教案类:北师大版八年级数学上册探索勾股定理第二课时教学设计

合集下载

数学北师大版八年级上册探索勾股定理(二)教学设计

数学北师大版八年级上册探索勾股定理(二)教学设计

第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析上节课已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点与难点.三、教学过程第一环节:问题引入内容:教师提出问题:上节课我们已经通过探索得到了勾股定理,请问勾股定理的内容是什么?如何验证勾股定理呢?第二环节:探索新知活动1:[师] 下面我们利用拼图的方法来验证勾股定理:1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a ,b ,斜边为c );2、你能用这四个直角三角形拼成一个正方形吗?拼一拼试试看?3、你能否就你拼出的图说明a2+b2=c2呢?拼法1:大正方形的面积可以表示为___________;也可以表示为________________.∵ c 2= 4•ab/2 +(b -a)2=2ab+b 2-2ab+a 2=a 2+b 2∴a 2+b 2=c 2拼法2:大正方形的面积可以表示为___________; 也可以表示为________________.∵ c 2= 4•ab/2 +(b -a)2=2ab+b2-2ab+a2=a2+b2∴a2+b2=c2活动2:拓展提升[师] 你还能拼出什么图形呢?你能否就你拼出的图说明a2+b2=c2?.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为30cm ,且两直角边长度比为3:4,求两直角边的长。

八年级数学上册 1.1 探索勾股定理(第2课时)教学设计 (新版)北师大版

八年级数学上册 1.1 探索勾股定理(第2课时)教学设计 (新版)北师大版

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

北师大版数学八年级上册《探索勾股定理》教学设计2

北师大版数学八年级上册《探索勾股定理》教学设计2

北师大版数学八年级上册《探索勾股定理》教学设计2一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。

本章主要让学生通过探索、验证勾股定理,培养学生的探究能力和逻辑思维能力。

本节课的内容是探索勾股定理的证明方法,让学生了解勾股定理的发现过程,理解勾股定理的含义,并能够运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力。

但是,对于勾股定理的证明方法,学生可能比较陌生,需要通过实例和引导,让学生理解和掌握。

三. 教学目标1.让学生了解勾股定理的发现过程,理解勾股定理的含义。

2.培养学生通过探索、验证勾股定理的能力,提高学生的逻辑思维能力。

3.能够运用勾股定理解决实际问题,感受数学在生活中的应用。

四. 教学重难点1.重点:让学生通过探索、验证勾股定理,理解勾股定理的含义。

2.难点:如何引导学生发现和证明勾股定理,以及如何运用勾股定理解决实际问题。

五. 教学方法1.引导法:通过问题引导,让学生自主探索勾股定理的证明方法。

2.实例法:通过具体的几何图形,让学生直观地理解勾股定理。

3.实践法:让学生通过动手操作,验证勾股定理,增强学生的实践能力。

六. 教学准备1.准备相关的几何图形,如直角三角形、直角梯形等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备勾股定理的相关资料,如历史背景、证明方法等。

七. 教学过程1.导入(5分钟)通过一个实际问题,如测量一个直角三角形的两条直角边的长度,让学生思考如何求解斜边的长度。

引导学生回顾平面几何中关于直角三角形的知识,为学习勾股定理做铺垫。

2.呈现(10分钟)利用多媒体展示勾股定理的定义和表述,让学生了解勾股定理的基本概念。

通过几何图形的展示,让学生直观地感受勾股定理的应用。

3.操练(15分钟)让学生分组讨论,每组尝试用不同的方法证明勾股定理。

教师巡回指导,引导学生发现和证明勾股定理。

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计2

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计2

北师大版八年级数学上册:1.1《探索勾股定理》教学设计2一. 教材分析《探索勾股定理》这一节的内容,主要让学生通过实践活动,探索并证明勾股定理。

教材通过生动有趣的故事引入,引导学生通过观察、操作、猜想、验证等数学活动,探索并理解勾股定理。

这一节内容既有利于培养学生的动手操作能力,也有利于培养学生的探究能力。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于证明勾股定理,他们可能还没有接触过。

