初一讲义第一讲实数及运算
初中数学精品课件:实数及其运算
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
实数完整版课件
实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。
2. 实数的性质:实数的加法、减法、乘法、除法运算规则。
3. 实数的运算律:交换律、结合律、分配律。
4. 实数与数的比较:实数的大小比较、实数的绝对值。
二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。
2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。
3. 培养学生运用实数解决实际问题的能力。
三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。
2. 教学重点:实数的性质,实数的运算律。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。
2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。
3. 例题讲解:举例子说明实数的性质和运算律的应用。
4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。
5. 板书设计:列出实数的性质和运算律,方便学生记忆。
6. 作业设计:布置有关实数的运算题目,巩固所学知识。
六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。
通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。
在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。
第一讲 实数辅导讲义
重点考点例析考点一:无理数的识别。
例1 (2012•六盘水)实数312,,,8,cos 45,0.323o &&中是无理数的个数有( )个.A . 1B . 2C . 3D . 4 点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。
对应训练1.(2012•盐城)下面四个实数中,是无理数的为( )A .0B .3C .﹣2D .27考点二、实数的有关概念。
例2 (2012•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .﹣500元B . ﹣237元C . 237元D . 500元点评: 此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.例3 (2012•遵义)﹣(﹣2)的值是( )A .﹣2B . 2C . ±2D . 4点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.例4 (2012•扬州)﹣3的绝对值是( )A .3B . ﹣3C . ﹣3D .点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.例5 (2012•黄石)13-的倒数是( ) A .13 B . 3 C . ﹣3 D .13- 点评: 此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.例6 (2012•怀化)64的立方根是( )A .4B . ±4C . 8D . ±8点评: 此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.例7 (2012•荆门)若29x y -+与|3|x y --互为相反数,则x+y 的值为( )A .3B . 9C . 12D . 27点评: 本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.对应训练2.(2012•丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A .﹣3℃B . ﹣2℃C . +3℃D . +2℃3.(2012•张家界)﹣2012的相反数是( )A .﹣2012B . 2012C .12012-D .120124.(2012•铜仁地区)|﹣2012|= .5.(2012•常德)若a 与5互为倒数,则a=( )A .15 B . 5 C . ﹣5 D .156.(2011•株洲)8的立方根是( )A .2B . ﹣2C . 3D . 4 7.(2012•广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .考点三、实数与数轴。
实数ppt课件
化学
在化学中,实数可以用来 描述化学反应中的反应物 和生成物的比例关系。
在日常生活中的应用
金融与经济
在金融和经济活动中,实 数被广泛应用于财务计算 、成本分析、市场预测等 方面。
计算机科学
在计算机科学中,实数被 用于各种算法和数据结构 的实现,如浮点数运算、 排序算法等。
统计学
在统计学中,实数被用于 描述各种数据的分布特征 和规律,如平均数、中位 数、方差等。
数轴的表示
在数轴上,正实数表示为向右的箭头,负实数表示为向左的箭头,零表示为原点。实数的 序关系可以通过数轴上的位置关系来表示,例如a>b表示a在b的右侧。
数轴的应用
数轴是学习数学的重要工具之一,可以用于比较大小、计算距离、表示不等式等。通过数 轴可以直观地理解实数的性质和运算规则,帮助我们更好地掌握实数的知识。
实数的性质
01 02
实数的四则运算
实数可以进行加、减、乘、除四则运算,运算结果仍然属于实数集合。 实数的加法、减法和乘法满足交换律、结合律和分配律,除法满足除法 的可交换性、可结合性和除法的倒数关系。
实数的序关系
实数集合是有序的,可以比较大小。实数的序关系满足传递性、反对称 性和可比较性,使得实数可以进行大小比较和排序。
实数ppt课件
• 实数简介 • 实数的运算 • 实数的分类 • 实数的应用 • 实数的扩展知识
目录
Part
01
实数简介
实数的定义
实数定义
实数是包括有理数和无理数的所有数的集合,具有连续性和完备性。实数包括有理数和 无理数,有理数包括整数和分数,无理数则无法表示为两个整数的比值。
实数集合
实数集合在数学中常用字母R表示,是一个无限大的集合,包含了所有的有理数和无理数 。实数在数轴上表示为连续的点,具有稠密性。
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
初中数学精品课件:第一课 实数及其运算
A. 51
B. 70 C. 76 D. 81
2.下面每个表格中的四个数都是按相同规律 填写的:
根据此规律确定x的值为
.
3.“梅花朵朵迎春来”,下面四个图形是由小梅花 摆成的一组有规律的图案,按图中规律,第n个 图形中小梅花的个数是 .
