初中数学三角形教案(最新5篇)

合集下载

《三角形的内角和》教学设计(最新5篇)

《三角形的内角和》教学设计(最新5篇)

《三角形的内角和》教学设计(最新5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

三角形教案

三角形教案

三角形教案三角形教案模板(通用5篇)三角形教案1教学设计北师大版义务教育课程标准实验教科书七年级下册第五章第一节第四部分“三角形的高线”。

教材分析:本节是学生在认识了三角形,并且讨论过三角形角平分线,三角形的中线的定义及其性质,学生反反复复地折纸、画线、交流感受其意义,同时也在七年级上学期了解了两直线互相垂直等概念,会过一点作已知直线的垂线的基础上进一步的整理与探究。

“认识三角形的高线”主要研究的就是三角形的高线的定义及其性质,能在具体的三角形中作出它们。

因为有了三角形的角平分线,三角形的中线的定义及其性质作为基础。

在此,学生将进一步熟悉实验探究的基本方法,加深对三角形的理解和认识。

这样,有利于知识的系统化和条理化。

又因为我们研究的方法类似于研究三角形的角平分线和三角形的中线的定义及其性质的方法,所以我们要对照比较学习,找出它们之间的区别及其联系。

在教学中,要充分地给学生动手、动脑的时间,让学生慢慢地思考、总结、归纳,积累数学思维的经验,从而提高学生分析问题和解决问题的能力。

教学内容:认识三角形的高线教学目标:知识与技能:1.认识三角形高线的定义。

2.会在任意一个三角形中画出三角形的三条高线。

通过画图了解三角形三条高的位置随着三角形的形状的不同而不同。

过程与方法:通过观察,操作,想象,推理,交流等活动,发展空间观念,培养学生动手动脑,发现问题及解决问题的能力,以及推理能力和有条理的表达能力。

情感与态度:通过折纸,画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活。

教学重点:理解三角形高线的定义。

会画任意一个三角形的三条高,了解三角形的三条高(或所在的直线)交于一点。

了解三角形三条高的位置随着三角形的形状的不同而不同;锐角三角形的三条高都在三角形的内部;直角三角形的两条高与直角边重合,斜边上的高在三角形的内部;钝角三角形有两条高在三角形的外部,一条高在三角形的内部。

教学难点:1.钝角三角形高的画法及三角形三条高的位置关系与三角形的形状关系的理解。

新人教版九年级数学三角函数教案5篇最新

新人教版九年级数学三角函数教案5篇最新

新人教版九年级数学三角函数教案5篇最新三角形中的恒等式是我们经常在考试中遇到的题型,教师需要好的教案范围去教导学生,今天小编在这里整理了一些新人教版九年级数学三角函数教案5篇最新,我们一起来看看吧!新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键1,重点:正弦的概念。

2,难点:正弦的概念。

3,关键:相似三角形对应边成比例的性质。

教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。

)(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。

)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A 的对边BC的长。

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。

教学难点正确查找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。

课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,样子和大小都相同。

你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。

初中数学三角形教案有哪些

初中数学三角形教案有哪些

初中数学三角形教案有哪些初中数学三角形教案一【学习目标】能利用三角形全等解决实际问题,体会数学与实际生活的联系。

2、能在解决问题的过程中进行有条理的思考和表达。

【学习方法】自主探究与小组合作交流相结合.【学习重难点】有条理的思考和表达【学习过程】模块一预习反应学习准备1.请你在以下各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!教材精读1.战士面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚刚的姿势,这时视线落在了自己所在岸的某一点上;接着,他用步测的方法量出自己与那个点的距离,这个距离就是他与碉堡的距离。

