1.3.1有理数的加法运算律
1.3.1.2有理数加法的运算律
练习4:足球循环赛中,红队胜黄队4:1,黄队胜 蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。 分析:每个队的进球总数记为正数,失球总数记为 负数,这两数的和为这队的净胜球数。
解: 红队: 4+( -2)=2 黄队:2+( -4)= -2 蓝队:1+( -1)=0 答:红队净胜球数为2,黄队净胜球数为-2, 蓝队净胜球数为0.
1.3 有理数的加减法
1.3.1.2 有理数加法的运算律
问题1:在小学中我们学过哪些加法的运算律? ①加法的交换律a+b=b+a;
例:5+3=3+5 ②加法的结合律a+(b+c)=(a+b)+c; 例:53.7+(36.3+10)=(53.7+36.3)+10
问题2:加法的运算律是不是也可以扩充到有理数范围?
练习:出租车司机小李某天下午营运全是在东西走向的大
道上行驶,如果规定向东行驶为正 ,向西行驶为负,这天下午 行车里程如下(单位:千米):+10,-3,+16,-11,+12, -10,+5,-15,+18,-16. (1)当最后一名乘客被送到目的地时,距出车地点的距离为多少 千米? (2)若每千米的营运额为7元,则这天下午的营运额为多少?
(1)10+(-3)+16+(-11)+12+(-10)+5+(-15) 解: +18+(-16)=6(千米),当最后一名乘客被送到 目的地时,距出车地点的距离为6千米 (2)(|10|+|-3|+|16|+|-11|+|12|+|-10|+|5|+|- 15|+|18|+|-16|)×7=812(元),则这天下午的营运 额为812元
4、相加得到整数的几个数先相加——“凑整法”
有理数的加法运算法则
1.3 有理数的加减法1.3.1 有理数的加法[本节课内容]1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作-5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(-5)+(-3) = -8如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(-3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1) (-3)+(-9)=-(3+9)=-12(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.再计算总计超过多少千克905.4-90×10 = 5.4.答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)。
1.3.1 第2课时 有理数的加法运算律
全品作业本
数学
七年级 上册
新课标(RJ)
第一章 有理数
1.3.1 第2课时 有理数的加法运算律
第一章 有理数
1.3.1 第2课时 有理数的加法运算律
知识要点分类练 规律方法综合练 拓广探究创新练
1.3.1 第2课时 有理数的加法运算律
知识要点分类练
知识点 1 利用运算律简化计算
1.3.1 第2课时 有理数的加法运算律
知识点 2 有理数加法及其运算律的应用
6. 南昌市某天上午 8 点的气温是-2 ℃,中午 12 点的气温比 上午 8 点上升了 6 ℃,下午 6 点的气温比中午 12 点下降 了 3 ℃,则这天下午 6 点的气温是( B ) A.-2 ℃ B.1 ℃ C.6 ℃ D.7 ℃
1.3.1 第2课时 有理数的加法运算律
5. 计算: (1)(-23)+(+58)+(-17);
(2)(-2.8)+(-3.6)+3.6;
(3)16+-27+-56++57.
1.3.1 第2课时 有理数的加法运算律
解:(1)原式=[(-23)+(-17)]+(+58)=-40+(+58)=18. (2)原式=(-2.8)+[(-3.6)+3.6]=-2.8+0=-2.8. (3)原式=16+(-56)+[(-27)+(+57)]=(-23)+37=-1241+9=-251.
【解析】由题意,得(-2)+6+(-3)=1(℃).所以这天下午 6 点的气温是 1 ℃.
1.3.1 第2课时 有理数的加法运算律 7. 李老师的储蓄卡中有 5500 元,取出 1800 元,又存入 1500 元,又取出 2200 元,这时储蓄卡中还有__3_0_0_0___元钱.