因此,在教学过程中,我需要引导学生通过实践活动,自己去探索并证明勾股定理。

三. 教学目标1.了解勾股定理的发现过程,感受数学的探究过程。

2.能够通过实践活动,探索并证明勾股定理。

3.培养学生的动手操作能力和探究能力。

四. 教学重难点1.教学重点:让学生通过实践活动,探索并证明勾股定理。

2.教学难点:如何引导学生自己发现并证明勾股定理。

五. 教学方法1.启发式教学法:通过问题引导,激发学生的思考。

2.实践活动法:让学生通过实际操作,自己去探索并证明勾股定理。

六. 教学准备1.准备一些直角三角形和直角三角形的斜边,让学生在课堂上进行测量。

2.准备一些相关的多媒体教学资料,帮助学生更好地理解勾股定理。

七. 教学过程1.导入(5分钟)通过一个有趣的故事,引出勾股定理。

让学生了解到,勾股定理是我国古代数学家毕达哥拉斯发现的。

2.呈现(5分钟)呈现一组直角三角形,让学生进行测量,观察并猜想勾股定理。

3.操练(10分钟)让学生分组进行实践活动,每组选取一个直角三角形,用尺子测量其三条边的长度,然后计算出斜边的平方是否等于两个直角边的平方和。

通过实践活动,让学生自己验证勾股定理。

4.巩固(10分钟)让学生用自己的语言,描述一下勾股定理的内容。

并通过一些例子,让学生运用勾股定理进行计算。

5.拓展(10分钟)让学生思考,如果一个直角三角形的两条直角边长度相等,那么斜边的长度会是多少?引导学生进一步探究勾股定理的变体。

北师大版八年级数学上册1.1《探索勾股定理二》教案

北师大版八年级数学上册1.1《探索勾股定理二》教案
2.掌握勾股定理的证明方法,了解勾股定理在几何学中的重要性。
-学习并理解勾股定理的几种证明方法(如:构造法、割补法等)。
-了解勾股定理在几何图形中的应用,如:正方形、等腰直角三角形等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探索勾股定理的证明过程,让学生理解并掌握严密的逻辑推理方法,提高学生的几何逻辑思维。
-对于勾股定理的逆向应用,通过具体例题,让学生学会通过边长关系判断三角形的类型,并提供足够的练习进行巩固。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《探索勾股定理二》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的边长关系问题?”比如,测量墙角到地面的距离。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
2.培养学生的空间想象力:通过勾股定理在实际几何图形中的应用,培养学生的空间想象力和几何直观。
3.培养学生的数学应用意识:将勾股定理与生活实际相结合,让学生学会在实际问题中发现数学规律,提高解决实际问题的能力。
4.培养学生的数学抽象能力:引导学生从具体的直角三角形中抽象出勾股定理的一般规律,培养学生的数学抽象思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。这个定理在几何学中有着极为重要的地位,它可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的斜边长度,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
北师大版八年级数学上册1.1《探索勾股定理二》教案

北师大版数学八年级上册1《探索勾股定理》教案2

北师大版数学八年级上册1《探索勾股定理》教案2

北师大版数学八年级上册1《探索勾股定理》教案2一. 教材分析《探索勾股定理》是人教版八年级上册数学的一个重要内容。

本节课主要通过引导学生探索勾股定理,培养学生的逻辑思维能力和探索精神。

教材以古代中国赵爽的弦图为例,让学生通过割补、拼接等方法,证明勾股定理。

教材内容丰富,既有历史文化的传承,也有数学思维的训练。

二. 学情分析学生在七年级时已经学习了相似三角形和全等三角形,对图形的变换和证明已经有了初步的认识。

但如何将这些知识运用到探索勾股定理中,还需要教师的引导和启发。

此外,学生对于古代数学的文化背景可能了解不多,需要在教学中加以补充。

三. 教学目标1.了解勾股定理的证明过程,理解并掌握勾股定理。

2.培养学生的逻辑思维能力和探索精神。

3.感受数学文化的魅力,增强民族自豪感。

四. 教学重难点1.重难点:勾股定理的证明过程及应用。

2.难点:如何引导学生发现并证明勾股定理。

五. 教学方法采用问题驱动法、案例教学法和启发式教学法,引导学生通过自主探索、合作交流,发现并证明勾股定理。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备割补、拼接的教具。

3.提前让学生预习相关内容。

七. 教学过程1.导入(5分钟)通过展示古代中国的勾股定理著作《周髀算经》和赵爽的弦图,引导学生了解勾股定理的历史背景,激发学生的学习兴趣。

2.呈现(15分钟)呈现问题:在直角三角形中,为什么直角边的平方和等于斜边的平方?让学生思考并尝试解答。

3.操练(30分钟)让学生分组进行讨论,每组尝试用自己的方法证明勾股定理。

教师巡回指导,引导学生发现证明勾股定理的关键在于如何将直角三角形割补、拼接成正方形。

4.巩固(15分钟)让学生用自己的语言阐述证明勾股定理的过程,检查学生是否真正理解并掌握了勾股定理。

5.拓展(10分钟)引导学生思考:除了割补、拼接的方法,还有没有其他方法证明勾股定理?让学生进行思考和探索。

6.小结(5分钟)对本节课的内容进行总结,强调勾股定理的重要性和应用价值。

北师版八年级数学上册教案1 探索勾股定理(2课时)

北师版八年级数学上册教案1  探索勾股定理(2课时)