你觉得他测的距离准确吗?2.小明在上周末游览风景区时,看到了一个美的池塘,他想知道最远两点A、B之间的距离,但是他没有船,不能直接去测。

手里只有一根绳子和一把尺子,他怎样才能测出A、B之间的距离呢?把你的设计方案在图上画出来,并与你的同伴交流你的方案,看看谁是方案更便捷。

方案一:在能够到达A、B的空地上取一适当点C,连接AC,并延长AC到D,使CD=AC,连接BC,并延长BC到E,使CE=BC,连接ED。

那么只要测ED的长就可以知道AB的长了理由: 在△ACB与△DCE中,AC=CD∠BCA=∠ECDBC=CEAB=DE (全等三角形的相等)方案二:如图,找一点D,使AD⊥BD,延长AD至C,使CD=AD,连结BC,量BC的长即得AB的长。

解:在Rt∆ADB与Rt∆CDB中BD=BD (同一条线段)∠ADB=∠CDB (都是 )CD=AD ( )≌∆CDB ( )∴ BA = BC ( )模块二合作探究1.1805年,法军在拿破仑的率领下与德军在莱茵河畔激战,德军在莱茵河北岸Q处,如下图,因不知河宽,法军大炮很难瞄准敌兵营,聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德军营Q处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点O处,让士兵丈量他所站位置B与O点的距离,并下令按这个距离炮轰敌兵营,试问:法军能命中目标吗?请说明理由,用帽舌边缘视线法还可以怎样测量,也能测出河岸两边OQ的距离?初中数学三角形教案二教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P68-69图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P71,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C 的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展示议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在用一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?按角分呢?(1)三角形按边分类如下:三角形不等三角形等腰三角形底和腰不等的等腰三角形等边三角形(2)三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形六、练一练有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业1.课本P71练习1.2,P75练习7.1 1.2.2.补充:如图,线段、相交于点,能否确定与的大小,并加以说明.初中数学三角形教案三了解三角形的高,并能在具体的三角形中作出它们.学习重点在具体的三角形中作出三角形的高.学习难点画出钝角三角形的三条高.疑难预设过三角形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!教学器材学生预先剪好三种三角形,一副三角板.学法设计及时间分配个案补充教学过程:过三角形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、★三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.学法设计及时间分配个案补充做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的三条高在三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在三角形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.那么S△ABC=___________,CF=_________,AC=_____________.学法设计及时间分配个案补充(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部.1.如图,在中画出高线AD、中线BE、角平分线CF.2.如图,(1)(2)和(3)中的三个三角形有什么不同?画出这三个三边上的高 ,并指出三条高线在各自三角形的什么位置?小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部.题如图, 中, 是中线, 是角平分线, 是高,填空:(1) ________ __________;(2) ________ _________;综合题(3) _________ ;(4) _________________.拓展题如图,在中, , 的高与的比是多少?(友情提示:利用三角形的面积公式)板书设计第一节认识三角形(4)1.三角形的高线定义.2. (1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部.教学反思值得记忆的细节锐角三角形和直角三角形的高掌握得较好.钝角三角形的高,特别是钝角边上的两条高较差.值得思考的猜你喜欢:1.三年级上册数学《三角形》教案2.人教版小学三角形教案3.初中数学三角形知识点总结4.初中人教版三角形中位线教案5.苏教版三角形的认识教案。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

三角形的概念教案(通用15篇)

三角形的概念教案(通用15篇)

三角形的概念教案三角形的概念教案(通用15篇)三角形的概念教案篇1教学目标:(1)使学生理解三角形、三角形的边、顶点、内角的概念;(2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别;(3)能正确地画出一个三角形的角平分线、中线和高;(4)能用符号规范地表示一个三角形及六个元素;(5)通过对三角形有关概念的教学,提高学生对概念的辨析能力和画图能力;(6)让学生结合具体形象叙述定义,训练他们的语言表达能力,激发学生学习几何的兴趣。

教学重点:明确组成三角形的六个元素,正确理解三角形的“高”、“角平分线”和“中线”这三个概念的含义、联系和区别。

教学难点:三角形高的画法教学用具:三角板、投影、微机教学方法:启发探究法教学过程:1、温故知新,揭示课题引言之后,先让学生:(1)试说出三角形以及三角形的边、顶点、角的概念(2)如图1:试画出的平分线、BC边上的中线、BC边上的高然后,在此基础上,揭示课题,提出思考题:三角形是由三条线段组成的,这里要强调“首尾顺次相接”为什么要加上这个条件?具备什么条件的线段才是三角形的角平分线、三角形的中线、三角形的高。