倒数是它本身的数是_-_1__,__1_
平方是它本身的数是_0__,__1 立方是它本身的数是_0__,__1_,_ -1
任何不等于零的数的-p次幂,等于这个数的p 次幂的倒数,即a-p = .(a≠0,p为正整数)
4.实数的运算: 实数的运算顺序是先算 ,再算 ,最
后算 .如果有括号,先算小括号,再算 , 最后算 .
5.实数的大小比较: (1)数轴比较法: (2)差值比较法: (3)作商比较法:
1.在0,2,-3,-1.2中,属于负整数的是( )
平方根是它本身的数是__0___ 立方根是它本身的数是_0_,__1_,-1
算术平方根是它本身的数是_0___,_ 1
把7的平方根和立方根按从小到大的顺序排 列为 .
②的面积为18 cm2,图③的面积为36 cm2,…,
那么图⑥的面积为 ( )
A.84 cm2
B.90 cm2
C.126 cm2
D.168 cm2
1.如图是由同样大小的棋子按一定的规律组成的, 其中第1个图形有1颗棋子,第2个图形一共有6颗 棋子,第3个图形一共有16颗棋子……则第6个图 形中棋子的个数为 ( )
1.实数的分类 按实数的定义分类:
正整数
整数 零
实数
有理数 无理数
负整数 正分数 分数 负分数 正无理数
负无理数 (1)数轴: 原点,正方向,单位长度
数轴上所有的点与全体实数一一对应
实数ppt课件
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
实数及其运算讲义
5、若 y 2x 1 1 2x 1,求 xy 的值。
四、课堂练习 一、判断题 1、如果 b 是 a 的三次幂,那么 b 的立方根是 a.( ) 2、任何正数都有两个立方根,它们互为相反数.( ) 3、负数没有立方根( ) 4、如果 a 是 b 的立方根,那么 ab≥0.( )
5、已知第一个正方体纸盒的棱长为 6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大 127 cm3,求第二个纸盒的棱长.
6、已知 3 1 2x 与 3 3y 2 互为相反数,求代数式 1 2x 的值。 y
巩固练习
1、已知 x ab M 是 M 的立方根, y 3 b 6 是 x 的相反数,且 M 3a 7 ,请你求出 x 的平方
思考: (1)、当根指数 n 为奇数时,n 次方根应该如何表示? (2)、是不是任何一个数都有奇次方根?
例题 2:
(1) 26
,(- 2)6
如果 x6 64,那么 x=
(2) 34
(, - 3)4
;
如果 y4 81, 那么 y=
思考: (1)、当根指数 n 为偶数时,n 次方根应该如何表示? (2)、是不是任何一个Hale Waihona Puke 都有偶次方根?教师学生
上课时间
学 科 数学 年 级 初一 课题名称
教学目标
1.巩固平方根与立方根的运算和意义 2.掌握 N 次方根的表示与运算 3.N 次方根的正反之分的区分
重点难点 N 次方根分正反讨论与混合运算
一、课前回顾 1、立方根的概念:
N 次方根
N 次方根
如果一个数的立方等于 a ,这个数叫做 a 的立方根(也叫做三次方根),即如果 x3 a ,那 么 x 叫做 a 的_______________;数 a 的立方根用符号“ _________”表示,读作“________________” .
实数教学课件
感谢您的观看
THANKS
。
04 实数的应用
在数学中的应用
01
02
03
代数运算
实数可用于解决代数方程 、不等式和函数等问题, 如求解一元二次方程、求 函数的极值等。
几何学
实数与几何学紧密相关, 如长度、角度、面积和体 积等都可以用实数表示。
概率论与统计学
在概率论和统计学中,实 数用于描述随机事件发生 的可能性以及数据的分布 和统计分析。
金融与经济
在金融和经济领域,实数被用于描述货币交易、投资回报、成本 和利润等经济活动。
科学实验与工程设计
在科学实验和工程设计中,实数用于测量各种参数、计算结果和评 估设计方案的有效性。
计算机科学
在计算机科学中,实数用于表示数字、编码和算法等,并用于处理 数据和执行计算任务。
05 实数的扩展知识
无理数的定义与性质
无理数
无理数是一些无法表示为两个整数的比的数,如圆周率π、自然对数的底数e等 。无理数在实数中占据了大部分,它们在数学分析和高等数学中有着广泛的应 用。
02 实数的运算
加法运算
总结词
理解加法运算的意义,掌握加法运算的规则和技巧。
详细描述
实数的加法运算是指将两个或多个实数相加,得到一个新的实数。在进行加法运 算时,应遵循实数的加法规则,即同号数相加取相同的符号,异号数相加取绝对 值较大数的符号,并把绝对值相减。
实数集是数学中最基本的概念之一,它具有完备性和连续性 ,是数学分析和高等数学的基础。实数在日常生活中有着广 泛的应用,如长度、重量、时间等计量单位都是用实数来表 示的。
实数的性质
实数的四则运算
实数的连续性
实数的加法、减法、乘法和除法满足 交换律、结合律和分配律,这些性质 使得实数在数学中具有重要的作用。
实数的概念及运算课件
实数运算在几何学中也有着重要的应用。例如,在平面几何中,我们可以通过实数运算来 计算两点之间的距离、点到直线的距离等;在立体几何中,我们可以通过实数运算来计算 体积、表面积等。
在物理中的应用
力学研究
在物理学中,实数运算广泛应用于力学研究。例如,在经典力学中,我们可以通过实数运算来计算物体的运动轨迹、 速度、加速度等;在流体力学中,我们可以通过实数运算来计算流体的速度、压强等。
反身律
a+a=a
减法运算律
反身律
a-a=0
减法的可交换性