七年级数学 第2课时 有理数的加法运算律
1.3.1 有理数的加法第2课时有理数的加法运算律一、新课导入1.课题导入:(1)想一想,小学里我们学过的加法运算律有哪些?(2)这些运算律在有理数的加法中是否还适用呢?我们先来进行下列两道计算,再回答这个问题.30+(-20),(-20)+30.上面两个算式中交换了加数的位置,两次所得的和相同吗?加法运算律在有理数运算中还适用吗?这就是今天要学习的内容——有理数加法运算律.2.学习目标:(1)能叙述有理数加法运算律.(2)会运用加法运算律进行有理数加法简便运算.3.学习重、难点:重点:有理数加法运算律及运用.难点:运算律的灵活运用.二、分层学习1.自学指导:(1)自学内容:探究有理数加法的交换律和结合律.(2)自学时间:5分钟.(3)自学要求:运用计算、类比来验证归纳加法的运算律在有理数加法中的运用.(4)探究提纲:①刚才通过计算知道30+(-20)和(-20)+30相等,同学们再算一算下列各式:a.(-8)+(-9)=-17;(-9)+(-8)=-17.b.4 +(-8)=-4;(-8)+4=-4.根据计算结果你可发现:(-8)+(-9)=(-9)+(-8),4 +(-8)=(-8)+4(填“>”“<”或“=”)由此可得a+b=b+a,这种运算律称为加法交换律.即两个数相加,交换加数的位置,和不变.②计算:a.[8+(-5)]+(-4),8+[(-5)+(-4)];b.[(-12)+20]+(-8),(-12)+[20+(-8)]. 比较a、b两题计算结果,你能得出什么结论?(仿照1),分别用文字和含字母的等式写出你的结论.a.[8+(-5)]+(-4)=-1,8+[(-5)+(-4)]=-1.b.[(-12)+20]+(-8)=0,(-12)+[20+(-8)]=0.根据a、b两题计算结果,可发现[8+(-5)]+(-4)=8+[(-5)+(-4)],[(-12)+20]+(-8)=(-12)+[20+(-8)],由此可得,(a+b)+c=a+(b+c),这种运算律称为加法结合律.即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:了解学生的探究过程及探究结论,关注他们认识过程中的疑点问题.②差异指导:a.指导那些对有理数加法法则还不熟的学生;b.指导表达有困难的学生归纳出相应的结论.(2)生助生:生生互动讨论交流解决自学中的疑问.4.强化:(1)加法的交换律.(文字、字母表述)加法的结合律.(文字、字母表述)(2)在有理数加法运算中,运用加法交换律和结合律可使运算更加简便.1.自学指导:(1)自学内容:教材第19页例2到第20页“练习”之前的内容.(2)自学时间:5分钟.(3)自学要求:仔细阅读例2的解答过程,弄清每一步的目的和依据分别是什么.认真阅读例3的解答过程,通过例3两种解法的对比,体会有理数加法运算律的作用.(4)自学参考提纲:①例2中是怎样使计算简化的?根据是什么?例2中,把正数和负数分别相加,从而使计算简化.这样做的依据是加法的交换律和结合律.②仿例2计算:a.23+(-17)+6+(-22);b.(-2)+3+1+(-3)+2+(-4)a.23+(-17)+6+(-22)=23+6+[(-17)+(-22)]=29+(-39)=-10b.(-2)+3+1+(-3)+2+(-4)=3+1+2+[(-2)+(-3)+(-4)]=6+(-9)=-3③想一想,要解决例3中的问题,你有几种计算方法?再把自己的想法与同伴交流一下.解法一的解题思路是怎样的?这种思路大家以前就会吗?方法一:直接用加法算出10袋小麦的总质量,再减去10袋小麦的标准质量得出超出或不足的部分.方法二:先算出每袋小麦超出或不足的部分,再求和算出10袋总计超出或不足的部分.④例3中10袋小麦重量数与哪个数字比较接近?解法二中运用了哪些运算律?与解法一比较,哪种方法较好?好在哪里?10袋小麦重量数与90比较接近.解法二中运用了加法的交换律和结合律.解法二较好,使运算更简便.⑤某学习小组五位同学某次数学测试成绩(分)为83、76、94、88、74,该班全体同学测试的平均分为80分,问这五位同学的平均分超出全班平均分是多少分?用两种方法解答.解法一:先计算这5个人的平均分是多少分:(83+76+94+88+74)÷5=83,再计算超过平均分多少分:83-80=3.解法二:每个人的分数超过平均分的记为正数,低于平均分的记为负数,则5个人对应的数分别为:+3,-4,+14,+8,-6.[(+3)+(-4)+(+14)+(+8)+(-6)]÷5=3.答:这五位同学的平均分超出全班平均分3分.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对这两个例题的思路是否理解.②差异指导:对学困生启发指导.(2)生助生:学生通过讨论交流解决自学中的疑难问题.4.强化:(1)a.使用运算律使计算简便的常用方法:正数与正数相结合,负数与负数相结合;互为相反数的相结合.b.例3中解法1的方法:实际总量-按标准算总量;解法2的方法:先算每袋超(或少)标准量多少?再求总超(或少)标准总量多少?(2)加法运算律在有理数运算中的作用及使用方法.(3)练习:计算:①1+(-12)+13+(-16);②314+(-235)+534+(-825)答案:①23;②-2.三、评价1.学生的自我评价(围绕三维目标):自我总结本节课学习的收获与困惑.2.教师对学生的评价:(1)表现性评价:对学生学习中的行为表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学内容,学生在小学时已接触过并且带有技巧性,是学生比较喜欢的知识,教学时可依据这些特点,由教师设计现实情境,引导学生带着新奇去自主发现与交流,从而获取知识和技巧.对学生在自主探索形成的认识中不足的地方,教师可在指导学生解决实际问题时,针对性的补充与拓展,训练时还可采用抢答等形式,由学生自己做出评判.一、基础巩固(70分)1.(30分)-12+14+(-25)+(+310)运用运算律计算恰当的是(A)A.[(-12+14)]+[(-25)+(+310)]B. [14+(-25)]+[(-12)+(+310)]C. (-12)+ [14+(-25)]+(+310)D.以上都不对2.(40分)计算.(1)5+(-6)+3+9+(-4)+(-7);(2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;(3)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7);(4)12+(-23)+45+(-12)+(-13).解:(1)原式=5+3+9+[(-6)+(-4)+(-7)]=17+(-17)=0;(2)原式=[(-0.8)+0.8]+1.2+3.5+[(-0.7)+(-2.1)]=0+4.7+(-2.8)=1.9;(3)原式=[(-6.8)+(-3.2)]+425+635+[(-5.7)+(+5.7)]=(-10)+11+0=1;(4)原式=12+(-12)+(-23)+(-13)+45=0+(-1)+45=-15.二、综合应用(20分)3.(10分)食品店一周中各天的盈亏情况如下(盈余为正):132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周中总的盈亏情况如何?解:132+(-12.5)+(-10.5)+127+(-87)+136.5+98=383.5(元),即一周盈利383.5元.4.(10分)有8筐白菜,以每筐25kg为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?解:1.5+(-3)+2+(-0.5)+1+(-2)+(-2)+(-2.5)+25×8=194.5(千克).答:这8筐白菜一共194.5千克.三、拓展延伸(10分)5.(10分)(1)计算下列各式的值.①(-2)+(-2);②(-2)+(-2)+(-2);③(-2)+(-2)+(-2)+(-2);④(-2)+(-2)+(-2)+(-2)+(-2).(2)猜想下列各式的值:(-2)×2;(-2)×3;(-2)×4;(-2)×5.你能进一步猜出一个负数乘一个正数的法则吗?解:(1)①-4;②-6;③-8;④-10.(2)(-2)×2=-4,(-2)×3=-6,(-2)×4=-8,(-2)×5=-10负数乘正数的法则:符号取负号,再把两数的绝对值相乘.。
1.3.1有理数的加法运算律知识分享
1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1
=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+
(1+1.5+1.8+1.1) =5.4 90x10+5.4=905.4
比较两种解法. 解法2中使用了哪 些运算律?
