函数创新题

合集下载

函数创新题

函数创新题
C函数.
) 为定 义 在D上 的
) ) =


| §l :
(I) 判 断 函 试
(I) 的取 值 k I) - x在 0a ] 的 - f +
值 域.
( ) 义 区间 [ 1 的 长度 为n Ⅲ 定 m,] 7 , 一





| |
0 1 2 … , , a- ,m 2 ,E ta + , , , m 且  ̄ O a = m  ̄ S= l
n+ , 于满 足 条件 的任 意 函数 2 …+ 对
试 题 难 度 : ★ ★ ☆ ★
l 誊 誊
羹l
厂 )试求S 勺 大值. ( , ,最 白
于 任 意 的 实 数 ,: 。 ( ≠ ) 都 有 ,



l一 _
蠢 誊
i | 譬
。, 2,
恒 有 ( 4 1— )2 ≤q ( 14 0 - —1 ) 厂 )- ( 0
( )立 ( ) 成 , + 2
为偶 函数.
(— 厂 ) 则 1 )(z,



新 颖别致 . 考查 函数 与不 等式及 最值
的相 关知 识 . 能 充 分 理 解 并 运 用 新 如 定义 . 问题 就 可 不 攻 自破 .
做到 不重不 漏.
3 0
数创 新题
0 ( 数学金刊》 试题研究组 函








。一 一


一 黪 一 雾 一 一

匣②
厂 ) ( 是定义 在D上 的函数 , 若对 任 意 实数a∈( , ) 0 1 以及 中的任 意两 数

高考数学创新题型解读

高考数学创新题型解读

高考数学创新题型解读1. 选择题:(1) 下列哪个函数的图像在x=1处取得最小值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(2) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=1时取得最大值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 0(3) 下列哪个函数的图像在y轴上截距为1?A. f(x) = x^2 + 2x + 1B. f(x) = x^2 - 2x + 1C. f(x) = x^2 + 2x - 1D. f(x) = x^2 - 2x - 1(4) 已知f(x) = ax^2 + bx + c,若f(x)的图像是开口向上的抛物线,则a的取值范围是?A. a > 0B. a < 0C. a = 0D. a ≠ 0(5) 下列哪个函数的图像在x=0时取得最大值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(6) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=2时取得最小值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 0(7) 下列哪个函数的图像在x=0时取得最小值?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5(8) 已知f(x) = ax^2 + bx + c,若f(x)的图像是开口向下的抛物线,则a的取值范围是?A. a > 0B. a < 0C. a = 0D. a ≠ 0(9) 下列哪个函数的图像在y轴上截距为-1?A. f(x) = x^2 + 2x + 1B. f(x) = x^2 - 2x + 1C. f(x) = x^2 + 2x - 1D. f(x) = x^2 - 2x - 1(10) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=3时取得最大值,则a的取值范围是?A. a < 0B. a > 0C. a = 0D. a ≠ 02. 填空题:(1) 已知函数f(x) = ax^2 + bx + c,若f(x)在x=1时取得最小值,则a的取值范围是________。