a-b=b-a
减法的可结合性
a - (b + c) = a - b - c
乘法运算律
交换律
01
a×b=b×a
结合律
02
(a × b) × c = a × (b × c)
反身律
03
a × a = a^2
除法运算律
反身律
a / a = 1(a ≠ 0)
举例
如2+3=3+2,(-5)*(-6)=(-6)*(-5)。
结合律
01
总结词
结合律是指实数运算中,改变运算的结合顺序,其运算结果不变。
02 03
详细描述
结合律也是数学中重要的运算性质之一,对于任何实数a、b和c,都有 (a+b)+c=a+(b+c)和(ab)c=a(bc)。这意味着加法和乘法都是可结合的 。
实数的定义和性质
定义
实数是包括有理数和无理数的所有数 ,具有连续性和完备性。
性质
实数具有加法、减法、乘法和除法的 封闭性,即这四种运算的结果仍为实 数。实数还具有顺序性、完备性和连 续性等性质。
《实数》 讲义
《实数》讲义一、实数的定义实数,是数学中的一个基本概念。
简单来说,实数就是有理数和无理数的总称。
有理数,大家应该比较熟悉,像整数(正整数、零、负整数)以及分数(正分数、负分数),都属于有理数。
例如3、-5、0、1/2 等等。
而无理数呢,则是无限不循环小数。
比如大家熟知的圆周率π,约等于 31415926,还有像根号 2 ,约等于 141421356 这些数都是无理数。
二、实数的分类实数可以按照不同的标准进行分类。
如果按照符号来分,可以分为正实数、零、负实数。
正实数,就是大于 0 的实数,包括正有理数和正无理数。
负实数,是小于 0 的实数,包括负有理数和负无理数。
零,既不是正实数,也不是负实数。
从另一个角度,如果按照是否为有理数来分,实数就分为有理数和无理数。
有理数又可以进一步细分为整数和分数。
整数包括正整数、零和负整数;分数包括正分数和负分数。
三、实数的性质1、实数的有序性对于任意两个实数 a 和 b,在三种关系中,有且仅有一种成立:a < b,a = b,a > b。
2、实数的稠密性实数在数轴上的分布是稠密的,也就是说,在任意两个不同的实数之间,总是存在着无穷多个其他的实数。
3、实数的四则运算实数的加法、减法、乘法和除法运算(除数不为 0),其结果仍然是实数。
加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:a ×(b + c) = a × b + a × c4、实数的绝对值实数 a 的绝对值记作|a|,其定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a 。
绝对值具有非负性,即|a| ≥ 0 。
四、实数与数轴数轴是一条规定了原点、正方向和单位长度的直线。
实数的知识点总结课件
实数的知识点总结课件一、实数的概念1.1 实数的定义实数是数学领域中的一种数字概念,包括有理数和无理数。
实数是可以用来度量和计算数量的数,是数学中最基本的数。
1.2 实数的分类实数可以分为有理数和无理数两类。
有理数是可以用整数或整数分数表示的数,而无理数是不能用有限的整数或整数分数表示的数。
二、实数的性质2.1 实数的加法实数的加法满足交换律、结合律和分配律。
即对于任意的实数a、b、c有:a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2.2 实数的减法实数的减法满足异减法a-b=a+(-b),其中-a称为a的相反数,满足a+(-a)=0。
2.3 实数的乘法实数的乘法满足交换律、结合律和分配律。
即对于任意的实数a、b、c有:ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
2.4 实数的除法实数的除法满足a÷b=a×(1/b),其中b≠0。
2.5 实数的乘方实数的乘方满足乘方的次序异法则:(a^m )^n=a^(mn),其中a为非零实数,m和n为任意实数。
三、实数的表示和比较3.1 实数的表示实数可以用数轴上的点表示,数轴上任意一点与原点的距离称为这个点的坐标。
3.2 实数的比较实数的比较可以通过数轴上的位置进行比较,即若a在b的左边,则a小于b,若a在b的右边,则a大于b。
四、实数的运算4.1 实数的加减运算实数的加减运算即是对实数进行加法和减法的操作,按照加法和减法的性质进行运算。
4.2 实数的乘除运算实数的乘除运算即是对实数进行乘法和除法的操作,按照乘法和除法的性质进行运算。
4.3 实数的乘方运算实数的乘方运算即是对实数进行乘方的操作,按照乘方的性质进行运算。
五、实数的应用5.1 实数在代数中的应用实数在代数中可以用来解方程、求根以及进行代数计算。
5.2 实数在几何中的应用实数在几何中可以用来表示线段、面积、体积等几何量,并进行几何计算。
实数及其运算
儒洋教育学科教师辅导讲义考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2023年春上海七年级下数学辅导讲义(沪教版)第1讲 实数的概念及数的开方(讲义)解析版
