示.编号12345678910身高(cm)165158168162174168162165168170下列统计量中,能够描述这组数据集中趋势的是()A.平均数B.方差C.众数D.中位数(多选)10.(3分)利用反例可以判断一个命题是错误的,下列命题错误的是()A.若ab=0,则a=0B.对角线相等的四边形是矩形C.函数y=的图象是中心对称图形D.六边形的外角和大于五边形的外角和(多选)11.(3分)如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是()A.||>1B.﹣a<b C.a﹣b>0D.﹣ab>0(多选)12.(3分)如图,△ABC的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接EF,DE,DF.以点B为圆心,以适当长为半径作弧分别交AB,BC于G,H两点;分别以点G,H为圆心,以大于GH的长为半径作弧,两条弧交于点P;作射线BP.下列说法正确的是()A.射线BP一定过点OB.点O是△DEF三条中线的交点C.若△ABC是等边三角形,则DE=BCD.点O不是△DEF三条边的垂直平分线的交点三、填空题(共4小题,每小题3分,共12分.只写最后结果)13.(3分)方程组的解为.14.(3分)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD 的比值为.15.(3分)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.16.(3分)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为.四、参考答案题(共7小题,共72分.请写出必要的文字说明、证明过程或演算步骤)17.(5分)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.18.(11分)(1)在计算时,小亮的计算过程如下:解:===﹣2小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①﹣22=4;②(﹣1)10=﹣1;③|﹣6|=﹣6;.请写出正确的计算过程.(2)先化简,再求值:,其中x是方程x2﹣2x ﹣3=0的根.19.(11分)2022年5月,W市从甲、乙两校各抽取10名学生参加全市语文素养水平监测.【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率.样本学生语文测试成绩(满分100分)如下表:样本学生成绩平均数方差中位数众数甲校5066666678808182839474.6141.04a66乙6465697476767681828374.640.8476b 校表中a=;b=.请从平均数、方差、中位数、众数中选择合适的统计量,评判甲、乙两校样本学生的语文测试成绩.【问卷调查】对样本学生每年阅读课外书的数量进行问卷调查,根据调查结果把样本学生分为3组,制成频数分布直方图,如图所示.A组:0<x≤20;B组:20<x≤40;C组:40<x≤60.请分别估算两校样本学生阅读课外书的平均数量(取各组上限与下限的中间值近似表示该组的平均数).【监测反思】①请用【学科测试】和【问卷调查】中的数据,解释语文测试成绩与课外阅读量的相关性;②若甲、乙两校学生都超过2000人,按照W市的抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平可行吗?为什么?20.(12分)【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.21.(10分)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如图.小亮认为,可以从y=kx+b(k>0),y=(m>0),y=﹣0.1x2+ax+c 中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?22.(10分)筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD •CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:≈1.4,≈1.7).23.(13分)为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.参考答案与解析一、单项选择题(共8小题,每小题3分,共24分。
中考数学试题及答案潍坊
中考数学试题及答案潍坊一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.333...(循环)B. √2C. 1/3D. 3.14答案:B2. 一个等腰三角形的两边长分别为5和8,其周长是多少?A. 18B. 21C. 26D. 30答案:C3. 函数y=2x+3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:A4. 如果一个数的平方等于该数本身,那么这个数可能是?A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A5. 一个圆的直径为10厘米,其面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C6. 下列哪个方程的解是x=2?A. x+2=4B. 2x-4=0C. 3x-6=0D. x^2-4=0答案:A7. 一个长方体的长、宽、高分别为4厘米、3厘米和2厘米,其体积是多少立方厘米?A. 12B. 24C. 48D. 72答案:B8. 一个正数的倒数是1/4,这个数是多少?A. 1/4B. 4C. 1/2D. 2答案:B9. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 半圆答案:B10. 一个数的绝对值是5,这个数可能是?A. 5或-5B. 5或0C. -5或0D. 0或1答案:A二、填空题(每题3分,共15分)11. 一个角的补角是它的3倍,这个角的度数是____度。