二次函数创新型试题

二次函数创新型试题

中考中的二次函数创新型试题二次函数的命题,除常规题外,还出现了形式新颖的创新题,现就2006年中考中出现的有关二次函数的创新题型作列举归类说明.一、利用表格信息解题【例1】(2006·常德)根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的一个解x的范围是().A. 6<x<6.17 B. 6.17<x<6.18C. 6.18<x<6.19 D. 6.19<x<6.20【分析】由表格可知,y=0在-0.01和0.02之间,因此对应的自变量在6.18~6.19这个范围内.解:C.【小结】本题考查图象法解一元二次方程,读懂表格并将其转化为图象是解题的关键.二、开放性试题【例2】(2006·兰州)请选择一组你喜欢的a、b、c的值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:①开口向下;②当x<2,y随x的增大而增大,当x>2时,y随x的增大而减小,这样的二次函数解析式是.解析:由题意知x=2是它的对称轴,a值为负数,可设顶点或方程y=a(x-2)2+k,其中a<0,k为全体实数,不妨设a=-1,k=1,∴y=-(x-2)2+1,展开后得y=-x2+4x-3.【小结】本题考查二次函数解析式的求法,以开放的形式给出已知条件,这种命题方式新颖,答案不惟一. 【例3】(2006·湖北天门)老师出了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线在x轴截得的线段长为2,你认为四个人的说法中,正确的有().A. 1个B. 2个C. 3个D. 4个【分析】本题所添条件必须保证对称轴为直线x=2,若抛物线过(1,0),(3,0)则根据对称轴x==2,所以小华说得对;因为解析式中c=3,所以抛物线过(0,3),当添(4,3)在抛物线上时,由于纵坐标相等,∴对称轴为x==2 ,所以小彬说得对;如果添a=1,则y=x2+bx+3,将(1,0)代入则b=-4,∴y=x2-4x+3对称轴为x=2,所以小明也对;抛物线过(1,0),若被x轴截和线段长为2时另一交点是(3,0)或(-1,0),∴对称轴为x=2或x=0 ,∴小颖说的不对.解:C.【小结】本题是条件开放题.通过对所添条件与已知条件的分析,考查我们推理能力和发展思维能力,注意所添条件都是独立的,不能重复使用.三、阅读理解题【例4】(2006·福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当a1=a2时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-1,0),B(1,0),记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母).(1)若已知M(0,1),△ABM≌△ABN(图1),请通过计算判断CABM与CABN是否为全等抛物线;(2)在图2中,以A、B、M为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且与C ABM全等的抛物线解析式.②若已知M(m,n),当m、n满足什么条件时,存在抛物线C ABM?根据以上探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线.若存在请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.【分析】(1)我们由抛物线的三个点可求出解析式,然后根据全等抛物线的定义,看其二次项系数是否相等即可;(2)中第①小题通过待定系数法即可求得C ABM的解析式,然后根据二次函数图象平移可得到与其全等的抛物线的解析式,第②小题根据抛物线的形状考虑M点的坐标或通过待定系数法进行求解.解:如图3,设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(-1,0),B(1,0),∴抛物线C ABM的解析式为y=-x2+1.同理可得C ABN的解析式为y=x2-1.∵-1=1,∴C ABM与C ABN是全等抛物线.(2)①如图4,设抛物线CABM的解析式为y=ax2+bx+c.抛物线C ABM过点A(-1,0),B(1,0),M(0,n),所以抛物线C ABM的解析式为y=-nx2+n,与C ABM全等的抛物线有:y=nx2-n,y=n(x+1)2,y=n(x-1)2.②设存在抛物线C ABM的解析式为y=ax2+bx+c.抛物线C ABM过点A(-1,0),B(1,0),M(m,n),因为a为二次项系数,所以a≠0,若m=±1,则n=0,M与点A、B重合,所以m≠±1;若n=0,则m=±1,M与点A、B重合,所以n≠0.所以当m≠±1且n≠0时,可有a(m2-1)=n成立,即当m≠±1且n≠0时存在抛物线C ABM.如图5.与C ABM全等的抛物线有C ABN,C AME,C BMF.四、结论探究题【例5】(2006·旅顺口)如图,已知抛物线y=x2-4x+1,将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.(1)求平移后的抛物线解析式;(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-个单位长度,试探索问题(2).【分析】解(1)时根据顶点坐标的变化即可求得平移后的解析式;因为y=m是平行于x轴的直线,从图形上可以看出当m>-3时,只有y=m与两抛物线的交点相交时有3个交点;解(3)时解法同解第(2)问,由特殊到一般.解:(1)y=x2-4x+1=(x-2)2-3,∴顶点(2,-3)向左平移4个单位,得y=(x+2)2-3,即y=x2+4x+1;(2)由(1)知两抛物线顶点为(2,-3),(-2,-3),∴两抛物线的交点为(0,1),由图象知,若直线y=m与两条抛物线有且只有四个交点时,m的取值范围为m>-3且m≠1.(3)将y=ax2+bx+c配方得:个单位长度得抛物线解析式为∴两抛物线的交点为(0,c),由图象知满足(2)中条件的m的取值范围是:m>且m≠c.【例6】(2006·南充市)如图1,经过点M(-1,2),N(1,-2)的抛物线y=ax2+bx+c与x的交于A、B两点,与y轴交于C点.(1)求b的值;(2)若OC2=OA·OB,试求抛物线的解析式;(3)在该抛物线的对称轴上是否存在点P,使△PAC的周长最小?若存在,求出P的坐标;若不存在,请说明理由.【分析】解第(1)问时可代入已知两点M、N即可;解第(2)问可根据OC2=OA·OB求解;解第(3)问时想到抛物线上的点关于其对称轴对称,然后根据对称点把三角形变化的两边转化成同一条线段后求点P和最小值.解:(1)把M(-1,2),N(1,-2)代入y=ax2+bx+c中,得②-①得2b=-4,∴b=-2.(2)由(1)得b=-2,a+c=0,∴抛物线解析式为y=ax2-2x-a,令x=0,∴y=-a,则C(0,-a),设A(x1,0),B(x2,0),则x1,x2是方程ax2-2x-a=0的二根,∴由求根公式可得x1x2=-1,由图象可知OC=a,OA=-x1,OB=x2又∵OC2=OA·OB ,∴a2=-x1·x2=1.∵a>0,∴a=1.∴抛物线为y=x2-2x-1.(3)在抛物线对称轴上存在点P,使△PAC的周长最小,只需PA+PC最小,因为点A关于对称轴x=1的对称点是B,∴PA+PC=PB+PC=BC,BC与对称轴的交点即为所求点P,如图2.【小结】这是一道函数与几何的综合题,也是中考命题的热门——存在性问题.解题的关键是巧妙地运用几何条件建立关于字母系数的方程,从而求出解析式.。