2、运用反例,揭示内涵由上面分析,让学生判断辨别下列图2中哪一个是正确的?(对第三个图)直角三角形只有一条高对吗?3、讨论归纳,深化定义引导启发学生,归纳讨论探索得到的结果:定义1 三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

强调:三角形的角平分线是一条线段,而角的平分线是一条射线。

定义2 三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段。

强调:三角形中线是一条线段。

定义3 三角形的高:从三角形的一个顶点向它对边画垂线,顶点和垂足间的线段。

强调:三角形的高是线段,而垂线是直线。

这一环节运用电教手段,利用<几何画板>动画的功能,增加直观性有利于学生理解掌握定义4、符号表示,加深理解通过符号的表述,使学生对三角形的角平分线、中线、高的理解得到加深和强化,在记忆上也趋于简化。

认识三角形教案12篇

认识三角形教案12篇

认识三角形教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!认识三角形教案12篇认识三角形教案1教学目标:1.经历从具体物体中抽象出角和三角形的过程,认识角和三角形,知道周角、平角及周角、平角、直角、钝角、锐角的大小关系。

初中数学三角形教案

初中数学三角形教案

初中数学三角形教案初中数学三角形教案内容6篇引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

以下是作者为大家收集的初中数学三角形教案,欢迎阅读,希望大家能够喜欢。

初中数学三角形教案精选篇1教学内容:人教版第九册第三单元的《三角形面积的计算》。

教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。

教学重点:掌握三角形面积的计算方法。

教学难点:理解三角形面积计算公式的推导过程。

教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。

教学过程:一、复习:提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?二、导入新课:你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。

那可以用什么方法知道这三个三角形的面积呢?三、新课:(一)好,我们就用数方格的方法来求这三个三角形的面积。

同样每个方格表示1平方厘米。

下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。

小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。

那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。

像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明师:这才是最科学的方法。

今天,我们继续用这种方法研究三角形的面积。

板书:三角形面积的计算师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。

三角形教案 三角形教案(优秀6篇)

三角形教案 三角形教案(优秀6篇)

三角形教案三角形教案(优秀6篇)角形教案篇一1.内容:三角形外角的概念,三角形外角的性质。

2.内容解析:与三角形内角和定理一样,三角形的外角也是研究三角形时重点研究的一类角。

三角形的一边与另一边的延长线组成的角叫做三角形的外角。

三角形的外角的性质揭示了一个三角形的三个外角、外角与内角之间的数量关系。

三角形外角的性质为与三角形有关的角的计算和证明等数学问题提供了十分便捷的方法和思路。

三角形的外角的性质的探索与证明,让学生体会从特殊到一般,从具体到抽象的研究过程和方法,使他们既学会发现,又学会归纳、概括,逐步培养他们用数学的思想和方法来思考和处理问题的习惯。

基于以上分析,确定本节课的教学重点是:三角形的外角的性质的探索和证明。

二、目标和目标解析1.目标(1)了解三角形的外角的概念。

(2)探索并证明三角形的外角的性质。

(3)能运用三角形的外角的性质解决简单问题。

2.目标解析达成目标(1)的标志是:能在具体的图形中正确识别三角形的外角、理解三角形内外角及其位置有相对性。

达成目标(2)的标志是:学生能通过特殊的、具体的计算问题,探索发现三角形的外角的性质,并能探究多种方法进行证明。

达成目标(3)的标志是:能正确运用三角形外角的性质解决简单的与三角形有关的角的计算和证明问题。

三、教学问题诊断分析学生在具体情景中辨认三角形的内外角有一定困难,在证明的推理过程中要做到步步有据也有一定难度,规范地写出证明过程更加困难。

因此,教学时要注意分析证明结论的思路,通过问题设计,引导学生思考,让学生经历发现和提出问题、分析和解决问题的过程。

四、教学过程设计(一)知识回顾,温故知新问题1 三角形的内角和是多少?怎么证明?师生活动:学生回忆三角形的内角和定理,并说出证明的方法:剪图、拼图或折叠,画出图形,推理,表述清晰。