答:10袋小麦一共905.4kg,总计超过5.4kg.
1 判断题
(1) 若两个数的和是0,则这两个数都是0; (×) (2) 任何两数相加,和不小于任何一个加数 (×) (3) a+b+c+d=(a+c)+(b+d) (∨) (4) 某天早上的气温是-10C,中午上升了50C,则中午的 气温是-60C (×)
2 填空题: (1)(+_18) -5=13 (2)3+ ( _+12 )+(-5)=10 (3)( -_3 ) +(-4)+(-5)=-12 (4)15+ (_-12 )+(-11)=-8 (5)-9+ ( _27 ) +18=36
通过计算比较哪种 运算简便、正确率
高?
4. 10筐苹果,以每筐30千克为准,超过的千克记作 正数,不足的千克数记作负数,记录如下:
2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 求这10 筐苹果的总重量. 解:2+(-4)+2.5+3+(-0.5)+1.5+3+(-1)+0+(-2.5)
1.3.1有理数加法(2)
思考题:1、计算:
①(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100) ②求小于100且大于-99的所有整数之和
③
+
+
+
…+
2、填幻方:书本24页。
试一试
你能将-2,-1,0,1,2,3,4,5,6这9个数分 别填入下列幻方的9个空格中,使得处于 同一横行,同一竖列,同一斜对角线上的 3个数上的3个数相加之和都相等吗? 2
+(―0.1)+(+0.8)+(+ 0.7)
=[(+0.3)+(―0.3)]+[(+0.7)+(―0.7)]+[(―0.2) +(―0.1)]+[(+0.5)+(+1.1)+(+0.8)]
= 0+0+(―0.3)+2.4
= 2.1(kg) 90×10+(+2.1)=900+2.1=902.1(kg) 答:10袋大米共超重2.1kg,总重量为902.1kg.
计算: [8+(-5)]+(-4) = -1
8+[(-5)+(-4)] = -1
有理数的加法中,三个数相加,先把前两个 数相加,或者先把后两个数相加,和不变. 加法结合律:(a+b)+c=____________ a+(b+c)
有理数加法的运算律:
(1)加法交换律:a+b =b +a (2)加法结合律:( a +b )+ c = a +( b + c )
注:使用运算律能使运算简便。运用结合律时常 用的结合法有: ①同号结合; ②凑0结合(相反数); ③凑整结合; ④同分母结合。
例2 每袋小麦的标准重量为90千克,10袋 小麦称重记录如图所示.与标准重量比 较,10袋小麦总计超过多少千克或不足 多少千克?10袋小麦.2
《1.3.1 第2课时 有理数加法的运算律及运用》教案、同步练习和导学案
1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》教案【教学目标】1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点) 2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.【教学过程】一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123).解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎨⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )【教学反思】本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a,b在数轴上的位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b3.若a与1互为相反数,则|a+1|等于()A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则()A.三个数一定同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x的相反数是-2,|y|=4,则x+y的值为.6.绝对值小于2 016的整数有个,它们的和是.7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4);(2)|(-7)+(-2)|+(-3);(3)(-0.6)+0.2+(-11.4)+0.8;(4).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-5+17.解:原式==[(-5)+(-9)+(-3)+17]+=0+=-.(2)上述这种方法叫做拆项法,依照上述方法计算:+4 034+.创新应用★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.请计算:(1)[3.5]+[-3];(2)[-7.25]+.★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升1.D2.A从数轴上可知:-1<a<0,b>1,即a,b异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6因为|4|=4,|-4|=4,所以y=±4.又因为x的相反数为-2,所以x=2.再将x,y的值代入x+y求值.6.4 03107.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9.(2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.(4)=(-8)+ (+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L.10.解:(2)原式=+4034+=[(-2017)+(-2016)+(-1)+4034]+=0+=-2.创新应用11.解:(1)原式=3+(-3)=0.(2)原式=-8+(-1)=-9.12.解:本题答案不唯一,如:1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》导学案【学习目标】:1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.【重点】:掌握有理数的加法交换律和结合律.【难点】:运用加法交换律、结合律简化运算.【自主学习】一、知识链接1.填空:3+2=2+3 这里运用了加法的( )25+39+75=(____ +_____ )+____ =___ +(_____+_____)这里运用了加法的()2.