高中数学解读与扩展之三角函数:6 . 三角函数创新题型分类 含解析

高中数学解读与扩展之三角函数:6 .  三角函数创新题型分类 含解析

三角函数创新题型分类一、结论开放型例1 关于函数f (x )=4 sin (2 x +3π)(x R ),下列命题: ① 由f (x 1)=f (x 2)=0可得x 1-x 2 必为的整数倍; ② y =f (x )的表达式可改写为y =4 cos (2 x -6π); ③ y =f (x )的图象关于(-6π,0)对称; ④ y =f (x )的图象关于直线x =-6π对称. 其中正确的命题的序号是______________.(注:把你认为正确的命题的序号都填上.)【分析】处理本题时没有捷径可走,只能一一分析.对于①,利用sin x =0求解;对于②,要考察sin (2 x +3π)能否变为cos (2 x -4π),可选用能“变名”的诱导公式(如“2π-”等)进行试验;对于③、④,注意一般的结论:正余弦函数图象与x 轴交点就是其对称中心,过图象的最高点或最低点且与x 轴垂直的直线就是图象的对称轴.【解答】所以x 1-x 2=221k k-·, 而221k k -不能保证是整数,因此①不正确.检验②,f (x )=4 sin(2 x +3π)=4 cos 2π-(2 x +3π)] =4 cos(6π-2 x ) =4 cos (2 x -6π), 故②正确.检验③,【点评】本题主要考查三角函数图象的对称性和诱导公式等.此类多选填空题对基础知识的准确性、系统性要求较要.二、是否存在型.例2。