答案:4512. 一个数的立方根是2,这个数是____。
答案:813. 一个数除以-2的商是3,这个数是____。
答案:-614. 一个数的相反数是-7,这个数是____。
答案:715. 一个数的平方是36,这个数是____或____。
答案:6或-6三、解答题(每题10分,共40分)16. 已知一个直角三角形的两直角边长分别为6和8,求斜边长。
答案:斜边长为10。
17. 一个工厂生产了100个零件,其中95个合格,求合格率。
真题潍坊市中考数学试卷含答案解析版
真题潍坊市中考数学试卷含答案解析版一、选择题(共15小题,每小题2分,共30分)在每小题给出的四个选项中,只有一个选项是正确的。
1、已知函数f(x)=3x+2,那么f(5)的值是多少?A) 13B) 16C) 17D) 20解析:将x=5代入函数f(x)=3x+2,计算得f(5)=3(5)+2=15+2=17,因此答案选C。
2、已知一个等差数列的公差为3,首项为5,那么第5项的值是多少?A) 11B) 14C) 17D) 20解析:根据等差数列公式an=a1+(n-1)d,其中an为第n项,a1为首项,d为公差。
将n=5,a1=5,d=3代入公式,计算得a5=5+(5-1)×3=5+4×3=5+12=17,因此答案选C。
3、已知一个等差数列前四项的和为26,公差为3,那么该等差数列的第一项是多少?A) 2B) 5C) 8D) 11解析:根据等差数列前n项和公式Sn=n(a1+an)/2,其中Sn为前n项的和,a1为首项,an为第n项。
将Sn=26,n=4,d=3代入公式,得到26=4(a1+a4)/2=2(a1+a4),又a4=a1+3,代入得26=2(a1+a1+3)=2(2a1+3),解方程得a1=5,因此答案选B。
4、已知一个等差数列前四项的和为26,公差为3,那么该等差数列的前五项的和是多少?A) 35B) 40C) 45D) 50解析:根据等差数列前n项和公式Sn=n(a1+an)/2,将Sn=26,n=4,d=3代入公式,得到26=4(a1+a4)/2=2(a1+a4),又a4=a1+3,代入得26=2(a1+a1+3)=2(2a1+3),解方程得a1=5。
前五项的和为S5=5+8+11+14+17=55,因此答案选C。
二、填空题(共4小题,每小题8分,共32分)1、已知函数f(x)=2x-3,那么f(4)的值是________。
解析:将x=4代入函数f(x)=2x-3,计算得f(4)=2(4)-3=8-3=5。
潍坊市中考数学试卷及答案(Word解析版)
潍坊市初中学业水平考试数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 答案:C .考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.答案:A .考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯答案:C .考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).答案:B .考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数答案:D .考点:统计量数的含义.点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑.与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度. 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).答案:C .考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
2022年山东省潍坊市中考数学真题(附答案)
【答案】C
【解析】
【分析】用夹逼法估算无理数即可得出答案.
【详解】解:4<5<9,
∴2< <3,
∴1< 1<2,
∴ < <1,
故选:C.
【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题
A. 海拔越高,大气压越大
B. 图中曲线是反比例函数的图象
C. 海拔为4千米时,大气压约为70千帕
D. 图中曲线表达了大气压和海拔两个量之间的变化关系
【答案】D
【解析】
【分析】根据图象中的数据回答即可.
【详解】解:A.海拔越高,大气压越小,该选项不符合题意;
B.∵图象经过点(2,80),(4,60),
则2022年3月原油进口量比2021年3月增加(4271-x)万吨,
依题意得: ,
故选:D.
【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.
8.如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()
∴y=AB×DH- CF×EI= - (3-x)2=- x2+ x- ,图象是一段开口向下的抛物线;
观察四个选项,只有选项A符合题意,
故选:A.
【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.
二、多项选择题(共4小题,每小题3分,共12分.每小题的四个选项中,有多项正确,全部选对得3分,部分选对得2分,有错选的得0分)
2022年山东省潍坊市中考数学真题(含答案解析)