有理数的加法法则:⑴同号两数相加,___________________________________;⑵异号两数相加,绝对值相等时,___________;绝对值不相等时,____________________________________________.⑶一个数同0相加,_________________ .3.计算(1)(-15)+(-3)(2)6+(-2.3)(3)(-0.75)+0二、新知预习1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○和○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇和□+(○+◇)2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括:字母表示:加法的结合律:文字概括:字母表示:三、自学自测计算:(1)16 +(-25)+ 24 +(-35);(2)(—2.48)+(+4.3)+(—7.52)+(—4.3)四、我的疑惑_________________________________________________________________ ____________________________________________________________【课堂探究】一、要点探究探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)3+(-5)=-2,-5+3=-2;(2)[3+(-5)]+(-7)=-9,3+[(-5)+(-7)]=-9.问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)例1:计算:16+(-25)+24+(-35)思考:怎样使计算简化的?这样做的根据是什么?要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2 计算(1)(-2.48)+4.33+(-7.52)+(-4.33)(2)65+(-76)+(-61)思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?例4 某一出租车一天下午以文化中心为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.(1)将最后一名乘客送到目的地时出租车离出发地多远?在出发地的什么方向上?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?【当堂检测】1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.计算:3.上周五股民新民买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是多少?4.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2, -4, 2.5, 3, -0.5, 1.5, 3, -1, 0, -2.5.问这10筐苹果总共重多少千克?。
人教版福建初一数学七年级上册第一章 第9课时1-3-1有理数的加法(2)【运算律】
第9课时1.3.1 有理数的加法(2)【运算律】用字母表示加法交换律:__a +b =b +a__.加法结合律:__(a +b)+c =a +(b +c)__.运用加法的运算律计算下列各题:(1)16+(-25)+24+(-35); (2)18+(-2 020)+(-18)+2 021;(3)⎝ ⎛⎭⎪⎫+12 +⎝ ⎛⎭⎪⎫+14 +⎝ ⎛⎭⎪⎫-12 ; (4)(-3.8)+2.7+(-0.43)+1.3+(-0.2).【解析】(1)原式=(24+16)+[(-25)+(-35)]=40+(-60)=-20;(2)原式=[18+(-18)]+[(-2 020)+2 021]=0+1=1;(3)原式=⎝ ⎛⎭⎪⎫+12 +⎝ ⎛⎭⎪⎫-12 +⎝ ⎛⎭⎪⎫+14 =14 ; (4)原式=[(-3.8)+(-0.2)]+(2.7+1.3)+(-0.43)=(-4)+4+(-0.43)=-0.43.用适当的方法计算:(1)5+(-6)+2+9+(-4)+(-7);(2)(+1.125)+⎝⎛⎭⎪⎫-325 +⎝ ⎛⎭⎪⎫-18 +(-0.6); (3)(-0.8)+1+(-0.7)+(-2.3)+0.8;(4)14 +⎝ ⎛⎭⎪⎫-23 +56 +⎝ ⎛⎭⎪⎫-14 +⎝ ⎛⎭⎪⎫-13 .【解析】(1)原式=5+2+9+[(-6)+(-4)+(-7)]=16+(-17)=-1;(2)原式=(+1.125)+⎝ ⎛⎭⎪⎫-18 +[(-3.4)+(-0.6)]=1+(-4)=-3; (3)原式=[(-0.8)+0.8]+1+[(-0.7)+(-2.3)]=0+1-3=-2;(4)原式=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14 +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-13 +56 =0+(-1)+56 =-16. 七筐西红柿,以每筐12千克为准,超过的千克数记作正数,而不足的千克数记作负数.称重记录分别为-1 ,1.5 ,2 ,-0.5 ,-1.5 ,1.5 ,1,请你求这七筐西红柿的总质量为多少?【解析】[-1+1.5+2+(-0.5)+(-1.5)+1.5+1]+12×7=87千克. 即这七筐西红柿的总质量为87千克.10袋水泥,以每袋25千克为标准,超出的千克数记为正数,不足的千克数记为负数,记录如下:2,4,2.5,3.2,-0.5,1.5,3,-10,-2.5,0.求这10袋水泥的总质量为多少千克?10袋水泥的总质量超过标准多少或不足多少千克?【解析】10袋水泥的总质量:[2+4+2.5+3.2+(-0.5)+1.5+3+(-10)+(-2.5)+0]+10×25=3.2+250=253.2千克.即这10袋水泥的总质量为253.2千克,超过标准3.2千克.1.已知a 是负数,那么-5,-2,8,11,a 这五个数的和不可能是( B )A .-12B .12C .0D .5572.绝对值不大于10的整数有__21__个,它们的和是__0__.3.计算:(1)(-7)+ 11 + 3 +(-2);(2)16 +⎝ ⎛⎭⎪⎫-27 +⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫+57 ; (3)5.6+(-0.9)+4.4+(-8.1)+(-1);(4)12 +⎝ ⎛⎭⎪⎫-23 +45 +⎝ ⎛⎭⎪⎫-12 +⎝ ⎛⎭⎪⎫-13 . 