第1讲 实数的概念及数的开方模块一实数的概念和分类 知识精讲知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.、π、0.101001000100001等这样的数叫做正无理数;π-、0.101001000100001-这样的数叫做负无理数;与π与π-,称它们互为相反数. 3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数 例题解析例1.写出下列各数中的无理数:3.1415926,2π,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112. 【难度】★ 【答案】2π、0.1313313331…. 【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.例2.判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数. ()【难度】★【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数.【总结】考查无理数的概念及无理数与小数的关系.例3.a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【难度】★ 【答案】一样.【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.例4.若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【难度】★★【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.例?请说明理由. 【难度】★★★p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数.p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p、q都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾,【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.如21x=,1x=±,1的平方根是1±.说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;22是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a 的立方根的运算叫做开立方.2、如果一个数的立方等于a ,那么这个数叫做a 的立方根,读作“三次根号a ”,a 叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根; 2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1. 三、开n 次方:1、求一个数a 的n 次方根的运算叫做开n 次方.a 叫做被开方数,n 叫做根指数.2、如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根.3、当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数为a 的偶次方根. ★注意:1)实数a a 是任意一个数,根指数n 是大于1的奇数;2)正数a 的偶次方根有两个,它们互为相反数,负n 次方根用“表示.其中被开方数0a >,根指数n 是正偶数(当2n =时,在中省略n ); 3)负数的偶次方根不存在;4)零的n 0.例题解析例1.写出下列各数的平方根:(1)9121; (2【难度】★【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个. 例2.写出下列各数的正平方根:(1)225;(2【难度】★【答案】(1)15;(2【解析】(1)15; (23=,3 【总结】考查平方根的概念,注意对正平方根的准确理解. 例3.下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根;(3)π-是2π-的平方根; (49±.【难度】★【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根;(4)2π-9=,9的平方根是3±.【总结】考查平方根的基本概念,注意一定要先化简,再求平方根. 例4.写出下列各数的立方根:(1)216; (2)0;(3)1-; (4)3438-; (5)27.【难度】★【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.例5.判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【难度】★★【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.例6.写出下列各数的整数部分和小数部分:(1(2(3)9【难度】★★【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4- 【总结】考查利用估算法求出无理数的整数部分和小数部分.例7.求值:(1 (2);(3)2; (4)2(.【难度】★★【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用. 例8.求值:(1(2 (3; (4【难度】★★【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-.【总结】考查实数的立方根的运用. 例9.求值:(1 (2 (3;(4【难度】★★【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.例10.求值:(1(2)(3.【难度】★★【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.