2022年山东省潍坊市中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列物体中,三视图都是圆的是( )A .B .C .D .2.秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下,下列估算正确的是( )A .205<< B .2152<< C .12<<1 D 1> 3.不等式组1010x x +≥⎧⎨-<⎩的解集在数轴上表示正确的是( )A .B .C .D .4.抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( ) A .14-B .14C .4-D .45.如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒6.地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )A .海拔越高,大气压越大B .图中曲线是反比例函数的图象C .海拔为4千米时,大气压约为70千帕D .图中曲线表达了大气压和海拔两个量之间的变化关系7.观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A.4271100%14.0%4271x-⨯=-B.4271100%14.0%4271x-⨯=-C.4271100%14.0%xx-⨯=-D.4271100%14.0%xx-⨯=-8.如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A 同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x 之间函数关系的图象是()A.B.C.D .二、多选题9.小莹所在班级10名同学的身高数据如表所示.下列统计量中,能够描述这组数据集中趋势的是( )A .平均数 B .方差 C .众数D .中位数10.利用反例..可以判断一个命题是错误的,下列命题错误..的是( ) A .若0ab =,则0a = B .对角线相等的四边形是矩形C .函数2y x=的图象是中心对称图形 D .六边形的外角和大于五边形的外角和11.如图,实数a ,b 在数轴上的对应点在原点两侧,下列各式成立的是( )A .1ab> B .a b -< C .0a b -> D .0ab ->12.如图,ABC 的内切圆(圆心为点O )与各边分别相切于点D ,E ,F ,连接,,EF DE DF .以点B 为圆心,以适当长为半径作弧分别交,AB BC 于G ,H 两点;分别以点G ,H 为圆心,以大于12GH 的长为半径作弧,两条弧交于点P ;作射线BP .下列说法正确的是( )A .射线BP 一定过点OB .点O 是DEF 三条中线的交点C .若ABC 是等边三角形,则12DE BC = D .点O 不是..DEF 三条边的垂直平分线的交点 三、填空题13.方程组2313320x y x y +=⎧⎨-=⎩的解为___________.14.小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.15.《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.16.如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.四、解答题17.在数学实验课上,小莹将含30角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra 画出如下示意图小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB 旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.18.(121032103=41627316+-+=-2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照∠~∠的格式写在横线上,并依次标注序号: ∠224-=;∠10(1)1-=-;∠66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根. 19.2022年5月,W 市从甲、乙两校各抽取10名学生参加全市语文素养水平监测. 【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率. 样本学生语文测试成绩(满分100分)如下表:表中=a ___________;b =___________.请从平均数、方差、中位数、众数中选择合适的统计量,评判甲、乙两校样本学生的语文测试成绩.【问卷调查】对样本学生每年阅读课外书的数量进行问卷调查,根据调查结果把样本学生分为3组,制成频数直方图,如图所示.A 组:020x <≤;B 组:2040x <≤;C 组:4060x <≤.请分别估算两校样本学生阅读课外书的平均数量(取各组上限与下限的中间值近似表示该组的平均数). 【监测反思】∠请用【学科测试】和【问卷调查】中的数据,解释语文测试成绩与课外阅读量的相关性;∠若甲、乙两校学生都超过2000人,按照W 市的抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平可行吗?为什么? 20.【情境再现】甲、乙两个含45︒角的直角三角尺如图∠放置,甲的直角顶点放在乙斜边上的高的垂足O 处,将甲绕点O 顺时针旋转一个锐角到图∠位置.小莹用作图软件Geogebra 按图∠作出示意图,并连接,AG BH ,如图∠所示,AB 交HO 于E ,AC 交OG 于F ,通过证明OBE OAF △≌△,可得OE OF =.请你证明:AG BH .【迁移应用】延长GA 分别交,HO HB 所在直线于点P ,D ,如图∠,猜想并证明DG 与BH 的位置..关系. 【拓展延伸】小亮将图∠中的甲、乙换成含30角的直角三角尺如图∠,按图∠作出示意图,并连接,HB AG ,如图∠所示,其他条件不变,请你猜想并证明AG 与BH 的数量..关系. 21.