问题2 在ABC中,(1)∠C=90°,∠A=30° ,则∠B= ;(2)∠A=50°,∠B=∠C,则∠B= .师生活动:学生独立思考后回答问题。

三角形教案(精选5篇)

三角形教案(精选5篇)

•••••••••••••••••三角形教案三角形教案(精选5篇)在教学工作者开展教学活动前,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么应当如何写教案呢?以下是小编为大家收集的三角形教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形教案篇1教学目标1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

教学重点:认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

教学难点:会在三角形内三条边上画高。

教学准备:师生分别准备木条(或硬纸条)钉成的三角形。

教学过程第一课时一、引入新课1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。

瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。

2.生活中哪些物体上也有三角形呢?让学生说一说。

房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。

4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。

(板书课题)二、新课学习1.发现三角形的特征。

请你画出一个自己喜爱的三角形。

三角形有几个顶点、几条边、几个角?让学生在自己画的三角形上尝试标出边、角、顶点。

教师根据学生的汇报板书,标出三角形各部分的名称。

2.概括三角形的定义。

大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。

请学生对照上面的说法,议一议:下面的图形是不是三角形?讨论:对于“三角形”怎样说更准确?阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”。

初中数学三角形教案(7篇)

初中数学三角形教案(7篇)

初中数学三角形教案(7篇)一、教材分析本节教材是学生对小学阶段三角形有初步了解的根底上进一步熟悉三角形的特点和性质。

三角形是最简洁、最根本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。

对学生更好地熟悉现实世界,拓展空间观念都有特别重要的作用,同时对今后学习三角形全等、相像和解直角三解形,解决相关的实际问题,都有不行低估的作用。

二、教学目标1、结合实物和图形理解三角形定义2、找到全部三角形的共同特点。

3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。

4、初步了解任意三角形三边之间的大小关系。

5、能应用所学学问解决日常生活中与三角形有关的实际问题。

6、初步感受三角形简洁、广泛地适用性。

7、培育学生动手、动脑、合作、沟通、探究意识。

三、教学重难点重点:三角形共同特点的理解及三角形三边关系性质的理解。

难点:应用三边关系性质解决简章的实际问题。

四、教具及材料预备三角板、实物的三角形、包装带、剪刀、头钉、白纸、透亮胶等(师生同备)五、学生状况及教学构思七年级学生年龄较小,思维正处在由详细形象思维向抽象规律思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际动身说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。

六、教学实施1、师:在小学我们进一步了解了三角形,今日我们在一起进一步熟悉三角形的定义、记法及其相关性质,随之在黑板上板书课题(1熟悉三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。