1探索勾股定理第1课时勾股定理一、基本目标1.经历勾股定理的发现过程,了解并掌握勾股定理的内容.2.通过对勾股定理的探索,在探索实践中理解并掌握勾股定理.二、重难点目标【教学重点】勾股定理.【教学难点】勾股定理的探究.环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2.下列说法中正确的是(C)A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中,两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,则a2+b2=c2D.在Rt△ABC中,∠B=90°,则a2+b2=c23.若Rt△ABC中,∠C=90°,且AB=10,BC=8,则AC长是(B)A.5 B.6C.7 D.8环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,已知在△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,CD⊥AB于点D,求CD的长.【互动探索】(引发学生思考)要求CD 的长,CD 是△ABC 的高,AB 的长已知,如果能求出三角形ABC 的面积就好办了.【解答】∵△ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC 2=AB 2-BC 2=52-32=16=42,∴AC =4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm).【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上的高的积,这个规律常与勾股定理联合使用.【例2】如图,已知AD 是△ABC 的中线.求证:AB 2+AC 2=2(AD 2+CD 2).【互动探索】(引发学生思考)结论中涉及线段的平方,因此可以考虑作AE ⊥BC 于点E ,在△ABC 中构造直角三角形,利用勾股定理进行证明.【证明】如图,过点A 作AE ⊥BC 于点E .在Rt △ACE 、Rt △ABE 和Rt △ADE 中,AB 2=AE 2+BE 2,AC 2=AE 2+CE 2,AE 2=AD 2-ED 2,∴AB 2+AC 2=(AE 2+BE 2)+(AE 2+CE 2)=2(AD 2-ED 2)+(DB -DE )2+(DC +DE )2=2AD 2-2ED 2+DB 2-2DB ·DE +DE 2+DC 2+2DC ·DE +DE 2=2AD 2+DB 2+DC 2+2DE (DC -DB ).又∵AD 是△ABC 的中线,∴BD =CD ,∴AB 2+AC 2=2AD 2+2DC 2=2(AD 2+CD 2). 【互动总结】(学生总结,老师点评)构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.活动2 巩固练习(学生独学)1.在△ABC 中,∠C =90°.若a =5,b =12,则c =13;若c =41,a =9,则b =40. 2.等腰△ABC 的腰长AB =10 cm ,底BC 为16 cm ,则底边上的高为6,面积为48.3.已知在△ABC中,∠C=90°,BC=a,AC=b,AB=c.(1)若a=5,b=12,求c;(2)若a=15,c=17,求b.解:(1)根据勾股定理,得c2=a2+b2=52+122=169.∵c>0,∴c=13.(2)根据勾股定理,得b2=c2-a2=172-152=64.∵b>0,∴b=8.活动3拓展延伸(学生对学)【例3】在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC 的周长.【互动探索】应考虑高AD在△ABC内和△ABC外的两种情形.【解答】当高AD在△ABC内部时,如图1.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16;在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=92,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC 的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1图2【互动总结】(学生总结,老师点评)题中未给出图形时,作高构造直角三角形易漏掉钝角三角形的情况.如在本例中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形,导致漏解.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b,c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.请完成本课时对应练习!第2课时 勾股定理的证明一、基本目标勾股定理的面积证法;会用勾股定理进行简单的计算. 二、重难点目标 【教学重点】 勾股定理的面积证法. 【教学难点】 勾股定理的应用.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P4~P6的内容,完成下面练习. 【3 min 反馈】1.在△ABC 中,∠C =90°.若a =6,c =10,则b =8.2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为2.5m.3.根据下图,利用面积法证明勾股定理.证明:∵S 梯形ABCD =S △ABE +S △BCE +S △EDA ,又∵S 梯形ABCD =12(a +b )2,S △BCE =S △EDA =12ab ,S △ABE =12c 2,∴12(a +b )2=2×12ab +12c 2, ∴a 2+b 2=c 2,即勾股定理得证. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.【互动探索】(引发学生思考)从整体上看,这两个大正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等. 左边大正方形面积可表示为a 2+b 2+12ab ×4,右边大正方形面积可表示为c 2+12ab ×4.∵a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2 B .130 cm 2 C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm,12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m).该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例2】如图,高速公路的同侧有A ,B 两个村庄,它们到高速公路所在直线MN 的距离分别为AA 1=2 km ,BB 1=4 km ,A 1B 1=8 km.现要在高速公路上A 1,B 1之间设一个出口P ,使A ,B 两个村庄到P 的距离之和最短,求这个最短距离之和.【互动探索】如何找到这个点P ?找到以后如何算出最短距离呢?【解答】作点B 关于MN 的对称点B ′,连接AB ′交A 1B 1于点P ,连接BP .则AP +BP =AP +PB ′=AB ′,易知点P 即为到点A ,B 距离之和最短的点.过点A 作AE ⊥BB ′于点E ,则AE =A 1B 1=8 km ,B ′E =AA 1+BB 1=2+4=6( km).由勾股定理,得B ′A 2=AE 2+B ′E 2=82+62,∴AB ′=10 km.即AP +BP =AB ′=10 km.故出口P 到A ,B 两村庄的最短距离之和是10 km.【互动总结】(学生总结,老师点评)解这类题的关键在于运用几何知识正确找到符合条件的点P 的位置,会构造Rt △AB ′E .环节3 课堂小结,当堂达标 (学生总结,老师点评)勾股定理⎩⎨⎧验证⎩⎪⎨⎪⎧拼图法面积法简单应用请完成本课时对应练习!。

数学北师大版八年级上册探索勾股定理(第二课时)教学设计

数学北师大版八年级上册探索勾股定理(第二课时)教学设计

第一章勾股定理探索勾股定理(第2课时)深圳市光明新区实验学校孔晓康一、学情分析学生的知识技能基础:学生在上节课的学习中已经用数格子的办法发现了勾股定理,会用勾股定理解决较为简单的计算题。

但是数格子的办法只是验证了直角边为整数的直角三角形的情况,并没有对一般的直角三角形进行验证。

学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在活动中学会合作,愿意合作,能够在合作中体验到成功的喜悦。

二、教学目标知识与技能目标:1.掌握勾股定理以及利用拼图验证勾股定理的方法。

2.能应用勾股定理解决一些简单的实际问题.过程与方法目标:1.在拼图的过程中,学习切割拼补的方法,在寻找等量关系的过程中体会同一面积法。

2.经历勾股定理的验证过程,体会数形结合思想,体会从特殊到一般,再从一般到特殊的思想。

情感、态度与价值观目标:1.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:1.利用拼图验证勾股定理的思路和方法2.理解并掌握勾股定理,会用勾股定理解决简单的实际问题。

教学难点: 勾股定理的验证四、教学过程本节课设计了五个教学环节:(一)问题情境;(二)合作探究;(三)拓展练习(四) 课堂小结(五)布置作业第一环节: 问题情境内容:教师提出问题:上节课,我们利用方格纸探究了几个简单的直角三角形,发现这几个直角三角形的三边都存在一种相同的数量关系,大家还记得吗?(请一名学生回答)直角三角形两直角边的平方和等于斜边的平方,如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+课件展示:(勾股定理:222c b a =+)前面,我们利用方格纸只是解决了几个直角边是整数的特殊情况,如果给你一个任意的直角三角形,比如直角边分别等于a 和b ,(这里不妨假设a <b )斜边为c ,我们还能利用上节课中的这个图说明勾股定理的正确性吗?第二环节:合作探究活动1:现在没有方格纸可用,但是上节课中探究勾股 定理的方法也许仍然有效,同学们可以先试一试。