某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年∠号田和∠号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.小亮认为,可以从y =kx +b (k >0) ,y =mx(m >0) ,y =−0.1x 2+ax +c 中选择适当的函数模型,模拟∠号田和∠号田的年产量变化趋势.(1)小莹认为不能选(0)my m x=>.你认同吗?请说明理由; (2)请从小亮提供的函数模型中,选择适当的模型分别模拟∠号田和∠号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测∠号田和∠号田总年产量....在哪一年最大?最大是多少?22.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A 处,水沿射线AD 方向泻至水渠DE ,水渠DE 所在直线与水面PQ 平行;设筒车为O ,O 与直线PQ 交于P ,Q 两点,与直线DE 交于B ,C 两点,恰有2AD BD CD =⋅,连接,AB AC .(1)求证:AD 为O 的切线;(2)筒车的半径为3m ,,30AC BC C =∠=︒.当水面上升,A ,O ,Q 三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m 1.7≈≈). 23.为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(1,1)--,且不经过第一象限,写出满足这些条件的一个函数表达式. [观察发现]请完成作业,并在直角坐标系中画出大致图象. [思考交流]小亮说:“满足条件的函数图象的对称轴一定在y 轴的左侧.” 小莹说:“满足条件的函数图象一定在x 轴的下方.” 你认同他们的说法吗?若不认同,请举例说明. [概括表达]小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数2y ax bx c =++的图象与系数a ,b ,c 的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.参考答案:1.C【解析】【分析】根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.【详解】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B.圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;C.球的三视图都是圆,符合题意;D.正方体的三视图都是正方形,不符合题意.故选:C.【点睛】题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.2.C【解析】【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∠23,∠11<2,∠1<1,2故选:C.【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.3.B【解析】【分析】分别求得不等式组中每个不等式的解集,从而得到不等式组的解集,即可求解.【详解】解:1010x x +≥⎧⎨-<⎩①② 解不等式∠得,1x ≥-;解不等式∠得,1x <;则不等式组的解集为:11x -≤<,数轴表示为:,故选:B .【点睛】此题考查一元一次不等式组的解法以及解集在数轴上的表示,如果带等号用实心表示,如果不带等号用空心表示,解题的关键是正确求得不等式组的解集.4.B【解析】【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∠y =x 2+x +c 与x 轴只有一个公共点,∠x 2+x +c =0有两个相等的实数根,∠∠=1-4c =0,解得:c =14. 故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.5.C【解析】【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒∠l //m∠659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键. 6.D【解析】【分析】根据图象中的数据回答即可.【详解】解:A .海拔越高,大气压越小,该选项不符合题意;B .∠图象经过点(2,80),(4,60),∠2×80=160,4×60=240,而160≠240,∠图中曲线不是反比例函数的图象,该选项不符合题意;C .∠图象经过点 (4,60),∠海拔为4千米时,大气压约为60千帕,该选项不符合题意;D .图中曲线表达了大气压和海拔两个量之间的变化关系,该选项符合题意;故选:D .【点睛】本题考查了函数的图象,解题的关键是读懂题意,能正确识图.7.D【解析】【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x万吨,则2022年3月原油进口量比2021年3月增加(4271-x)万吨,依题意得:4271100%14.0%xx-⨯=-,故选:D.【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.8.A【解析】【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG∠AB于点G,∠∠A=60°,AE=AF=x,∠AG=12x,由勾股定理得FG,∠y=12AE×FG2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH∠AB于点H,∠∠DAH=60°,AE=x,AD=1,DF= x-1,∠AH=12,由勾股定理得DH(DF+AE)×DH∠y=12当2≤x≤3时,过点E作EI∠CD于点I,∠∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物∠y= AB×DH -12线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.9.ACD【解析】【分析】平均数、众数、中位数都能反映这组数据的集中趋势,据此回答可得.