已知02x π<<,问是否存在()0,1u ∈,使得等式cos sin x u x u +⋅=成立?并说明理由。

【解析】假设存在u 使得等式cos sin x u x u +⋅=成立,则将cos sin x u x u +⋅=两边平方得:2222cossin 2sin x u x u x u +⋅+= 整理得:()22sin 21cos u x ux ⋅=- 因为0,02,sin 202x x x ππ<<<<>,()0,1u ∈。

北京课标版用一次函数解决实际问题创新题

北京课标版用一次函数解决实际问题创新题

北京课标版用一次函数解决实际问题创新题1、若的值是(;)A; -2 答案A 解析2、下面图形中不是中心对称图形的是答案C 解析3、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( 答案C 解析4、如图,ABC是一个圆锥的左视图,其中AB=AC=5,BC=8,则这个圆锥的侧面积是A 答案C 解析5、;(2011浙江丽水,7,3分)计算–的结果为(答案C 解析6、如果a的相反数是2,那么a等于()A.﹣2B.2C.D.答案A.解析7、6的相反数是A.6B.C.D.答案B 解析8、将方程左边配成完全平方式,得到的方程是(n 答案B 解析9、不用其它试剂,仅仅利用试管和胶头滴管就可以区别下列四种物质的溶液:①CuSO4;②MgCl2;③KOH;④NaN 答案C 解析10、如图,是一个不完整的正方体平面展开图,下面是四位同学补画的情况(图中阴影部分),其中补画正确的是答案D 解析11、的倒数是(; )A.-2B.2C.D.答案A 解析部审湘教版用有理数估计一个无理数的大致范围下面四个数中,负数是()A.-6B.0C.0.2D.3 答案A 解析12、(2014?荆门)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正答案C 解析试题分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.13。

用黑色棋子摆出下列一组三角形,按此规律推断,第n个三角形所用的棋子总数为答案A 解析14,。

函 数 创 新 试 题 解 读

函 数 创 新 试 题 解 读

函 数 创 新 试 题 解 读河 北 尚 继 惠函数创新试题非常多见,因为函数本身内容深厚,何况又有数形等多种表达形式,因此有关函数创新试题灵活多变、花样翻新、层出不穷。

这方面的试题既有利于考查对函数知识与方法的理解与掌握,又有利于考查学生的创新精神和探索能力。

下面我们分类进行解读,以期对同学们学习与复习有所帮助。

1. 创新“概念”题例1 已知函数))(2(log)(*1N n nn f n ∈+=+,定义使),2(),1(f f …,)(k f 为整数的数k k (∈*N )叫做企盼数,则在区间[1,100]内这样的企盼数共有______个.解读:这里创新定义的“企盼数”非常独到,且有对数的介入,因而试题设计得精巧、深刻.依题意有:,5log )3(,4log )2(,3log )1(432===f f f …,)2(log )(1+=+k k f k ,则有)2(log )()3()2()1(2+=⋅⋅k k f f f f ,令n k =+)2(log 2,则22-=n k ,由k ∈[1,100]得:100221≤-≤n ,∴10223≤≤n 。

∵*N n ∈,∴6,5,4,3,2=n ,故所求企盼数共有5个。

2. 创新“符号”题例2 对任意函数)(x f 、)(x g 在公共定义域内,规定)(x f ※)}(),(m in{)(x g x f x g =,若x x g x x f 2log )(,3)(=-=,则)(x f ※)(x g 的 最大值为_________。

解读:解此题关键在于理解规定符号※式子的含义,其实)(x f ※)(x g 就是)(x f 、)(x g 中函数值较小者,在同一坐标系中作出两个函数x x g x x f 2log )(,3)(=-=的图象(此略),且当)(x f =)(x g 即x x 2log 3=-时,观察易知2=x ;又当2=x 时,1)2()2(==g f ,则有)(x f ※⎪⎩⎪⎨⎧≥-≤<=)2(3)20(log )(2x x x x x g , ∴)(x f ※)(x g 的 最大值为1。