生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由很多三角形构成的。

师:在黑板上画出同学熟识的屋顶框架图。

2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?甲生:每一个三角形都有三个内角,三个顶点。

乙生:每一个三角形都由三条线段组成。

丙生:任意三角形的三内角之和都等于180°。

八年级数学上册《三角形的性质》教案、教学设计

八年级数学上册《三角形的性质》教案、教学设计
2.教学方法:
-学生独立完成练习题,教师巡回指导。
-针对学生的错误,进行及时纠正和讲解,帮助学生巩固知识。
(五)总结归纳,500字
1.教学内容:
-对三角形的定义、分类和性质进行梳理和总结。
-强调三角形性质在解决实际问题中的应用。
2.教学方法:
-采用师生互动的方式,让学生回顾本节课所学内容。
-教师进行点评,指出学生在学习过程中的优点和不足,提出改进措施。
3.培养学生合作交流的意识,使他们学会倾听他人意见,尊重他人观点。
4.培养学生克服困难的勇气,使他们面对数学问题时,保持积极的心态。
5.引导学生认识到数学知识在生活中的广泛应用,提高他们的数学素养,培养其实用主义价值观。
二、学情分析
八年级学生已经具备了一定的数学基础和逻辑思维能力,他们对几何图形有一定的认识和了解。在此基础上,学生对三角形的性质这一章节的学习,需要在以下几个方面进行关注和引导:
4.创设生活情境,将三角形的性质应用于实际问题,提高学生的实际应用能力。
5.利用信息技术手段,如几何画板等,辅助教学,增强学生对三角形性质的理解。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们探索三角形性质的好奇心。
2.培养学生勇于尝试、善于思考的学习态度,使他们体会数学学习的乐趣。
4.创意设计题:
-鼓励学生利用三角形的性质设计一幅图案或构造一个模型,体现数学在艺术和工程领域的应用。
-学生需要提交设计草图和作品说明,锻炼学生的创意设计和表达能力。
5.反思总结题:
-让学生撰写学习反思,总结自己在学习三角形性质时的收获和困惑,以及对未来学习的计划。
-教师通过学生的反思,了解学生的学习情况,为下一步教学提供参考。

初中数学三角形教案5篇

初中数学三角形教案5篇

初中数学三角形教案5篇引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

这里给大家分享一些关于初中数学三角形教案,方便大家学习。

初中数学三角形教案篇1教学内容:人教版义务教育课程标准试验教科书数学四年级下册第67页。

设计理念:遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。

《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。

因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

教材分析:三角形的内角和是三角形的一个重要特征。

本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。

学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。

教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。

概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。

学情分析:学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。

四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学三角形教案(最新5篇)初中数学三角形教案篇一教学目的1.理解三角形、三角形的边、顶点、内角、外角等概念。

2.会将三角形按角分类。

3.理解等腰三角形、等边三角形的概念。

重点、难点1.重点:三角形内角、外角、等腰三角形、等边三角形等概念。

2.难点:三角形的外角。

教学过程一、引入新课在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题。

本章我们将学习三角形的基本性质。

二、新授1.三角形的概念:(1)什么是三角形呢?三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边。

如图:AB、BC、AC是这个三角形的三边,两边的公共点叫三角形的顶点。

(如点A)三角形约顶点用大写字母表示,整个三角形表示为△ABC.A(顶点)边B C(2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如△BAC.每个三角形有几个内角?三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中△ACD是△ABC的一个外角,它与内角△ACB相邻。

A外角B C D与△ABC的内角△ACB相邻的外角有几个?它们之间有什么关系?练习:(1)下图中有几个三角形?并把它们表示出来。

ADB C(2)指出△ADC的三个内角、三条边。

学生回答后教师接着问:△ADC能写成△D吗?△ACD能写成△C吗?为什么?(3)有人说CD是△ACD和△BCD的公共的边,对吗?AD是△ACD和△ABC的公共边,对吗?(4)△BDC是△BCD的什么角?是△ACD的什么角?△BCD是△ACD的外角,对吗?(5)请你画出与△BCD的内角△B相邻的外角。

2.三角形按角分类。

让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证。

1 2 3第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角。

所有内角都是锐角的三角形叫锐角三角形;有一个内角是直角的三角形叫直角三角形;有一个内角是钝角的三角形叫钝角三角形。

三角形按角分类可分为:锐角三角形(三个内角都是锐角)直角三角形(有一个内角是直角)钝角三角形(有一个内角是钝角)3.等腰三角形、等边三角形的概念:让学生观察以下三个三角形,它们的边各有什么特点?1 2 3经过观察,测量可知:第一个三角形的三边互不相等;第二个三角形有两条边相等(AB=AC);第三个三角形的三边都相等。