《探索勾股定理第2课时》示范公开课教学设计【北师大版八年级数学上册】

《探索勾股定理第2课时》示范公开课教学设计【北师大版八年级数学上册】

第一章勾股定理1. 1 探索勾股定理第 2 课时教学设计1.学会应用勾股定理,并领会“数与行”相结合的应用思想.2.经历勾股定理应用的过程,掌握勾股定理的使用方法.3.培养良好的合作、交流意识,发展数学观念,体会勾股定理的实际应用.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.四个全等的直角三角形纸片.一、创设情境,引入新知如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知勾股定理的初步认识问题1:观察下面地板砖示意图:你发现图中三个正方形的面积之间存在什么关系吗?问题2:观察右边两幅图:完成下表(每个小正方形的面积为单位1).方法一:割分割为四个直角三角形和一个小正方形.方法二:补补成大正方形,用大正方形的面积减去四个直角三角形的面积.方法三:拼将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.想一想(1)你能用直角三角形的两直角边的长a,b 和斜边长 c 来表示图中正方形的面积吗?根据前面的结论,它们之间又有什么样的关系呢?(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜边的长度.(1)中的规律对这个三角形仍成立吗?勾股定理直角三角形两直角边的平方和等于斜边的平方.如果a,b和 c 分别表示直角三角形的两直角边和斜边那么a2+b2=c2名字的由来我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.在西方又称毕达哥拉斯定理三、运用新知求下列图形中未知正方形的面积或未知边的长度(口答):已知直角三角形两边,求第三边.利用勾股定理进行计算:例求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.四、巩固新知1. 图中阴影部分是一个正方形,则此正方形的面积为 .2. 判断题①△Rt ABC 的两直角边AB=5, AC=12,则斜边BC=13 ( )②△ABC 的两边a = 6 , b = 8, 则c = 10 ( )3. 填空题在△ABC中, ∠C=90°, AC = 6, CB = 8,则△ABC 的面积为_____,斜边上的高CD 为______.4. 一高为 2.5 米的木梯,架在高为 2.4 米的墙上(如图),这时梯脚与墙的距离是多少?五、归纳小结◆教学反思略.。

探索勾股定理第二课时教学设计

探索勾股定理第二课时教学设计
9米
90%的学生准确 做出自主检测 2
学生做完教师批改组长的,组 长批改组员的。 学生演板后,教师对孩子的收获 给予肯定。
12 米
2.如图,受台风麦莎影响,一棵高 18m 的大树断裂, 树的顶部落在离树根底部 6 米处,这棵树折断后有多 高?
6米
当堂检测: 一:填空题。 1.在 ABC 中,C=90°, (1)若 c=10,a:b=3:4,则 a=____,b=___.
学生 5 分钟时 间做在纸上。
教师巡视全班,学生做完教师批 改组长的,组长批改组员的。最 后组内针对错题,组长讲解督 促,进行订正。
(2)若 a=9,b=40,则 c=______. 2.在 ABC 中, C=90°,若 AC=6,CB=8,则 ABC 面积 为_____,斜边为上的高为______. 二:解答题。 一轮船以 16 海里/小时的速度离 A 港向东北 方向航行,另一艘轮船同时以 12 海里/小时的速度 离 A 港向西北方向航行,2 小时后,两船相距多少 海里?(先画出图形,再进行计算) 从知识、技 小结 通过本节课的学习你有什么收获? 能、思想方法 等几方面进行 总结。 作业布置: 作业 1.随堂练习 2.知识技能 1 这部分作业要 所有学生都能 认真的完成。
(3)如图 2,你能表示出小正方形的面积吗?你能由 此验证勾股定理吗?
二.自主检测 1:美国总统伽 菲尔德利用下图验证了勾 股定理,你能利用它验证勾股定理吗?与同伴交流。
学 生 利 用 左 图 学生先独立完成,教师适时点拨 能 够 验 证 勾 股 (利用面积相等)来验证勾股定 定理。 理。
D C c b B a
《探索勾股定理 2》基于标准的教学设计
教材来源:义务教育教科书《数学》/北师大版 课 时:第二课时

北师大版八年级上册1.1探索勾股定理(第2课时)教案

北师大版八年级上册1.1探索勾股定理(第2课时)教案
2.如何验证勾股定理呢 ? 二.自主学习:
利用拼图验证勾股定理(课前准备 8 个全等的直角三角形): 活动:用四个全等的直角三角形拼出图 1,并思考: 1.拼成的图 1 中有_______个正方形, ___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。
(a + b)2 (a + b)2 (a + b)2
四、达标测评: 1、如右图,AD = 3,AB = 4,BC = 12,则 CD=________;
2、如图,阴影部分的面积为

D
15
8
A
3
B
C
3、一个直角三角形的三边分别为 3,4, x ,则 x2 =
4、若等腰三角形的腰为 10cm,底边长为 16cm,则它的面积为

5、从电线杆离地面 6 米处向地面拉一条长 10 米的缆绳,这条缆绳在地面的固定点
3 你能利用类似的方法由图 2 得到勾股定理吗?
9、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方 4000 m 处,过了 20 s,飞机距离这个男孩子头顶 5000m,飞机每小时飞行多少千米?
◎备课留白:
1/1
◎教学反思: ◎安全提醒:
距离电线杆底部有
米。
6、一直角三角形的斜边比直角边大 2,另一直角边长为 6,则斜边长为

7、直角三角形一直角边为 5 厘米、斜边为 13 厘米,那么斜边上的高是

8、直角三角形的三边长为连续偶数,则其周长为

图22Leabharlann 三.合作探究:21. 如图 1,你能表示大正方形的面积吗?能用两种方法表示吗?
2. (a+b)2 与 c2+2ab 有什么关系?为什么?你能验证勾股定理了吗?