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

2 时,等号成立,
所以 m 2 2 2 ,即 m , 2 2 2 .
故选:C.
【点睛】关键点睛:本题突破口是理解“隐对称点”的定义,将问题转化为 g(x) 与 f (x) 在 0, 上有交点的
问题,从而得解.
5.(2023·高二单元测试)能够把椭圆 x2 y2 1的周长和面积同时分为相等的两部分的函数称为椭圆的“可 4
f
3 1
2

当t
1 时, 2
f
t
max
f
1 2
21 8.
所以
f
x
的值域为
1 2
,
21 8
.
当 1 f x 0 时, y INT f x 1,
2
当 0 f x 1时, y INT f x 0 ,
当1 f x 2 时, y INT f x 1, 当 2 f x 21 时, y INT f x 2 ,
对选项
B:
f
x
ln
5 5
x x
,函数定义域满足
5 5
x x
0 ,解得
5
x
5 ,且
f
x
ln
5 5
x x
f
x ,函数为
奇函数,满足;
对选项 C: f x sin x 为奇函数,满足;
对选项 D: f x ex ex , f x ex ex f x ,函数为偶函数,且 f 0 2 0 ,不满足.
f
x
ex ex
1 1
,得
ex
f
1
x 1 f x
.
因为 ex
f x1 0 ,所以 1 f x
0 ,解得 1
f

42 二次函数创新题及新定义问题-【初中数学】120个题型大招!冲刺满分秘籍!

42 二次函数创新题及新定义问题-【初中数学】120个题型大招!冲刺满分秘籍!