【解析】(1)原式=(-7) +(-2)+ 11 + 3=-9+14=5;(2)16 +⎝ ⎛⎭⎪⎫-27 +⎝ ⎛⎭⎪⎫-56 +⎝ ⎛⎭⎪⎫+57 =⎣⎢⎡⎦⎥⎤16+⎝ ⎛⎭⎪⎫-56 +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-27+⎝ ⎛⎭⎪⎫+57 =-23 +37 =-521. (3)原式=5.6+4.4+[(-0.9)+(-8.1)]+(-1)=10-9+(-1)=0;(4)原式=⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫-12 +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-13 +45 =-1+45 =-15 . 4.每袋小麦的标准质量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总质量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.【解析】以90千克为标准进行基本运算:1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1=5.4 kg,90×10+5.4=905.4 kg,所以10袋小麦总计超过5.4 kg,10袋小麦的总质量是905.4千克.5.(2021·昆明期中)今年高考期间,某出租车驾驶员参加爱心送考活动,他从位于昆明北京路的家出发,在南北向的北京路上连续免费接送5位高考考生,行驶路程记录如下(规定向南为正,向北为负,单位km);第1位第2位第3位第4位第5位5 km 2 km -4 km -3 km 10 km(1)接送完第5位考生后,该驾驶员在家什么方向,距离家多少千米?(2)若该出租车每千米耗油0.2升.那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km 的部分按每千米加1.8元收费,在这过程中该驾驶员为5位考生共节省了多少元车费?【解析】(1)5+2+(-4)+(-3)+10=10(km),答:接送完第五批客人后,该驾驶员在家的南边10千米处.(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升),答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元),答:在这过程中该驾驶员为5位考生共节省了68元.(2021·温州质检)(1)比较下列各式的大小:|5|+|3|________|5+3|,|-5|+|-3|________|(-5)+(-3)|,|-5|+|3|________|(-5)+3|,|0|+|-5|______|0+(-5)|…(2)通过(1)的比较、观察,请你猜想归纳:当a,b为有理数时,|a|+|b|________|a+b|.(填入“≥”“≤”“>”或“<”)(3)根据(2)中你得出的结论,求当|x|+|-2|=|x-2|时,直接写出x的取值范围.【解析】(1)|5|+|3|=|5+3|,|-5|+|-3|=|(-5)+(-3)|,|-5|+|3|>|(-5)+3|,|0|+|-5|=|0+(-5)|…(2)当a,b为有理数时,|a|+|b|≥|a+b|.答案:(1)==>=(2)≥(3)根据(2)中得出的结论,当|x|+|-2|=|x-2|时,x的取值范围x≤0.。
1.3.1 有理数的加法(2)(含答案)
1.3.1 有理数的加法(二)◆课堂测控知识点一加法运算律1.计算:(1)(-2)+(+5)+(-8)+7=______;(2)(-0.6)+0.3+(-0.4)+0.7=_____.2.(-12)+14+(-25)+(+310)运用运算律计算恰当的是()A.[(-12+14)]+[(-25)+(+310)] B.[14+(-25)]+[(-12)+(+310)]C.(-12)+[14+(-25)]+(+310) D.以上都不对3.下列计算运用运算律恰当的有()(1)28+(-18)+6+(-21)=[(-18)+(-21)]+28+6(2)(-12)+1+(-14)+13=[(-12)+(-14)]+1+13(3)3.25+(-235)+534+(-8.4)=(3.25+534)+[(-235)+(-8.4)]A.1个 B.2个 C.3个 D.都不恰当4.计算:(1)(-8)+3+(-2)+7 (2)(-12)+14+(-18)(3)0.75+(-234)+(+0.125)+(-1257)+(-418)知识点二加法交换律的应用5.8筐蔬菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下(单位:千克):1.5,3,2,-0.5,1,-2,-2,+1.5.则8筐蔬菜总重量为______kg.6.飞机飞行的高度是8000米,上升300米,又下降500米,又上升200米,•最后飞机的高度为______米.7.小于5的正整数与不小于-4的负整数的和是______.8.(教材变式题)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,•某天自A地出发到收工时所跑的路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.问收工时距A地多远?◆课后测控9.绝对值不小于5但小于7的所有整数的和是_____.10.计算:(-12)+5+(-10)+15=______.11.如图所示,则下列结论错误的是()A.b+c<0 B.a+b<0 C.a+b+c<0 D.│a+b│=a+bc o a12.下列运算正确的个数为()(1)(+34)+(-734)+(-6)=-13 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3 (4)1+(-3)+5+(-7)+9+(-1)=-4A.3个 B.4个 C.2个 D.1个13.用简便方法计算:(1)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7)(2)(-1)+2+(-3)+4+…+(-99)+100(3)(-23)+(+0.25)+(-16)+1214.阅读下列(1)题解法,计算(2)题(1)计算-556+(-923)+1734+(-312)[解]原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+17+(-3)]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.上述方法叫拆项法.(2)计算4.5+(-2.5)+913+(-1523)+213.◆拓展测控15.(经典题)股民吉姆上星期五买进某公司股票1000股,每股27元,•下表为本周内每日该股票的涨跌情况(单位:元).(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将全部股票卖出,他的收益情况如何?答案:课堂测控1.(1)2 (2)0 2.A 3.C4.