《探索勾股定理》第2课时示范课教学设计【数学八年级上册北师大】

《探索勾股定理》第2课时示范课教学设计【数学八年级上册北师大】

《探索勾股定理》教学设计第2课时一、教学目标1.进一步了解勾股定理,探索勾股定理的证明过程.2.学会利用几何图形的截、割、补证明勾股定理.3.能够利用勾股定理解决简单的实际问题.4.在数学活动中发展学生的探究意识和合作交流的习性,体会勾股定理的应用价值.二、教学重难点重点:运用割补、拼图的方法证明勾股定理的正确性.难点:灵活应用勾股定理解决实际问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【操作】活动:(小组合作展示)今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.提出问题,观察学生如何操作,再让学生展示过程,最后教师用课件展示拼图过程.追问:还有其他拼法吗?【探究】学生用手中的三角形拼图尝试其他拼法设计活动的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.问题:在下图中,分别以直角三角形的三条边为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?追问:如何计算大正方形的面积呢?上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.【合作探究】教师活动:多媒体演示课件,引导学生观察并思考:为了计算大正方形的面积,小明进行了适当的割补,如图所示.问题:通过补的办法,你能表示大正方形的面积吗?教师活动:引导学生通过两种方法计算大正方形面积得出结论.巡视同学做题过程,对于有困难的学生给予指导,然后用多媒体展示答题过程.证明:∵S 正方形ABCD =(a+b )2=a 2+b 2+2ab , S 正方形ABCD =4S 直角三角形+ S 小正方形=4×12ab +c 2=c 2+2ab , ∴a 2+b 2+2ab =c 2+2ab , 即a 2+b 2 =c 2.讲述:这种方法是有名的毕达哥拉斯证法,验证了勾股定理的正确性.探究:赵爽弦图“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.这个图案被选为2002年在北京召开的国际数学大会的会徽.追问:如何用赵爽弦图证明勾股定理呢?证明:∵S 大正方形=c 2,S小正方形=(a-b )2,又∵S 大正方形=4·S 三角形+S 小正方形,()222214.2c ab a b a b ∴=⨯+-=+教师活动:用这个图验证勾股定理的方法,据载最早是由三国时期数学家赵爽在为《周碑算经》作注时给出的.我国历史上将该图中弦上的正方形称为弦图.作为国际数学大会的会徽的“弦图”,它既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!其他证法是怎么样的呢?我们来了解下. 美国第二十任总统伽菲尔德的“总统证法”.如图,图中的三个三角形都是直角三角形,求证:a 2+b 2 =c 2.多媒体展示答题过程1()()2S a b a b =++梯形证明:, 23111=222S ab ab c =++梯形个三角形的面积和,21111()().2222a b a b ab ab c ++=++∴222.a b c ∴+=教师活动:事实上,勾股定理的证明方法十分丰富,达数百种之多.其中一种方法尤为独特,单靠移动几块图形就直观地证出了勾股定理,被誉为“无字的证明”,我们欣赏几个!青朱出入图达·芬奇证明:根据空白部分面积相等计算即可得证.做一做1.图中阴影部分是一个正方形,则此正方形的面积为.2.若正方形的面积为8cm2,则正方形对角线长为______cm.教师活动:先由学生独立完成,教师及时给予指导,在此活动中,教师应重点关注学生能否进一步理解勾股定理的逆定理的用法.答:(1)36cm² (2)4画出图形.解:由勾股定理,可以得到AB2=BC2+AC2,即:5002=BC2+4002,∵BC>0,∴BC=300.敌方汽车10s行驶了300m,那么它1h行驶的距离为:300×6×60=108000(m),即它行驶的速度为108km/h.【例2】如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.教师根据题干分析题中提供的已知条件,并用动画在图上标明.解:在Rt△ABF中,由勾股定理,得BF2=AF2-AB2=102-82BF=6cm.∴CF=BC-BF=4.设EC=x cm,则EF=DE=(8-x) cm,在Rt△ECF中,根据勾股定理,得x2+ 42=(8-x)2解得x=3.所以EC的长为3 cm.议一议观察下图,判断图中三角形的三边长是否满足a2+b2 =c2.结论1:若钝角三角形中较长边长为c,较短边长为a、b,则a2+b2 <c2.结论2:若锐角三角形中较长边长为c,较短边长为a、b,则a2+b2>c2.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1. 如图,有两棵树,一棵高10 m,另一棵高4 m,两棵树相距8 m,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行() A.8 m B.10m C.12m D.14 m2.如果梯子的底端离一幢楼5米,那么13米长的梯子可以达到该楼的高度是()A.12米B.13米C.14米D.15米3.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,阳光透过的最大面积是________.4.如图,在一条公路上有A、B两站相距25km,C、D为两个小镇,已知DA⊥AB,CB ⊥AB,DA=15km,CB= 10km,现在要在公路边上建设一个加油站E,使得它到两镇的距离相等,请问E站应建在距A站多远处?答案:1.B;2. A3. 200m2;4.解:如下图,连接DE、CE.设AE长为x千米,则EB长为(25-x)千米.由题意得:()2222+=+-151025.x x解得:x=10.答:E站应建在距A站10千米处.思维导图的形式呈现本节课的主要内容:。

《探索勾股定理》(第2课时) 公开课教学设计【北师大版八年级数学上册】

《探索勾股定理》(第2课时)  公开课教学设计【北师大版八年级数学上册】

第一章勾股定理1.2探索勾股定理第2课时教学设计一、教学目标1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.在实际问题的情景中,能熟练运用勾股定理解决问题.3.通过拼图法验证勾股定理,使学生经历观察、猜想、验证的过程,进一步体会数形结合的思想.二、教学重点及难点重点:经历勾股定理的验证过程,能利用勾股定理解决实际问题.难点:用拼图法验证勾股定理.三、教学准备四个全等的直角三角形纸片,一个以斜边为边长的正方形纸片、课件四、相关资源五、教学过程【复习后顾】复习回顾,引出新课1.直角三角形的性质:(1)直角三角形两锐角;(2)直角三角形斜边上的中线等于;(3)直角三角形中30°的角所对的直角边等于.2.勾股定理的内容:_________________________________________________.3.在直角三角形中,两直角边长分别为5、12,求斜边长.师生活动:学生口述勾股定理,师总结勾股定理是由形到数的转变.强调勾股定理的应用,引出新课.这是我们上节课应用测量和数格子法发现的定理,那么,我们怎样用科学的方法去证明勾股定理的正确性呢?请跟我一起去探索吧!板书:探索勾股定理(2)【新知讲解】合作探究:面积法验证勾股定理教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)设计意图:利用交互动画可以让学生动手操作,不断探究,直到拼出来为止。