例11.小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【难度】★★ 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.例12.已知2a -1的平方根是3±,3a +b -1的算术平方根是4的值. 【难度】★★ 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值. 例13.若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【难度】★★ 【答案】125716()1616或. 【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.例14.3=,3(43)8x y +=-,求2()n x y +的值. 【难度】★★ 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦. 例15.用“>”把下列各式连接起来:【难度】★★2-23-1=,【总结】本题考查实数的大小比较,注意先化简,再比较大小.例16. 1.732≈ 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______; (2____________;(3≈_________; (4≈______________;(5___________;(6≈_____________.【难度】★★★【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(45.4770.10.5477≈⨯=;(51.7320.10.1732⨯=;(65.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.例17.填写下表,并回答问题:(1) 数a ?(2) 0.1738 1.738=,求a 的值.【难度】★★★【解析】(1)由题可知,被开方数a相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a .【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.例18.阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【难度】★★★【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。
七年级实数知识点讲解
七年级实数知识点讲解一、实数的概念和定义实数是指可以用有限小数或无限小数表示的数,包括有理数和无理数。
有理数是可以写成两个整数之比的数,无理数则不能。
实数是数学中最基本的概念之一,广泛应用于各种数学、科学和工程领域。
二、实数的分类实数可以按照它们是否能被写成两个整数之比来分类,能的是有理数,不能的是无理数。
有理数包括整数、分数和小数,例如1、-2/3和0.125。
无理数则包括无限不循环小数和无限循环小数,例如√2和π。
三、实数的运算实数有四种基本运算:加、减、乘、除。
其中加、减又称加法、减法,乘、除又称乘法、除法。
实数的加减法和乘除法遵循一定的运算规律,例如交换律、结合律、分配律等。
四、实数的比较实数之间可以进行大小比较。
对于两个实数a和b,如果a>b,那么a比b大;如果a<b,那么a比b小;如果a=b,那么a和b相等。
在比较实数大小时,需要考虑它们的符号、整数部分和小数部分以及是否是有理数还是无理数等因素。
五、实数的绝对值实数a的绝对值是一个非负数,记作|a|。
如果a>0,则|a|=a;如果a≤0,则|a|=-a。
实数的绝对值有以下几个性质:(1)|a|≥0,等号成立当且仅当a=0;(2)|a·b|=|a|·|b|;(3)|a+b|≤|a|+|b|;(4)|a-b|≤|a|+|b|。
六、实数的约束条件在一些实际问题中,实数会受到一定的约束条件,例如方程、不等式、等式等。
解这些问题时,需要寻找满足约束条件的实数解,并给出解的范围或特点。
七、实数的应用实数是数学中最基本的概念之一,广泛应用于各种数学、科学和工程领域。
在几何中,实数可以用来表示线段、面积、体积等物理量;在代数中,实数可以用来表示变量、方程、函数等;在统计学中,实数可以用来表示随机变量、概率等。
实数的应用非常广泛,是数学学科中必不可少的基础知识之一。
八、总结实数是数学中最基本的概念之一,包括有理数和无理数。
初中数学七年级寒假班讲义实数运算1
学员编号: 年 级:七年级 课 时 数:3 学员姓名: 辅导科目:数学 学科教师:朱兴 课程主题: 实数计算 授课时间: 2018年学习目标实数计算1教学内容1)立方与立方根; 2)N 次方根知识点一(无理数数轴表示)【知识梳理】无理数可以在数轴上表示出来吗?(1) 在数轴上表示2 (2)在数轴上表示π可以让学生们讨论总结,然后给出结论总结:每一个实数都可以用数轴上的一个点来表示,而且这样的点是唯一的。
反过来,数轴上的每一个点也可以用唯一的一个实数来表示。
数轴上的点和实数一一对应。