解:(1)原式=-8+(-2)+3+7=0(2)原式=-24+14+(-18)=-14+(-18)=-38(3)原式=34+(-234)+18+(-418)+(-1257)=-1857[总结反思](1)正数,负数分别相加;(2)分数,整数分别相加.5.204.5 6.8000 7.08.解:(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=10+4+2+13+12+8+5-3-8-2=41[解题技巧]正数一起加,负数一起加.课后测控9.0 10.-2 11.D 12.A13.解:(1)原式=(-6.8)+(-3.2)+425+635+(-5.7)+5.7=-10+11=1. (2)原式=50111+++个=50(3)原式=-23+(-16)+(+14)+12=-411264+++=-56+34=-10912-+=-112 [解题思路]运用交换律结合律进行计算.14.解:(2)原式=4+0.5+(-2)+(-0.5)+9+13+(-15)+(-23)+2+13=[4+(-2)+9+(-15)+2]+[0.5+(-0.5)+[13+(-23)+13] =-2+0+0=-2[解题思路]把各个数能拆项进行拆项,运用交换律结合律,将相反数,整数,分数分别相加.拓展测控15.解:(1)星期三收盘每股价为:27+4+4.5+(-1)=34.5(元);(2)本周内每股最高价是35.5元,最低价是每股28元;(3)星期五每股卖出价为:27+4+4.5+(-1)+(-2.5)+(-4)=28(元),共收益:•28•×1000×(1-1.5‰-1‰)-27×1000×(1+1.5‰)=889.5(元).所以吉姆收益889.5元.[解题思路](1)起始价为27元,把第一到三天的涨跌数相加再加上27得周三收盘价.(2)把一周每天计算出来.再比较.(3)收入减交易中的手续费及交易税,得利润.。
1.3.1 有理数的加法运算律教学评价
1.3.1 有理数的加法运算律教学评价《有理数的加法运算律教学评价》一、前言有理数的加法运算律是数学中一个重要的概念,对学生的数学学习能力和逻辑思维能力有着重要的促进作用。
在教学实践中,有理数的加法运算律的教学常常会遇到一些困难和挑战。
本文将对有理数的加法运算律的教学进行评价,并提出一些建议。
二、有理数的加法运算律的重要性有理数的加法运算律是指两个有理数相加的规律。
它是数学中一个基础而又重要的知识点,对于学生的数学学习和思维能力有着重要的影响。
通过学习有理数的加法运算律,学生不仅可以掌握有理数的加法运算规律,还能培养他们的逻辑思维能力和解决问题的能力。
三、有理数的加法运算律的教学评价1. 任务驱动式教学评价在有理数的加法运算律的教学中,教师可以通过设计一些具体的问题和案例,让学生在实际问题中运用有理数的加法运算律,从而加深他们对这一概念的理解。
这种任务驱动式的教学方法能够让学生更加深入地理解和掌握有理数的加法运算律。
2. 多媒体辅助教学评价在教学中,教师可以利用多媒体技术,结合图片、动画等多媒体资源,直观地展示有理数的加法运算律,让学生通过视觉感受和体验,更加深刻地理解这一概念。
多媒体辅助教学能够提高学生的学习兴趣,增强他们对知识的记忆和理解。
3. 合作学习评价在教学中,教师可以通过分组讨论、小组合作等形式,让学生之间相互交流、合作,共同解决有理数的加法运算律的问题。
通过合作学习,学生可以相互学习、相互帮助,提高他们的学习效率和学习兴趣。
四、教学建议针对有理数的加法运算律的教学评价,我们提出以下几点教学建议:1. 培养学生的逻辑思维能力。
在教学中,教师应该注重培养学生的逻辑思维能力,引导他们从问题的本质出发,进行逻辑推理和解决问题。
2. 关注学生的学习情况。
在教学过程中,教师应该关注学生的学习情况,根据学生的实际情况进行有针对性的指导和辅导,帮助他们更好地掌握有理数的加法运算律。
3. 激发学生的学习兴趣。
人教版数学七年级上册1.3.1《有理数的加法》教案2
人教版数学七年级上册1.3.1《有理数的加法》教案2一. 教材分析《有理数的加法》是初中数学的重要内容,也是学习更复杂数学运算的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法运算的优先级。
通过学习,学生能够理解有理数加法的概念,掌握有理数加法的运算方法,并能够运用加法法则解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数的概念、加减法的基本运算,对数学运算有一定的基础。
但部分学生可能对有理数加法的理解不够深入,对于加法的运算律和优先级规则可能存在模糊之处。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 教学目标1.理解有理数加法的概念,掌握有理数加法的运算方法。
2.掌握有理数加法的运算律和优先级规则。
3.能够运用加法法则解决实际问题。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数加法的运算方法。
2.有理数加法的运算律和优先级规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生深入了解有理数加法的应用;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.的黑板和粉笔。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的加法实例,如购物时物品的总价、烹饪时食材的配比等,引导学生关注加法在实际生活中的应用。
同时,提出问题:“你们认为加法有什么运算规律吗?”2.呈现(10分钟)通过PPT课件呈现有理数加法的定义和运算方法,讲解加法的运算律和优先级规则。
结合案例,让学生了解加法在数学中的应用。
3.操练(10分钟)让学生进行有理数加法的运算练习,教师巡回指导,及时发现并纠正学生的错误。
在此过程中,引导学生发现加法的运算律和优先级规则,并加以运用。
4.巩固(5分钟)通过PPT课件呈现一些有关有理数加法的应用题,让学生独立解答。
课题:1.3.1有理数的加法(2)
第一章有理数课题:1.3.1有理数的加法(2)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=思考:两次所得结果相同吗?换几个加数再试试。
从上式计算中,你能得出什么结论?⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]=思考:两次所得结果相同吗?换几个加数再试试。