增加学习兴趣。

活动1:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)你能用两种方法表示图1中大正方形的面积吗?(学生先独立思考,再4人小组交流)(2)你能由此得出勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c2.并得到222cba=+从而利用图1验证了勾股定理. )(3)利用图2验证勾股定理.学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证勾股定理,在验证过程中,大家注意数形结合思想和类比思想的应用.设计意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一图1个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想和类比思想在数学中的应用,体会成功的快乐.设计意图:利用视频可以辅助面积法的教学,过程清晰易学活动二:分别以直角三角形的三条边的长度为边长向外作正方形,你能利用下图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.师:出示教材P5图1-5和图1-6,小明对这个大正方形适当割补后得到图1-5和图1-6.想一想:小明是怎样进行验证的?图1-5 图1-6学生先独立探究,再小组交流教师总结:图1-5是在大正方形的四周补上四个边长为a、b、c的直角三角形;图1-6是把大正方形分割成四个边长为a、b、c的直角三角形和一个小正方形.图1-5采用的是“补”的方法,而图1-6采用的是“割”的方法,请同学们将所有三角形和正方形的面积用a 、b 、c 的关系式表示出来.归纳总结:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.活动三:欣赏勾股定理的证明方法1、毕达哥拉斯证明勾股定理设计意图:经过活动1的探究,学生对验证过程有了初步了解,进一步借助图形进行验证,再次巩固了勾股定理的验证过程,培养学生辨析图形的能力,注重割补法在几何证明中的应用,培养了解决数学问题的能力.2、利用微课学习赵爽弦图的证明方法:无字的证明设计意图:利用视频可以辅助赵爽弦图的无字证明方法的教学,让学生了解历史上有名的证明方法,拓展思路,过程清晰易学【典型例题】例1. 我方侦查员小王在距离东西向公路400 m 处侦查,发现一辆敌方汽车在公路上疾使,他赶紧拿出红外测距仪,测得汽车与他相距400 m ,10 s 后,汽车与他相距500 m ,你能帮小王计算敌方汽车的速度吗?分析:根据题意,可以画出图1-7,其中点A 表示小王所在的位置,点C 、点B 表示两个时刻敌方汽车的位置.由于小王距离公路400 m ,因此∠C 是直角,这样就可以由勾股定理来解决这个问题了.解:由勾股定理,可以得到222AB BC AC =+,也就是222500400BC =+,所以BC =300.敌方汽车10 s 行驶了300 m ,那么它1 h 行驶的距离为300×6×60=108 000(m ),即它行驶的速度为108 km/h .例2.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对讲机联系,已知对讲机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?解:如图:甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时,走了5千米,即OB =5.在Rt △OAB 中,AB 2=122+52=169,∴AB =13.因此,上午10:00时,甲、乙两人相距13千米.∵15>13,∴甲、乙两人还能保持联系.所以上午10:00时,甲、乙两人相距13千米,两人还能保持联系.设计意图:通过利用勾股定理解决实际问题,加深学生对勾股定理的理解.培养学生灵活运用定理解决问题的能力.【随堂练习】1.下列选项中,不能用来证明勾股定理的是 ( )2.一个等腰三角形的底边长为10 cm,腰长为13 cm,则腰上的高为.3.如图,△ABC中,AD⊥BC于D,AB=13,AC=8,则22BD DC-=.4.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速公路,已知沿江高速公路的建设成本是5 000万元/km,该沿江高速公路的造价预计是多少?答案:1、 C2、123、1054.解:50130501301805 000/km5 000180900000()900000()MOOQMO OQ====+=+=∴⨯=∴,,.沿江高速公路的建设成本是万元, 万元.该沿江高速公路的造价预计是 万元.六、课堂小结谈谈本节课的收获:1.勾股定理的验证过程以及利用勾股定理解题.2.通过验证过程要学会解决数学问题的方法:① 观察—探索—猜想—验证—归纳—应用;②面积法;O50 km40 km120 km30 kmQPNMDB CA③“割、补、拼、接”法. 3.体现的数学思想:①特殊—一般—特殊;②数形结合思想.七、板书设计:。

北师大版八年级数学上册1.1探索勾股定理(第2课时)教学设计

北师大版八年级数学上册1.1探索勾股定理(第2课时)教学设计
1.学生在探索勾股定理过程中的思维发展,引导他们从直观想象向逻辑推理过渡,关注学生思维方式的转变和提升。
2.针对学生个体差异,关注不同学生的学习需求,提供适当的辅导和指导,使他们在探索过程中都能获得成功的体验。
3.培养学生的合作意识和团队精神,引导他们在小组讨论中积极参与,相互学习,共同提高。
4.注重激发学生的学习兴趣,通过实际问题的引入,让学生认识到勾股定理在现实生活中的应用价值,提高他们的学习积极性。
7.课后拓展,延伸学习
布置具有挑战性的课后作业,让学生在课后进一步巩固和拓展勾股定理的知识。同时,鼓励学生收集勾股定理在实际生活中的应用实例,进行课堂分享,提高学生的实践能力。
8.教学评价,关注个体差异
采用多元化的评价方式,如课堂表现、作业完成情况、小组合作等,全面评价学生的学习情况。关注个体差异,给予每个学生适当的指导和鼓励,促进他们全面发展。
北师大版八年级数学上册1.1探索勾股定理(第2课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握勾股定理的表达形式,理解其含义,并能运用定理解决相关问题。
2.培养学生运用几何图形、坐标等方法证明勾股定理的能力,提高学生的逻辑思维和推理能力。
3.使学生能够运用勾股定理进行计算,解决实际问题,如计算直角三角形的斜边长度等。
3.挑战题:运用勾股定理解决复杂的几何问题。
在学生完成练习题的过程中,我会巡回指导,解答学生的疑问,并及时给予反馈。
(五)总结归纳,500字
在总结归纳环节,我会引导学生从以下几个方面进行:
1.知识与技能:回顾勾股定理的表达形式、证明方法和实际应用。
2.过程与方法:总结在探索勾股定理过程中,所运用的观察、实验、猜想、证明等方法。

八年级数学上册 探索勾股定理(第二课时)教案 北师大版

八年级数学上册 探索勾股定理(第二课时)教案  北师大版
飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000米=504千米,即飞机飞行的速度为504千米/时.
评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形第三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的.
评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础.
[例3]分析:在此问题中,要注意水草的长度与水深的关系,还要注意水草站立时和吹到一边,它的长度是不变的.
解:根据题意,得到下图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD.
[师]真棒!同学们用拼图的方法,大胆地验证了勾股定理.利用拼图的方法验证勾股定理,是我国古代数学家的伟大贡献.在后面的课题学习中,我们还要继续研究它.
在所有的几何定理中,勾股定理的证明方法也许是最多的了.有人做过统计,说有五百余种.1940年,国外有人收集了勾股定理的365种证法,编了一本书.其实,勾股定理的证法不止这些,作者之所以选用了365种,也许他是幽默地想让人注意,勾股定理的证明简直到了每天一种的地步.
[生]我拼出了如下图所示的图形,中间是一个边长为c的正方形.观察图形我们不难发现,大的正方形的边长是(a+b).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可.
大正方形面积可以表示为:(a+b)2,又可以表示为: ab×4+(b-a).
对比这两种表示方法,可得出c2= ab×4+(b-a).化简、整理得c2=a2+b2.因此我们得到了勾股定理.
教学重点