【详解】解:平均数、众数、中位数都能反映这组数据的集中趋势,∠能够描述这组数据集中趋势的是平均数、众数、中位数.故选:ACD.【点睛】此题考查了中位数、众数、平均数、方差,本题属于基础题.10.ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则0ab=,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数2yx=的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【点睛】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.11.AD【解析】【分析】根据数轴判断出a、b的取值范围,再根据有理数的乘除法,加减法运算对各选项分析判断后利用排除法求解.【详解】解:由题意可知,a<0<b,且|a|>|b|,A 、1a b>,故本选项符合题意; B 、-a >b ,故本选项不符合题意;C 、a -b <0,故本选项符合题意;D 、0ab ->,故本选项符合题意.故选:A D .【点睛】本题考查了实数与数轴,有理数的乘除运算以及有理数的加减运算,判断出a 、b 的取值范围是解题的关键.12.AC【解析】【分析】根据三角形内切圆的性质逐个判断可得出答案.【详解】A 、以点B 为圆心,以适当长为半径作弧分别交,AB BC 于G ,H 两点;分别以点G ,H 为圆心,以大于12GH 的长为半径作弧,两条弧交于点P ;作射线BP ,由此可得BP 是角平分线,所以射线BP 一定过点O ,说法正确,选项符合题意;B 、边DE 、EF 、DF 分别是圆的弦长,所以点O 是∠DEF 三条边的垂直平分线的交点,选项不符合题意;C 、当ABC 是等边三角形时,可以证得D 、F 、E 分别是边的中点,根据中位线概念可得12DE BC =,选项符合题意; D 、边DE 、EF 、DF 分别是圆的弦长,所以点O 是∠DEF 三条边的垂直平分线的交点,选项不符合题意;故选:AC .【点睛】本题考查了三角形内切圆的特点和性质,解题的关键是能与其它知识联系起来,加以证明选项的正确.13.23x y =⎧⎨=⎩ 【解析】【分析】用∠×2+∠×3,可消去未知数y,求出未知数x,再把x的值代入∠求出y即可.【详解】解:2313320x yx y+=⎧⎨-=⎩①②,∠×2+∠×3,得13x=26,解得:x=2,把x=2代入∠,得6-2y=0,解得y=3,故方程组的解为23xy=⎧⎨=⎩.故答案为:23xy=⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.141【解析】【分析】判定△AB′D′是等腰直角三角形,即可得出AB,再根据AB′= AB,再计算即可得到结论.【详解】解:∠四边形ABCD是矩形,∠∠D=∠B=∠DAB=90°,由操作一可知:∠DAB′=∠D′AB′=45°,∠AD′B′=∠D=90°,AD=AD′,∠△AB′D′是等腰直角三角形,∠AD=AD′= B′D′,由勾股定理得AB,又由操作二可知:AB′=AB,AD =AB ,∠AB AD ∠A 4纸的长AB 与宽AD 1.1.【点睛】本题主要考查了矩形的性质以及折叠变换的运用,解题的关键是理解题意,灵活运用所学知识解决问题.15.【解析】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】 解:正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.16.(1)【解析】【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '∠y 轴∠ABCO 是正方形,OA =2∠∠COB =45°,OB =∠绕原点O 逆时针旋转75︒∠∠BOB '=75°∠∠COB '=30°∠OB '=OB =∠MB ' MO∠B '(∠沿y 轴方向向上平移1个单位长度∠B ''(1)故答案为:(1)【点睛】本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.17.不认同,理由见详解【解析】【分析】根据圆锥的侧面面积公式进行比较即可得到答案.【详解】解:甲圆锥的底面半径为BC ,母线为AB ,S BC AB π=⨯⨯甲侧,乙圆锥的底面半径为AC ,母线为AB ,S AC AB π=⨯⨯乙侧,∠AC BC ≠, ∠S S ≠甲乙,故不认同小亮的说法. 【点睛】本题考查圆锥的侧面面积,解题的关键是熟知圆锥侧面面积的计算公式. 18.(1)∠(-2)-2=14,∠(-2)0=1;28;(2)13x +,12.【解析】 【分析】(1)根据乘方、绝对值、特殊角的三角函数值、立方根、负整数指数幂、零指数幂的法则计算即可;(2)先把括号内通分,接着约分得到原式=13x +,然后利用因式分解法解方程x 2-2x -3=0得到x 1=3,x 2=-1,则利用分式有意义的条件把x =-1代入计算即可. 【详解】(1)其他错误,有:∠(-2)-2=14,∠(-2)0=1,正确的计算过程:210341627111--++=-+=28;(2)22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭ 223(3)(3)(3)x x x x x x x -+-=⋅-+ 23(3)(3)(3)x x x x x x +-=⋅-+=13x +, ∠x 2-2x -3=0, ∠(x -3)(x +1)=0,x-3=0或x+1=0,∠x1=3,x2=-1,∠x=3分式没有意义,∠x的值为-1,当x=-1时,原式=113-+=12.