从上式计算中,你能得出什么结论?思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)【课堂练习】课本P20页练习 1,2例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】7.某食品加工组在某天中,收支情况如下(收入记为正数):-27.60元,-15元,+83.80元,-16.2元,-31.9元.试问收支相抵后,合计收入(或透支)多少元?作业设计:1.计算:(1)(-7)+ 11 + 3 +(-2); (2)).31()41(65)32(41-+-++-+(3) (+7)+(-6)+(-7)+(+6); (4) (-2.6)+(-3.4)+(+2.3)+1.5+(-2.3);2.用筐装桔子,以每筐30 kg 为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:+5,-4,+1,0,-3,-5,+4,-6,+2,+1.试问称得的总重与总标准重相比超过或不足多少干克?10筐桔子实际共多少千克?.3.出租车司机小李某天下午营运全是在东西走向的人民大道上行驶的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15 -3 +14 -11 +l0 -12 +4 -15 +16 -18(1)最后一名乘客送到目的地时,小李下午距出车地点的距离为多少千米?(2)若汽车耗油量为 3公升/千米,这天下午汽车共耗油多少公升?4.绝对值不大于10的整数有 个,它们的和是 .5.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?课 后 思 考:填空:(1)若a >0,b >0,那么a +b 0.(2)若a <0,b <0,那么a +b 0.(3)若a >0,b <0,且│a │>│b │那么a +b 0.(4)若a<0,b>0,且│a│>│b│那么a+b 0.作业更正:。
1.3.1有理数的加法(有理数加法的运算律)教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的加法(有理数加法的运算律)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量相加的情况?”比如,温度上升和下降的合并计算。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数加法的奥秘。
举例解释:
(1)理解运算律:通过对比举例,让学生明白同号相加和异号相加的规律,并在练习中加以巩固。
(2)灵活运用运算方法:如遇到+3+(-2)+(-1)的计算,可以先将+3和-2相加,得到+1,再将+1和-1相加,得到0。简化计算过程,避免直接从左至右相加的复杂性。
(3)解决实际问题:如购物找零问题,可以将购物金额设为有理数,利用加法运算律计算找零金额。
4.增强学生的合作交流意识,通过小组讨论、互动交流,提高团队合作解决问题的能力,培养良好的学习习惯和团队精神。
三、教学难点与重点
1.教学重点
-有理数加法的运算律:本节课的核心是让学生掌握有理数加法的运算规律,包括同号两数相加、异号两数相加以及零与任何数相加的情况。
-运算方法的灵活运用:强调学生在实际计算中,能够根据运算律简化计算过程,提高计算效率。
3.重点难点解析:在讲授过程中,我会特别强调同号相加和异号相加这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,+3+(-2)的结果是+1,因为取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
人教版七年级数学上册 第一章:有理数_1.3.1:有理数的加法 学案(含答案)
初中七年级数学上册第一章:有理数——1.3.1:有理数的加法(解析)一:知识点讲解知识点一:有理数加法法则有理数加法法则:✧同号两数相加,取相同的符号,并把绝对值相加;✧绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
✧一个数同0相加,仍得这个数。
有理数的加法运算遵循“一定二求三加减”的顺序:1)确定和的符号;2)求加数的绝对值;3)依据加法法则确定是把绝对值相加还是相减。
例1:计算:①()()8.25.3++-;②⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31272;解:原式=﹣0.7解:原式=21132-③527435+⎪⎭⎫ ⎝⎛-;④⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-653653;解:原式=20131 解:原式=0⑤()05+-解:原式=﹣5知识点二:有理数的加法运算律加法运算律:✧ 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
a b b a +=+。
✧ 加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
()()c b a c b a ++=++。
在运算时,一定要根据需要灵活运用一下规律,以达到简化运算的目的:✧ 相反数结合法:互为相反数的两个数可先相加; ✧ 同分母结合法:同分母的分数可先相加; ✧ 凑整法:几个数相加得整数时,可先相加; ✧ 同号结合法:符号相同的数可先相加;✧ 同形结合法:带分数可拆成整数和真分数两部分再相加。
例2:计算:1) ()()781312-++-+;解:原式=02) ()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+;解:原式=﹣33)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++21746571;解:原式=212-4) ()()⎪⎭⎫ ⎝⎛++-++-+85275.18335.6431。
解:原式=﹣0.5二:知识点复习知识点一:有理数加法法则1. 计算()53+-的结果等于( A )A. 2B. ﹣2C. 8D. ﹣82. 下列计算错误的是( B )A. 15.0211-=+⎪⎭⎫ ⎝⎛-B.()()422=-+-C.()71071-=+-D.()42125.1-=⎪⎭⎫⎝⎛-+-3. 下列说法中,正确的是( D )A. 两个有理数相加,符号不变,绝对值相加B. 两个有理数的和一定大于任意一个加数C.()()25757-=--=-+-D. 两个负数相加,和取负号,并把它们的绝对值相加4. 一个数是15,另一个数比15的相反数大4,则这两个数的和是( D )A. 26B. ﹣4C. ﹣26D. 45.31与绝对值等于32的数的和等于( D ) A.31B. 1C. ﹣1D.31-或1 6. 绝对值不大于414的所有整数的和是 0 。
1.3.1有理数加法(2)
3 4 (−0.2)+(+4 )+(−4.3)+(−6 ) 10 5
(2) )
3 5 1 0.75+ (−2 ) + (+0.125 + (−12 ) + (−4 ) ) 4 7 8
化简下列各式 1. (-1.75)+1.5+(+7.3)+(-2.25)+(-8.5) 1.75)+1.5+(+7.3)+(-2.25)+(2.