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

第一章勾股定理1.探索勾股定理(2)一、学情与教材分析1.学情分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.2.教材分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.二、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.四、教法建议1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.五、教学设计(一)课前设计1.预习任务结合课本上P5页1-5和1-6,应用等面积法证明勾股定理,(提示:图中的正方形的面积可以表示为边长的平方,也可以表示成小正方形加上四个直角三角形的面积)2.预习自测一、选择题1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2答案:C解析:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选C.点拨:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2.二、填空题2. 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是_________.答案:勾股定理解析:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.点拨:观察我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,发现它验证了勾股定理.3. 如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即_________+_________=_________化简得:a2+b2=c2.答案:4×ab、(b﹣a)2、c2.解析:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2,故答案是:4×ab、(b﹣a)2、c2.点拨:根据直角三角形的面积公式和正方形的面积公式进行填空.(二)课堂设计本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探究发现;第三环节:数学小史;第四环节:知识运用;第五环节:随堂检测;第六环节:课堂小结.第一环节:知识回顾内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:探究发现活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系图1整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:数学小史活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:知识运用a b内容:例题:我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s 后,汽车与他相距500m,你能帮小王计算出敌方汽车的速度吗?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.一组生活中勾股定理的应用练习,共3道题.(1)教材P6练习题1.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第五环节:随堂检测一、选择题1. 下列选项中,不能用来证明勾股定理的是()A.B.C.D.答案:D解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.点拨:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.﹣9 B.﹣36 C.﹣27 D.﹣34答案:B解析:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,9﹣45=36.故选B.点拨:由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.二、填空题3. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是_________.答案:①④解析:直角三角形的斜边长是c,则c2=a2+b2,大正方形的面积是13,即c2=a2+b2=13,①正确;∵小正方形的面积是1,∴b﹣a=1,则(b﹣a)2=1,即a2+b2﹣2ab=1,∴ab=6,故④正确;根据图形可以得到a2+b2=13,b﹣a=1,而b=1不一定成立,故②错误,进而得到③错误.故答案是:①④点拨:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而判断.4. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为_________,该定理的结论其数学表达式是_________.答案:勾股定理、a2+b2=c2.解析:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点拨:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.三、解答题5. 勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是_________三角形,结论是_________(三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;答案:(1)直角;a2+b2=c2;(2)见解析解析:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案是:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.点拨:(1)根据图示直接填空;(2)利用S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED进行解答.第六环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.布置作业:1.习题1.2 T2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.分层作业基础型:一、选择题1. 历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD答案:D解析:∵由S△EDA +S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选D.点拨:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6答案:C解析:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.点拨:观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.二、填空题3. 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为6cm,以AC 为边的正方形的面积为25,则正方形M的面积为________.答案:11=AB2,25=AC2,AC2+AB2=BC2=6×6,解析:根据题意知,SM=36﹣25=11(cm2).∴SM故答案是:11cm2.点拨:根据正方形的面积公式以及勾股定理解答即可.4. 如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________.答案:48解析:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.点拨:分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.三、解答题5. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2的值.答案:B解析:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.点拨:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.能力型:一、选择题1. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.72答案:C解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.点拨:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.二、填空题2. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为_______cm2.答案:27解析:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.点拨:根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.3. 魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为_______.答案:6解析:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.点拨:由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.三、解答题4. (1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.答案:见解析解析:(1)这个公式为(a+b)2=a2+2ab+b2;证明:由图可知大正方形被分成了一个小正方形和两个长方形,大正方形的面积=(a+b)2,两个长方形的面积=(a+b)b+ab,小正方形的面积=a2,那么大正方形的面积=(a+b)b+ab+a2=(a+b)2=a2+2ab+b2.(2)∵Rt△ABC≌Rt△CDE,∴∠BAC=∠DCE,∴∠ACB+∠DCE=∠ACB+∠BAC=90°;由于B,C,D共线,所以∠ACE=180°﹣(∠ACB+∠DCE)=180°﹣90°=90°.(3)梯形ABDE的面积为(AB+ED)•BD=(a+b)(a+b)=(a+b)2;另一方面,梯形ABDE可分成三个直角三角形,其面积又可以表示成ab+ab+c2.所以,(a+b)2=ab+ab+c2.即a2+b2=c2.点拨:(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式.(2)利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE的面积=三角形ABC的面积+三角形CDE的面积+三角形ACE的面积.探究型:一、解答题1. 教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.答案:见解析解析:(1)证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(2)解:∵a=3,b=4,∴c==5,梯形ABCD的周长为:a+c+3a+c═4a+2c=4×3+2×5=22;(3)解:如图4,BD是△ABC的高.∵S=AC•△ABCBD=AB×3,AC==5,∴BD===.点拨:(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;(3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据△ABC的面积不变列式,即可求出高BD的长.2. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB =S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结_______,过点B作______________,则_________.∵S五边形ACBED =S△ACB+S△ABE+S△ADE=______________.又∵S五边形ACBED=______________=ab+c2+a(b﹣a),∴______________=ab+c2+a(b﹣a),∴a2+b2=c2.答案:BD,BF⊥DE于F,BF=b﹣a,ab+ b2+ab,S△ACB +S△ABE+S△ADE,ab+b2+ ab.解析:证明:连结BD,过点B作BF⊥DE于F,则BF=b﹣a,∵S五边形ACBED =S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴。