【点睛】本题考查了实数的运算,解一元二次方程---因式分解法,分式的化简求值.也考查了特殊角的三角函数值、立方根、负整数指数幂、零指数幂.19.学科测试:小亮、小莹作答相同试卷的概率为13;79a=,76b=;评判见解析;问卷调查:甲校样本学生阅读课外书的平均数为32本,乙校样本学生阅读课外书的平均数量为30本;监测反思:∠答案见解析;∠不可行,原因见解析【解析】【分析】学科测试:用列表法求解小亮、小莹作答相同试卷的概率即可;根据中位数和众数的定义求a和b的值;根据平均数、方差、中位数、众数分别分析即可;问卷调查:根据平均数的定义求解即可;监测反思:∠根据表格中的数据和频数分布直方图分析语文测试成绩与课外阅读量的相关性;∠统计调查要考虑总体的大小来确定样本容量的大小.【详解】学科测试:设3套不用的试卷分别为1、2、3,列表如下:一共有9种情况,而满足题意的有三种情况,∠小亮、小莹作答相同试卷的概率为13,由表可得甲校的中位数7880792a +==, 乙校的众数76b =;从平均数看量两校的成绩一样;从方差看乙校的成绩比较均衡;从中位数看甲校的成绩好于乙校;从众数看乙校的成绩好于家校; 问卷调查:根据频数分布直方图可得, 甲校样本学生阅读课外书的平均数量为4101305503210⨯+⨯+⨯=本,乙校样本学生阅读课外书的平均数量为3104303503010⨯+⨯+⨯=本;监测反思:∠从语文测试成绩来看:甲乙平均数一样大,乙校样本学生成绩比较稳定,甲校的中位数比乙校高,但从众数来看乙校成绩要好一些;从课外阅读量来看:虽然甲校学生阅读课外书的平均数较大,但整体来看,三个组的人数差别较大,没有乙校的平稳;综上来说,课外阅读量越大,语文成绩就会好一些,所以要尽可能的增加课外阅读量; ∠甲、乙两校学生都超过2000人,不可以按照W 市的抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平,因为W 市的抽样方法是各校抽取了10人,样本容量较小,而甲乙两校的学生人数太多,评估出来的数据不够精确,所以不能用这10个人的成绩来评估全校2000 多人的成绩. 【点睛】本题考查了频数分布直方图和数据统计表,统计调查,以及列表法或画树状图法求概率,解题的关键在于能结合频数分布直方图和数据统计表分析学生的成绩.20.证明见解析;垂直;BH = 【解析】 【分析】证明BOH AOG ≅,即可得出结论;通过BHO AGO ∠=∠,可以求出90DGH BHO OHG ∠+∠+∠=︒,得出结论AG BH ⊥;证明BOH AOG ∽,得出AG OA BH OB ==,得出结论; 【详解】 证明:,AB AC AO BC =⊥,∴,90OA OB AOB =∠=︒,90,90BOH AOH AOG AOH ∠+∠=︒∠+∠=︒,∴BOH AOG ∠=∠,OH OG =,∴BOH AOG ≅, ∴AG BH =;迁移应用:AG BH ⊥, 证明:BOH AOG ≅,∴BHO AGO ∠=∠,45DGH AGO ∠+∠=︒,∴45DGH BHO ∠+∠=︒,45OHG ∠=︒,∴90DGH BHO OHG ∠+∠+∠=︒, ∴90HDG ∠=︒, ∴AG BH ⊥;拓展延伸:BH ,证明:在Rt AOB 中,tan 30OA OB ︒=在Rt HOG 中,tan 30OG OH ︒==, ∴OA OGOB OH=, 由上一问题可知,BOH AOG ∠=∠, ∴BOH AOG ∽,∴AG OA BH OB == ∴BH =.【点睛】本题考查旋转变换,涉及知识点:全等三角形的判定与性质,相似三角形的判定与性质、锐角三角函数、等角的余角相等,解题关键结合图形灵活应用相关的判定与性质. 21.(1)认同,理由见解析(2)∠号田的函数关系式为y =0.5x +1(k >0);∠号田的函数关系式为y =−0.1x 2+x +1;(3)在2024年或2025年总年产量最大,最大是7.6吨. 【解析】 【分析】(1)根据年产量变化情况,以及反比例函数的性质即可判断; (2)利用待定系数法求解即可;(3)设总年产量为w ,依题意得w =−0.1x 2+x +1+0.5x +1,利用二次函数的性质即可求解. (1)解:认同,理由如下:观察∠号田的年产量变化:每年增加0.5吨,呈一次函数关系; 观察∠号田的年产量变化:经过点(1,1.9),(2,2.6),(3,3.1), ∠1×1.9=1.9,2×2.6=5.2,1.9≠5.2, ∠不是反比例函数关系, 小莹认为不能选(0)my m x=>是正确的; (2)解:由(1)知∠号田符合y =kx +b (k >0),由题意得 1.522k b k b +=⎧⎨+=⎩,解得:0.51k b =⎧⎨=⎩,∠∠号田的函数关系式为y =0.5x +1(k >0); 检验,当x =4时,y =2+1=3,符合题意; ∠号田符合y =−0.1x 2+ax +c ,由题意得0.1 1.90.42 2.6a c a c -++=⎧⎨-++=⎩,解得:11a c =⎧⎨=⎩,∠∠号田的函数关系式为y =−0.1x 2+x +1; 检验,当x =4时,y =-1.6+4+1=3.4,符合题意; (3)解:设总年产量为w ,依题意得:w =−0.1x 2+x +1+0.5x +1=−0.1x 2+1.5x +2 =−0.1(x 2-15x +2154-2154)+2=−0.1(x -7.5)2+7.625,∠−0.1<0,∠当x =7.5时,函数有最大值,∠在2024年或2025年总年产量最大,最大是7.6吨. 【点睛】本题考查了二次函数和一次函数的应用,待定系数法求函数式,二次函数的性质,反比例函数的性质,理解题意,利用二次函数的性质是解题的关键. 22.