数轴上点的意义:知识精讲内容回顾在数轴上,如果点A 、点B 所对应的数分别为a 、b ,那么A 、B 两点的距离是0 · 3 0.A A’1 2 4 -0.5 B A(O) F’ 0 -1 1 -2 2 · · · · · F G H (E )A B C D【例题精讲】例题1、如图11-4,已知数轴上的四点A 、B 、C 、D 所对应的实数依次是2、32-、212、5-,O 为原点,求(1)线段OA 、OB 、OC 、OD 的长度.(2)求线段BC 的长度.解:了解绝对值的意义,是点到原点的距离及取非负值,掌握两个点之间的距离公式即可答案:(1)2OA = ,2=3OB ,1=22OC ,=5OD ;(2)12192()236BC =--=【巩固练习】1、如图,数轴上表示数3的点是 .2、如图,数轴上表示数-3的点是 . 答案:1、B 2、A知识点二(绝对值、相反数)在实数范围内定义绝对值、相反数绝对值:一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。
(0)(0)0(0)(0)(0)a a aa a a a a a a a >⎧≥⎧⎪===⎨⎨-≤⎩⎪-<⎩或相反数:绝对值相等符号相反的两个数叫做互为相反数,零的相反数是零。
非零实数a 的相反数是-a 实数的大小比较方法:负数小于零;零小于正数。
《初中数学实数》课件
理解实数减法在数学中的重要性和应用,能够运用实数减 法解决实际问题。
详细描述
实数减法在数学中有广泛的应用,如计算差值、速度、加 速度等。通过掌握实数减法的运算法则和性质,可以更好 地解决实际问题。
实数的乘法运算
总结词
理解实数乘法的意义和性质,掌握实数乘法的运算法则 。
详细描述
实数的乘法运算与普通乘法运算类似,但需要考虑正负 数相乘的情况。实数乘法的意义是表示两个数在数轴上 的倍数关系,具有结合律和交换律。
实数的开方运算
04
平方根的定义和性质
平方根的定义
如果一个数的平方等于a,那么这个数就是a的平方根。例如,4的平方根是±2 。
平方根的性质
一个正数的平方根有两个值,一个正数和一个负数;0的平方根是0;负数没有 实数平方根。
立方根的定义和性质
立方根的定义
如果一个数的立方等于a,那么这个 数就是a的立方根。例如,8的立方 根是2。
无限性也是数学和物理学中许 多重要概念的基础,如无穷大 、无穷小等。
实数的运算
03
实数的加法运算
总结词
理解实数加法的意义和性质,掌握实数加法的运算法则 。
详细描述
实数的加法运算与普通加法运算类似,但需要考虑正负 数相加的情况。实数加法的意义是表示两个数在数轴上 的位移,具有结合律和交换律。
总结词
01
02
03
长度测量
实数可以用来表示物体的 长度,例如身高、体重等 。
时间计算
用实数表示时间,例如秒 、分、小时等。
货ห้องสมุดไป่ตู้计算
用实数表示货币,例如元 、角、分等。
实数在数学中的运用
代数运算
实数可以用于代数运算, 例如加、减、乘、除等。
初一讲义第一讲实数及运算
能力提高型思维开拓型:实数及运算专题训练【知识重点】1. 为什么学平方根、立方根算术平方根的概念:算术平方根具有非负性:2. 平方根的概念:平方根的特性:3. 立方根概念:立方根的特性:开立方: (重要概念)探算术平方根:一般地,如果一个正数x 的平方等于a ,即x2=a ,那么正数x 叫做a 的算术平方根,记作・a 。
0的算术平方根为0;从定义可知,只有当 a >0时,a 才有算术平方根。
(立方根类似)探 平方根:一般地,如果一个数 x 的平方根等于a ,即x2=a ,那么数x 就叫做a 的平方根。
探正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。
※正数的立方根 是正数;0的立方根是0;负数的立方根是负数。
一 a a探实数化简公式: a ba b (a >。
); b ■ b (a > 0,b > 0)※.有理数(1)有限小数:小数部分的位数是有限的小数。
⑵无限小数:小数部分的位数是无限的小数。
(3)循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数 叫做循环小数。
例如: 0.333…,5.32727…等等。
注意:循环小数是无限小数,也称作无限循环小数。
※无理数(1) 无理数:无限不循环小数叫做无理数。
(2) 无理数的特征:---无理数的小数部分位数不限;---无理数的小数部分不循环,不能表示成分数的形式。
※.实数:有理数和无理数统称为实数。
实数的分类:由以上学到的,我们可以对实数进行分类正有喊有理敬0 有限小数或无限循环水数⑵按符号:实数分为正实数,零,负分数。
分数指数幕规定: m正数的正分数指数幕: a n \a m a 0, m,n N 且n 1 讨论: 为什么a > 0?根据正数的正分数指数幕的规定如何定义正数的负分数指数幕呢? m答案:当a < 0,门为偶数,m 为奇数时,a n n a m 中的根式没有意义(1)按定义:负无理数无限不循环才濒1 口a 0,m, n N 且n 1 n m a0的正分数指数幕等于 0,0的负分数指数幕没有意义。
实数讲义
第十二章实数【知识点说明】1、掌握实数的概念、数的开方。
2、掌握实数的运算、分数指数幂、熟练运用有理数指数幂的公式。
【知识梳理】一、实数的概念1、定义:有理数和无理数统称为实数。
2、实数的分类:正有理数有理数零----有限小数或无无限循环小数负无理数实数正无理数无理数----无限不循环小数负无理数二、数的开方1、平方根和开平方:①定义:如果一个数的平方等于a,那么这个数叫做a的平方根;求一个数a的平方根的运算叫做开平方,a叫做被开方数。
,其中______表示a的正平方根(又叫______________),读作“根号a”。
②表示:正数a的两个平方根记作a③性质:正数的平方根有两个,且互为_________;0的平方根为________;负数没有平方根。