北师大版数学八年级上册《探索勾股定理》教案2

北师大版数学八年级上册《探索勾股定理》教案2

北师大版数学八年级上册《探索勾股定理》教案2一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。

本章主要让学生通过探究、发现、验证勾股定理,培养学生的探究能力和逻辑思维能力。

本节课是本章的第二课时,主要是通过实践活动,让学生更深入地理解勾股定理,并能够运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了勾股定理的初步知识,对直角三角形有一定的了解。

但部分学生可能对勾股定理的理解还不够深入,对如何运用勾股定理解决实际问题还感到困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行讲解和引导。

三. 教学目标1.让学生通过实践活动,深入理解勾股定理,提高学生的探究能力和逻辑思维能力。

2.培养学生运用数学知识解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.教学重点:让学生通过实践活动,发现并验证勾股定理。

2.教学难点:如何引导学生运用勾股定理解决实际问题。

五. 教学方法1.引导探究法:教师引导学生通过实践活动,自主发现并验证勾股定理。

2.案例教学法:教师通过举例,引导学生运用勾股定理解决实际问题。

3.小组讨论法:教师学生进行小组讨论,培养学生的团队合作精神。

六. 教学准备1.教师准备PPT,内容包括勾股定理的定义、实践活动示例等。

2.教师准备实践活动所需的道具,如直角三角形、尺子、剪刀等。

3.教师准备一些实际问题,用于引导学生运用勾股定理。

七. 教学过程1.导入(5分钟)教师通过PPT展示勾股定理的定义,引导学生回顾已学的知识。

然后,教师提出本节课的目标,让学生明确学习任务。

2.呈现(10分钟)教师展示实践活动示例,引导学生分组进行实践活动。

在活动中,教师关注学生的操作过程,及时给予指导和鼓励。

3.操练(15分钟)学生根据教师的指导,进行实践活动。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)教师邀请部分学生分享他们的实践活动成果,让学生在交流中巩固所学知识。

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第一章“探索勾股定理”的目的是让学生了解勾股定理的发现过程,理解勾股定理的内涵,并能够运用勾股定理解决实际问题。

本节课是该章节的第一课时,主要让学生验证勾股定理。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对三角形、直角三角形等概念有一定的理解。

但他们对勾股定理的发现过程和证明方法可能还不够深入了解,因此需要通过本节课的教学,让学生从实践中感受勾股定理的真理,提高他们的数学思维能力。

三. 教学目标1.让学生了解勾股定理的发现过程,理解勾股定理的内涵。

2.培养学生运用几何图形进行推理和验证的能力。

3.提高学生对数学的兴趣和探索精神。

四. 教学重难点1.教学重点:让学生通过实际操作,验证勾股定理。

2.教学难点:引导学生理解并证明勾股定理。

五. 教学方法1.实践教学法:让学生通过实际操作,发现并验证勾股定理。

2.问题驱动法:教师提出问题,引导学生思考和探索。

3.小组合作学习:学生分组讨论,共同完成验证勾股定理的任务。

六. 教学准备1.准备三角形模型、直尺、圆规等教具。

2.制作课件,展示勾股定理的发现过程和证明方法。

七. 教学过程1.导入(5分钟)教师通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,激发学生的学习兴趣。

2.呈现(10分钟)教师展示勾股定理的表述:直角三角形两条直角边的平方和等于斜边的平方。

然后提出问题:如何验证这个定理呢?3.操练(10分钟)学生分组讨论,运用教具和直尺,尝试构造直角三角形,并测量两条直角边和斜边的长度。

每组学生将自己的测量结果填入表格中。

4.巩固(5分钟)教师邀请几组学生汇报自己的测量结果,引导学生发现:不论直角三角形的直角边和斜边的长度如何变化,两条直角边的平方和总是等于斜边的平方。

5.拓展(5分钟)教师提出挑战性问题:如何证明这个结论对所有的直角三角形都成立呢?引导学生进一步思考和探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理
1.探索勾股定理(二)
一、学生起点分析
学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.
二、教学任务分析
本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.
三、教学目标
1.教学目标
●知识与技能目标
掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.
●过程与方法目标
在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.
●情感与态度目标
在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.
2.教学重点
用面积法验证勾股定理,应用勾股定理解决简单的实际问题.
3.教学难点
验证勾股定理.
四、教法学法
1.教学方法:引导——探究——应用.
2.课前准备:
教具:教材,课件,电脑.
学具:教材,铅笔,直尺,练习本.
五、教学过程
本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)追溯历史,激发情感;(四)例题讲解,初步应用;(五)拓展练习,能力提升;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.
第一环节:复习设疑,激趣引入
内容:教师提出问题:
(1)勾股定理的内容是什么?(请一名学生回答)
(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.
意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.
效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.
第二环节:小组活动,拼图验证.
内容: 活动1: 教师导入,小组拼图.
教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)
活动2:层层设问,完成验证一.
学生通过自主探究,小组讨论得到两个图形:
图2 在此基础上教师提问: (1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);
(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×2
1ab+c 2.并得到222c b a =+) 从而利用图1验证了勾股定理.
活动3 : 自主探究,完成验证二.
教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?
(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.
效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.
第三环节: 追溯历史 激发情感
图1
活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.
国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图 .2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就 ,又像一只转动的风车,欢迎来自世界各地的数学家们!
国际调查组报告:勾股定理与第一次数学危机.
约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.
不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .
趣闻调查组报告:勾股定理的总统证法.
在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……
于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下
的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给
出了简洁的证明方法. a b
1876年4月1日,他在《新英格兰教育日志》上发表了他对勾
股定理的这一证法.
1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.
说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.
意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.
效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.
第四环节:例题讲解初步应用
内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?
意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.
效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.
第五环节:拓展练习能力提升
内容:一组生活中勾股定理的应用练习,共3道题
(1)教材P10练习题.
(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?
(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?
说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道
题是应用勾股定理建立方程求解,有一定难度.
意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.
效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.
第六环节:回顾反思提炼升华
内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.
目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.
效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
第七环节:布置作业,课堂延伸
内容:教师布置作业
1.习题1.2 1,2,3
2.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.
意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.。

相关文档
最新文档