(1)答案见解析 (2)0.9m 【解析】 【分析】(1)连接AO 并延长交O 于M ,根据AM 为O 的直径可以得到 90ABM ∠=︒ ,继而得到90BAM AMB ∠+∠=︒ ,根据2AD BD CD =⋅可证DAB DCB ∆∆,可以得到DAB DCA ∠=∠,利用等量代换即可证明AD 为O 的切线;(2)根据AB BC =,30C ∠=︒解出75CAB CBA ∠=∠=︒ ,根据AQ 为O 的直径得到90ABQ APQ ∠=∠=︒ ,进而得出60BAQ ∠=︒,15QAC ∠=︒,又根据//PQ BC 得出15QAC BAP ∠=∠=︒,故可得到45PQA ∠=︒ ,过O 作OF PQ ⊥交O 于F ,于是在等腰ΔRt OEQ 中,根据锐角三角函数求出OE 长,进而求出最大深度EF .(1)证明:连接AO 并延长交O 于M ,连接BM ,AM ∴为O 的直径,90ABM ∴∠=︒,90BAM AMB ∴∠+∠=︒,2AD BD CD =⋅,AD CDBD AD∴=, 又∠∠D =∠D ,DAB DCB ∴∆∆, DAB DCA ∴∠=∠,又BCA BMA ∠=∠,90BAM DAB ∴∠+∠=︒, 90DAM ∴∠=︒,AD ∴为O 的切线; (2)解:如图所示,AC BC =,30C ∠=︒,()()11180180307522CAB CBA C ∴∠=∠=︒-∠=︒-︒=︒, AQ 是O 的直径, 90ABQ APQ ∴∠=∠=︒,30C ∠=︒ ,30AQB C ∴∠=∠=︒ , 9060BAQ AQB ∴∠=︒-∠=︒ ,756015QAC BAC BAQ ∴∠=∠-∠=︒-︒=︒, //PQ BC ,BP CQ ∴=,15QAC BQP ∴∠=∠=︒,153045PQA BQP BQA ∴∠=∠+∠=︒+︒=︒ ,过O 作OF PQ ⊥交O 于F ,OEQ ∴∆为等腰直角三角形,3OQ =,sin 453OE OQ ∴=︒==,()30.9EF OF OE m ∴=-=≈. 【点睛】本题主要考查圆的切线的判断,等腰三角形、圆周角定理、相似三角形的判定与性质,锐角三角函数,掌握公式定理并且灵活应用是解题的关键.23.[观察发现] 2y x =-,图象见解析;[思考交流] 不认同他们的说法,举例见解析;[概括表达] 探究过程见解析 【解析】 【分析】根据题意举例分析2y x =-的图象即可求解,根据经过点(1,1)--,且不经过第一象限,得出0a <,0a b c -+=,进而求得,b c 的范围,即可求解.【详解】解:[观察发现]根据题意,得:抛物线2y x =-经过点(1,1)--,且不经过第一象限,画出图象,如下:[思考交流]不认同他们的说法,举例如下:抛物线2y x =-的对称轴为y 轴,故小亮的说法不正确, 抛物线2y x =-图象经过x 轴,故小莹的说法不正确; [概括表达]设过点()1,1--的抛物线解析式为()()2111y a x m x =+++-,∴()()2111y a x m x =+++-()221ax a m x a m =++++-,2y ax bx c =++, 2,1b a m c a m ∴=+=+-,经过()1,1--,1a b c ∴-+=-,根据题意,抛物线2y ax bx c =++不经过第一象限,0a ∴<,0c ≤, 10a m ∴+-≤,+1a m ∴≤,21b a m a a m a ∴=+=++≤+ 1b ∴<综上所述:0,1,0a b c <<≤且1a b c -+=-. 【点睛】本题考查了二次函数的图象与性质,掌握二次函数图象与性质是解题的关键.。
2022年山东省潍坊市中考数学试卷-含答案详解
2022年山东省潍坊市中考数学试卷及答案解析一、单项选择题(共8小题,每小题3分,共24分。
每小题四个选项中只有一项正确) 1.(3分)(2022•潍坊)下列几何体中,三视图都是圆的为( )A .B .C .D .2.(3分)(2022•潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为√5−12,下列估算正确的是( )A .0<√5−12<25B .25<√5−12<12C .12<√5−12<1 D .√5−12>1 3.(3分)(2022•潍坊)不等式组{x +1≥0,x −1<0的解集在数轴上表示正确的是( )A .B .C .D .4.(3分)(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.−14B.14C.﹣4D.45.(3分)(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD 平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40'B.99°80'C.99°40'D.99°20'6.(3分)(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系7.(3分)(2022•潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:2674036×100%≈6.6%).2022年3月当月增速为﹣14.0%,设2021年3月原油进口量为x万吨,下列算法正确的是()A .x−42714271×100%=﹣14.0%B .4271−x 4271×100%=﹣14.0%C .x−4271x ×100%=﹣14.0%D .4271−xx×100%=﹣14.0%8.(3分)(2022•潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .二、多项选择题(共4小题,每小题3分,共12分.每小题的四个选项中,有多项正确,全部选对得3分,部分选对得2分,有错选的得0分)(多选)9.(3分)(2022•潍坊)小莹所在班级10名同学的身高数据如表所示.编号 1 2 3 4 5 6 7 8 9 10 身高(cm )165158168162174168162165168170下列统计量中,能够描述这组数据集中趋势的是( ) A .平均数B .方差C .众数D .中位数(多选)10.