有理数加法的运算律: 有理数加法的运算律:
(1)加法交换律:a+b =b +a 加法交换律: 加法结合律:( a +b )+ c = a +( b + c ) (2)加法结合律 运用运算律进行简便运算时,通常有下列规律: 运用运算律进行简便运算时,通常有下列规律:
(1)互为相反数的两数,可先相 互为相反数的两数, 符号相同的数可以先相加. (2)符号相同的数可以先相加. 加. 分母相同的数可以先相加. (3)分母相同的数可以先相加. (4)几个数相加能得到整数可先相加. 几个数相加能得到整数可先相加.
(-9.6)+1.5+(-0.4)+(-0.3)+8.5 9.6)+1.5+(-0.4)+((-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5 0.8)+1.2+(-0.7)+(-
3.
某天早晨是-3℃,到了中午 升高了5℃,晚上又下降了 3℃,到了午夜降低了4 ℃, 求午夜时的温度? 求午夜时的温度?
现有10袋大米,以每袋 为准, 现有 袋大米,以每袋50kg为准, 袋大米 为准 超过的千克数记作正数, 超过的千克数记作正数,不足的千克数 记作负数,称重的记录如下: 记作负数,称重的记录如下: ;+0.3; ; ;+1.1; +0.5;+ ;0;―0.2;―0.3;+ ; ;+ ; ;+ ―0.7;―0.1;+ ;+ , ; ;+0.8;+ ;+ ;+0.7, 10袋大米共超重或不足多少千克?总重 袋大米共超重或不足多少千克? 袋大米共超重或不足多少千克 量是多少千克? 量是多少千克?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想:解 1+1+1.5+(-1)+1.2+1.3+ ( -1.3 ) + ( -1.2+1.8+1.1 ) 法2中使用 =[1+(-1)]+[1.2+(-1.2 )]+[1.3+(-1.3)] 了那些运算 +(1+1.5+1.8+1.1) 律?
=5.4
90×10+5.4=905.4
答:10袋小麦一共905.4千克,总计超过5.4千克。
总结: 灵活运用加法运算律,可使运算简 便,通常有以下情形: (1)互为相反数的两个数,可先相加;
(2)几个数相加得整数,可先相加;
(3)同分母的分数可先相加; (4)符号相同的数可先相加。
练习:
(1)23+(-17)+6+(-22)
(2)(-2)+3+1+(-3)+2+(-4)
( 3)
1 1 1 1 2 3 6
即 ( a + b )+ c = a + ( b + c )
在小学学过: 加法交换律与加法结合律 思考: 引入负数后,这些运算律还成立吗?
计算: 30+(-20) (-5)+(-3) (-20)+30 (-3)+(-5)
[8+(-5)]+(-4)
8+[(-5)+(-4)]
[(-3)+(-1)]+(+5) (-3)+[(-1)+(+ 5)]
1 1 3 2 (4) 4 3
有 理 数 的 加 法 运 算 律
问:在小学学过哪些加法的运算律?
加法交换律与加法结合律
•加法交换律:
两个数相加,交换加 数的位置,和不变. 即 a + b = b + a
加法结合律:
三个数相加,先把前两个 数相加,或者先把后两个数相 加,和不变.
例1:计算
(+8)+(-26)+(+16)
例2:计算
16+(-25)+24+(-35)
例3:10袋小麦称后记录如下,(单位:
千克),10袋小麦一共多少千克?如果每 袋小麦以90千克为标准,10袋小麦总计超 过多少千克或不足多少千克?
91,91,91.5,83,91.2,91.3, 88.7,88.8,91.8,91.1
1 3 3 2 ( 4) 3 4 2 5 5 4 8 5
练习:
正负分开加 ( 28) ( 17) 5 ( 16)
( 1.75) ( 7.3) 1.5 ( 2.25) ( 9.5)
4 4 互为相反数的 ( 8) ( 2 ) ( 8) ( 2 ) 5 5 相加为0 5 3 5 3 4 ( 3 ) ( 2 ) ( 3.15) ( 1 ) 12 22 12 22
同分母的相加
凑 整
• 例2 10筐苹果,以每筐30千克为 准,超过的千克数记作正数,不足 的千克数记作负数,记录如下: 2,-4,2.5,3,-0.5,1.5,3, -1,0,-2.5. 求这10 筐苹果的总重量.
有理数加法法则
1、同号两数相加 2、绝对值不等的两数相加 互为相反数的两个数相加 3、一个数与零相加
判断:两个有理数相加,和是否一定大 于每个加数?
1.计算:
1 3 ( 3.5) (1) 2
(2) (-7)+(+2)
1 1 (3) 4 2
解法1:先计算10袋小麦一共多少千克: 91++91.5+89+91.2+91.3+88.7+88.8+ 91.8+91.1=905.4 905.4-90×10=5.4
解法2:每袋小麦超过90千克的部分记为正 数,不足的部分记为负数,则10袋小麦对应 的数为
+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1