(1)等腰三角形:两条边相等的三角形叫等腰三角形。

相等的两边叫做等腰三角形的腰,如上图(2)AB、AC是这个等腰三角形的腰。

(2)等边三角形;三条边都相等的三角形叫等边三角形(或正三角形)问:等边三角形是不是等腰三角形?[等边三角形是特殊的等腰三角形,但等腰三角形不一定都是等边三角形]三角形按边来分,可分为:三边都不相等的三角形只有两边相等的三角形等边三角形三、巩固练习教科书图9.1.6中找出等腰三角形、正三角形、锐角三角边、直角三角形、钝角三角形。

四、小结1、三角形的概念,一个三角形有三个顶点,三条边,三个内角,六个外角,和三角形一个内角相邻的外角有2个,它们是对顶角,若一个顶点只取一个外角,那么只有3个外角。

2.三角形的分类:按角分为三类:①锐角三角形,②直角三角形,③钝角三角形按边分为三类:①三边都不相等的三角形;②等腰三角形。

等边三角形只是等腰三角形中的一种特殊的三角形。

五、作业教科书第61页练习1、2.初中数学三角形教案篇二一、教学目标1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美二、教法引导先学后教,达标导学三、重点及难点1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具.六、教学步骤[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?[讲解新课]根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比初中数学三角形教案篇三一、学生知识状况分析学生的知识技能基础:在七年级的学习中,学生通过观察、测量、画图、拼摆等数学活动,体会了全等三角形中“对应关系”的重要作用。

上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。

学生活动经验基础:上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。

二、教学任务分析(一)教材的地位和作用分析:《相似三角形》在本章中承上启下,体现了从一般到特殊的数学思想;是学生今后学习的基础;是解决生活中许多实际问题的常用数学模型。

即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。

(二)教学重点:相似三角形定义的理解和认识。

(三)教学难点:1..相似三角形的定义所揭示的本质属性的理解和应用;2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。

(四)教法与学法分析:本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。

学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。

(五)教法建议1.从知识的逻辑体系出发,在知识的引入时可考虑先复习相似形的概念,在探索归纳给出相似三角形的概念2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握(六)教学目标分析:通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识。

发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

教学目标:1.知识与技能(1). 掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

(2). 能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。

2 过程与方法(1)领会教学活动中的类比思想,提高学生学习数学的积极性。

(2)经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形的定义及表示法,会运用相似比解决相似三角形的边长问题。

3 情感态度与价值观(1). 经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与一般的关系。

(2). 深化对相似三角形定义的理解和认识。

发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

三、教学过程分析本节课共设计了五个环节:1情景引入归纳定义2 运用定义解决问题3 加深理解探索规律4 回顾反思课堂小结5.布置作业初中数学三角形教案篇四一、教学目标知识目标:1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.能力目标:2.进一步培养学生类比的数学思想.情感目标:3.通过学习,养成严谨科学的学习品质二、教学重点、难点、疑点及解析1.重点是性质定理的应用.2.难点是相似三角形的判定与性质等有关知识的综合运用.3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.三、教学方法新授课.四、教学过程(一)复习提问1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?(二)讲解新课根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的'其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.△△ABC△△ABC,ADBC,ADBC,教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.分析示意图:结论△(欠缺条件)△(已知)△ △ABC△△ABC,BM=MC,BM=MC,△ △ABC△△ABC,2,4,以上两种情况的证明可由学生完成.小结:本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.(三)练习课后练习节选(四)作业同步练习初中数学三角形教案篇五学习目标:1.经历探索直角三角形中边角关系的过程。

理解正切的意义和与现实生活的联系。

2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。

学习重点:1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

学习难点:理解正切的意义,并用它来表示两边的比。

学习方法:引导—探索法。

更多免费教案下载绿色圃中学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:△如图:梯子AB和EF哪个更陡?你是怎样判断的?△以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)△Rt△AB1C1和Rt△AB2C2有什么关系?△ 有什么关系?△如果改变B2在梯子上的位置(如B3C3)呢?△由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC中,△C=90°,BC=12cm,AB=20cm,求tanA和tanB的值。

相关文档
最新文档