(3分)(2022•潍坊)利用反例可以判断一个命题是错误的,下列命题错误的是( )A .若ab =0,则a =0B .对角线相等的四边形是矩形C .函数y =2x的图象是中心对称图形 D .六边形的外角和大于五边形的外角和(多选)11.(3分)(2022•潍坊)如图,实数a ,b 在数轴上的对应点在原点两侧,下列各式成立的是( )A .|ab |>1B .﹣a <bC .a ﹣b >0D .﹣ab >0(多选)12.(3分)(2022•潍坊)如图,△ABC 的内切圆(圆心为点O )与各边分别相切于点D ,E ,F ,连接EF ,DE ,DF .以点B 为圆心,以适当长为半径作弧分别交AB ,BC 于G ,H 两点;分别以点G ,H 为圆心,以大于12GH 的长为半径作弧,两条弧交于点P ;作射线BP .下列说法正确的是( )A .射线BP 一定过点OB .点O 是△DEF 三条中线的交点C .若△ABC 是等边三角形,则DE =12BC D .点O 不是△DEF 三条边的垂直平分线的交点三、填空题(共4小题,每小题3分,共12分.只写最后结果) 13.(3分)(2022•潍坊)方程组{2x +3y =13,3x −2y =0的解为 . 14.(3分)(2022•潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为 .15.(3分)(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A 'B 'C 'D ',若A 'B ':AB =2:1,则四边形A 'B 'C 'D '的外接圆的周长为 .16.(3分)(2022•潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75°,再沿y 轴方向向上平移1个单位长度,则点B ″的坐标为 .四、解答题(共7小题,共72分.请写出必要的文字说明、证明过程或演算步骤) 17.(5分)(2022•潍坊)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”你认同小亮的说法吗?请说明理由.18.(11分)(2022•潍坊)(1)在计算2103√3tan30°−√643×(−2)−2+(−2)0时,小亮的计算过程如下:解:2103√3tan30°−√643×(−2)−2+(−2)0=√3×√3−4×22+0=4+1−6+273−16=﹣2小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①﹣22=4;②(﹣1)10=﹣1;③|﹣6|=﹣6;.请写出正确的计算过程.(2)先化简,再求值:(2x−3−1x)⋅x2−3xx2+6x+9,其中x是方程x2﹣2x﹣3=0的根.19.(11分)(2022•潍坊)2022年5月,W市从甲、乙两校各抽取10名学生参加全市语文素养水平监测.【学科测试】每名学生从3套不同的试卷中随机抽取1套作答,小亮、小莹都参加测试,请用树状图或列表法求小亮、小莹作答相同试卷的概率.样本学生语文测试成绩(满分100分)如下表:样本学生成绩平方差中众均数位数数甲校5066666678808182839474.6141.04a66乙校6465697476767681828374.640.8476b表中a=;b=.请从平均数、方差、中位数、众数中选择合适的统计量,评判甲、乙两校样本学生的语文测试成绩.【问卷调查】对样本学生每年阅读课外书的数量进行问卷调查,根据调查结果把样本学生分为3组,制成频数分布直方图,如图所示.A组:0<x≤20;B组:20<x≤40;C组:40<x≤60.请分别估算两校样本学生阅读课外书的平均数量(取各组上限与下限的中间值近似表示该组的平均数).【监测反思】①请用【学科测试】和【问卷调查】中的数据,解释语文测试成绩与课外阅读量的相关性;②若甲、乙两校学生都超过2000人,按照W市的抽样方法,用样本学生数据估计甲、乙两校总体语文素养水平可行吗?为什么?20.(12分)(2022•潍坊)【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.21.(10分)(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如图.小亮认为,可以从y=kx+b(k>0),y=mx(m>0),y=﹣0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=mx(m>0).你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?22.(10分)(2022•潍坊)筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O 与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD•CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:√2≈1.4,√3≈1.7).23.(13分)(2022•潍坊)为落实“双减”,老师布置了一项这样的课后作业:二次函数的图象经过点(﹣1,﹣1),且不经过第一象限,写出满足这些条件的一个函数表达式.【观察发现】请完成作业,并在直角坐标系中画出大致图象.【思考交流】小亮说:“满足条件的函数图象的对称轴一定在y轴的左侧.”小莹说:“满足条件的函数图象一定在x轴的下方.”你认同他们的说法吗?若不认同,请举例说明.【概括表达】小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数y=ax2+bx+c 的图象与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.请你探究这个方法,写出探究过程.2022年山东省潍坊市中考数学试卷参考答案与试题解析一、单项选择题(共8小题,每小题3分,共24分。