④2a=_______=⑤一个数a的算术平方根具有_________,即:____________________。
2、立方根和开立方:① 定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根,用3a 表示,读作“三次根号a ”,3a 中的a 叫做被开方数,“3”叫做___________;求一个数a 的立方根的运算叫做开立方。
② 任意一个实数都有立方根,而且只有一个立方根。
3、n 次方根:定义:如果一个数的n 次方(n 是大于1的正数)等于a ,那么这个数叫做a 的n 次方根。
当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数为a 的偶次方根。
求一个数a 的n 次方根的运算叫做开n 次方,a 叫做被开方数,n 叫做根指数。
【热身练习】1、与数轴上的点一一对应的是( ) A.全体有理数B.全体无理数C.全体实数D.全体整数2、如果一个实数的平方根与它的立方根相等,那么这个数是 ( ).A.0B.正实数C.0和1D.13、如果y =0.25,那么y 的值是( ) A 0.0625 B .-0.5C .0.5D . 0.6254、如果x 是a 的立方根,那么下列说法中正确的是( )A -x 也是a 的立方根B .-x 是-a 的立方根C .x 是-a 的立方根D . x 等于a 的立方3 5、若式子x-31的平方根只有一个,则x 的值是__________ 6、若一个正数的平方根是2a-1和 -a+2,则这个正数是__________ 7、已知1-2a + (b + 3)2 = 0,则=332ab__________ 8、已知y =191x -91+-+x ,则xy=_________ 9、有理数x 经过四舍五入得到的近似数是3.142,则x 的范围是__________ 10、若22x =+,则(x + 2)2的平方根为___________ 11、设x ,y 为实数,且y = 5x -54-++x ,则 | x – y | =__________【课堂练习】一、选择题1. 实数38、2π、34、310、25其中无理数有() A 、 1个 B 、 2个 C 、 3个 D 、 4个 2. 如果162=x ,则x 的值是()A 、 4B 、 -4C 、4±D 、2± 3.下列说法正确的是()A 、25的平方根是5B 、22-的算术平方根是2 C 、8.0的立方根是 D 、65 是3625 的一个平方根 5.下列说法⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数 ⑷两个无理数的和还是无理数 其中错误的有( )个A 、 3B 、 1C 、 4D 、 2 6.如果x x -=2 成立的条件是()A 、x ≥0B 、 x ≤0C 、 x>0D 、x <07.设面积为3的正方形的边长为x ,那么关于 x 的说法正确的是() A 、x 是有理数 B 、3±=x C 、 不存在 D 、 取1和2之间的实数 8.下列说法错误的是()A 、2a 与2)(a -相等 B 、a 与a - 互为相反数 C 、3a 与3a -是互为相反数 D 、a 与a -互为相反数 三、实数的运算1、掌握用数轴上的点表示实数,在数轴上,如果点A 、点B 所对应的数分别为a 、b ,那么A 、B 两点的距离为____2、有理数的额运算法则、运算性质以及运算顺序的规定,在实数范围内仍旧适用,开方和乘方是同级运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一讲义第一讲实数及运算
能力提高型思维开拓型:实数及运算专题训练【知识重点】
1. 为什么学平方根、立方根算术平方根的概念:算术平方根具有非负性:
2.
平方根的概念: 平方根的特性:
3. 立方根概念:立方根的特性:开立方:
( 重要概念)
探算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x 叫做a 的算术平方根,记
a作。
0的算术平方根为0;从定义可知,只有当a?0时,a才有算术平方根。
(立方根类似)探平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么
数x就叫做a的平方根。
探正数有两个平方根(一正一负);0只有一个平方根, 就是它本身;负数没有平方根。
※正数的立方根
是正数;0 的立方根是0; 负数的立方根是负数。
※ ( 有理数aa,ba,b,a,bb ※ 实数化简公式: (a?0,b?0); (a?0,b,0)
(1) 有限小数:小数部分的位数是有限的小数。
(2) 无限小数:小数部分的位数是无限的小数。
(3) 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次
不断重复出现,这样的小数叫做循环小数。
例如:0.333 …,5.3272 7…等等。
注意:循环小数是无限小数,也称作无限循环小数。
※无理数
(1) 无理数:无限不循环小数叫做无理数。
(2) 无理数的特征:
--- 无理数的小数部分位数不限;
---无理数的小数部分不循环,不能表示成分数的形式。
探(实数:有理数和无理数统称为实数。
(1)按定义
: (2)按符号:实数分为正实数,零,负分数。
分数指数幕
mnm 规定:正数的正分数指数幕:,,a,aa,O,m,n,N 且n,1,
讨论:为什么a ,0,根据正数的正分数指数幕的规定如何定义正数的负分数指数 幕呢,
mnmi 答案:当a ,0,n 为偶数,m 为奇数时,中的根式没有意义 a,a
m,11 n ,,a,,a,0,m,n,N 且 n,1,mnmana
从以上规定,我们得到0的正分数指数幕等于0,0的负分数指数幕没有意义。
提问:初中我们学习过的整数指数幕的性质有哪些
mnm n 同底数乘法:aa,a,m,n,Z
nmmn 幂的乘方:,,a,a,m,n,Z
mm 积的乘方:(提醒:),,a,0时,m n,mn,0时舍去,以及0的负数次无意
义 ab,ab,m,Z
正数指数幕的运算性质也同样适用于分数指数幕,于是我们把
m n 推广到有
理数实数的分类:由以上学到的,我们可以对实数进行分
类
正有靱
0 负有理数
■ 无叫却 有Mr 有限4澈或无Kffi 环小数
无®不循环小数
mnm,n1、,,aa,aa,0,m,n,Q
nmmn、2 ,,a,aa,0,m,n,Q
mmm、3 ,,,,ab,aba,b,0,m,Q
经典例题】
例题1
A、负数没有平方根,因此负数也没有立方根
B、一个数的立方根比它本身小
C正数的立方根有两个,它们是互为相反数D、-2 是-8 的立方根
2006例题2、已知实数X, y满足x,5,y,4,0,求代数式的值。
Xy,,
42例题3: 化简,(m,) ()34m,3
4a,b,33a,2b,9例4.已知A,是a,2的算术平方根,B,是2,b的立方根(a,22,b 求3A,2B的立方根(
例5.已知等边三角形的边长为X,面积S=4,求X的值。
3
2例6.、设X、y是有理数,并且X、y满足等式x+2y+y=17,4,求x、y的值22 22例7. 已知a、b 是实数,且a+b,4a,2b+5 = 0 ,求的值3b,2a
20042005 例8 已知a = ,2,b =+2,求a?b 的值33
例9用分数指数幂形式表示下列各式(其中a>0)
3337,313,332? ? 、?、aaaaaa
11,, 122 例10;已知,求的值a,a,2a,a
22X,y? 知求的值X,y,12,Xy,9 且X,y.11
22X,y
11
33,1122,x ,x , 222? 知,求的值 x ,x,32,2x ,x ,3
能力拓展
11111,, ,,,,,,,,,,,,,3216842,,,,,,,,
1212121212,, ,,,,,,,
n,N,1 ,2,2,3,3,2,?, n ,n ,1, 方法点拔】
1(若无理数a 满足:3<a<4,请写出两个满足条件的无理数:,?.
2( - 2(+1)=(精确到 0.01) 55
x , 23(若=3,则2X+130的算术平方根为.
2y4. 已知 xyxyzxz, ,,,, ,,2(4)20,() 求的平方根。
5( 解方程。
1322 (1) (2) (3) x , 8,02x,75x , 6,08
3293(4) (5) ,(,8)
, 20.25,,27 nmn,, ,,320mn,11( 已知为实数,且,求的值。
12(已知|a-4|+?3-b =0,且a,b 为等腰三角形
求三角形ABC 的周长
13(某地开辟了一块长方形的荒地,新建一个以环保为主题的公园 .已知这块荒 地的长是宽的 3 倍,它的
2 面积为 480000米
化简 ,, ,1,1,1,1 化简 ? 、,
238、若,贝U a+b 的值为。
a,9,b,,64 9、已知
; 1.326,1.152,13.26,3.641, 则0.1326, 333 已知 。
38504,33.77,3850.4,, 则 38.504,
210. 已知实数满足,则的值是
19921993, , ,,aaaaa,1992
ABC 的两条边,
(1) 公园周长有 3000 米吗,
2(2) 该公园中心有一个圆形花圃,它的面积是 800 米,你能估计它的半径 吗 ,( 误差小于 1 米)
课后思考】能力选拔型题目
1.已知X 、y 互为倒数,c 、d 互为相反数,a 的绝对值为3, z 的算术平方根是 5。
z22 求的值。
cdxy, ,, a
15(计算:
878887(1) ,,,,,, b , a , b , a,ba,0,b,0
510(2) ,, ,,,(52)945
4552,
44,, ,,3663991(aa 等于 ,,,,,,,,
2. 下列各式中不成立的项数是
713n4,,73333312744(1)(; (2),,,33; (3);(4) xyxy
211511,, ,,,,13366223. 化简的结果是 ababab,,3,,,,,,3,,,,,,
,,,5554443334. 数的大小关系是 abc,,,3,4,5
,,1225. 若的值为 aaaa , , ,3, 则
2xx, , 566.若则 x 的值是 261x,,,
111,, ,468111,,,,,,7. 数的大小关系是 ,,,abc,,,,,,,,235,,,,,,
412,, ,,3663998. 化简的结果是 aa,,,,,,,,
11111129(的值等于 a(1)(1)(1)(1)(1)(1)332、互为相反数,则的值是。
2x,1 与 4,5y2x,5y
93,,nm ,,
,,m,,
,, 3216842222222
5
3,42210. 化简: ababab,,,,(0,0) 311. 将化为分数指数幂的形式是 ,22 21,,11,2223212. 若,, 则= . ababab,,[] ,,322 3223abab13. 化简 ab,,0,0 的结果是 , , 411,,b423ab,,a,, 1,12,0 ,, 11373,,,,,,,10.253,,414( 计算 0.0081[3]813100.027,,, ,,,,,,88,,,,
,门门,uu ,,,,。