二次函数创新题及新定义问题二次函数与新定义问题在二次函数与新定义问题中,重点是将题中给出的定义“翻译”成学过的知识,再结合二次函数的性质综合进行处理,其难点就在于“翻译定义”的过程,对学生的理解能力和初中知识的运用能力要求较高.典例1.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1,和y2=x2+bx+c,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.【答案】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0,解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),∵y1+y2与y1为“同簇二次函数”,∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4,∴函数y2的表达式为:y2=x2﹣2x+1.∴y2=x2﹣2x+1=(x﹣1)2,∴函数y2的图象的对称轴为x=1.∵1>0,∴函数y2的图象开口向上.当0≤x≤3时,∵函数y2的图象开口向上,∴y2的取值范围为0≤y2≤4.【精准解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y 1的图象经过点A (1,1)可以求出m 的值,然后根据y 1+y 2与y 1为“同簇二次函数”就可以求出函数y 2的表达式,然后将函数y 2的表达式转化为顶点式,再利用二次函数的性质就可以解决问题.练习1.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a=﹣c ,b=2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y=x 2+x+1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍【答案】解:(1)∵y=x 2+x+1,∴y=,∴二次函数y=x 2+x+1的顶点坐标为(﹣,),∴二次函数y=x 2+x+1的一个“反倍顶二次函数”的顶点坐标为(,),∴反倍顶二次函数的解析式为y=x 2﹣x+;(2)y 1+y 2=x 2+nx+nx 2+x=(n+1)x 2+(n+1)x ,y 1+y 2=(n+1)(x 2+x+)﹣,顶点坐标为(﹣,﹣),y 1﹣y 2=x 2+nx ﹣nx 2﹣x=(1﹣n )x 2+(n ﹣1)x ,y 1﹣y 2=(1﹣n )(x 2﹣x+)﹣,顶点坐标为(,﹣),由于函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,则﹣2×=﹣,解得n=.1.小爱同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是.(2)延伸思考:将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?写出平移过程,并直接写出当123y <时,自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|2|1)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:2x =-或0x =或2x =;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是10a -<<.故答案为函数图象关于y 轴对称;2x =-或0x =或2x =;10a -<<.(2)将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,当123y <时,自变量x 的取值范围是04x <<且2x ≠.2.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点(1,)A r 与点(,4)B s 是关于x 的“T 函数”()24(0)0,0,x y x tx x t t ⎧-<⎪=⎨⎪≠⎩是常数的图象上的一对“T 点”,则r =,s =,t =(将正确答案填在相应的横线上);(2)关于x 的函数(y kx p k =+,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”2(0y ax bx c a =++>,且a ,b ,c 是常数)经过坐标原点O ,且与直线:(0l y mx n m =+≠,0n >,且m ,n 是常数)交于1(M x ,1)y ,2(N x ,2)y 两点,当1x ,2x 满足112(1)1x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【分析】(1)由A ,B 关于y 轴对称求出r ,s ,由“T 函数”的定义求出t ;(2)分0k =和0k ≠两种情况考虑即可;(3)先根据过原点得出0c =,再由“T 函数”得出b 的值,确定二次函数解析式后,和直线联立求出交点的横坐标,写出l 的解析式,确定经过的定点即可.【解答】解:(1)A ,B 关于y 轴对称,1s ∴=-,4r =,A ∴的坐标为(1,4),把(1,4)A 代入是关于x 的“T 函数”中,得:4t =,故答案为4r =,1s =-,4t =;(2)当0k =时,有y p =,此时存在关于y 轴对称得点,y kx p ∴=+是“T 函数”,且有无数对“T ”点,当0k ≠时,不存在关于y 轴对称的点,y kx p ∴=+不是“T 函数”;(3)2y ax bx c =++ 过原点,0c ∴=,2y ax bx c =++ 是“T 函数”,0b ∴=,2y ax ∴=,联立直线l 和抛物线得:2y ax y mx n ⎧=⎨=+⎩,即:20ax mx n --=,12m x x a +=,12n x x a-=,又 112(1)1x x --+=,化简得:1212x x x x +=,∴m n a a-=,即m n =-,y mx n mx m ∴=+=-,当1x =时,0y =,∴直线l 必过定点(1,0).3.(2021•杭州)在直角坐标系中,设函数21(y ax bx a =++,b 是常数,0)a ≠.(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当x p =,(q p ,q 是实数,)p q ≠时,该函数对应的函数值分别为P ,Q .若2p q +=,求证:6P Q +>.【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;(2)写出一组a ,b ,使得240b ac ->即可;(3)已知1a b ==,则21y x x =++.容易得到2211P Q p p q q +=+++++,利用2p q +=,即2p q =-代入对代数式P Q +进行化简,并配方得出22(1)66P Q q +=-+.最后注意利用p q ≠条件判断1q ≠,得证.【解答】解:(1)由题意,得104211a b a b ++=⎧⎨++=⎩,解得12a b =⎧⎨=-⎩,所以,该函数表达式为221y x x =-+.并且该函数图象的顶点坐标为(1,0).(2)例如1a =,3b =,此时231y x x =++,2450b ac -=> ,∴函数231y x x =++的图象与x 轴有两个不同的交点.(3)由题意,得21P p p =++,21Q q q =++,所以2211P Q p p q q +=+++++224p q =++22(2)4q q =-++22(1)66q =-+,由条件p q ≠,知1q ≠.所以6P Q +>,得证.4.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由题意得:4x x=,解得2x =±,即可求解;(2)①抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,而1a >,04c <<;由M 、N 的存在,则△2540ac =->,而1a >,则254c <,即可求解;②求出点M 的坐标为4(a -,0)、点E 的坐标为2(a -,2a-,即可求解;(3)分两种情形:点C 在PB 的下方或上方,分别根据全等三角形解决问题.【解答】解:(1)由题意得:4x x=,解得2x =±,当2x =±时,42y x ==±,故“雁点”坐标为(2,2)或(2,2)--;(2)① “雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y x =,抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,1a > ,故04c <<;M 、N 的存在,则△2540ac =->,而1a >,则254c <,综上,04c <<;②4ac = ,则250ax x c ++=为2450ax x a ++=,解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =,解得2x a =-,即点E 的坐标为2(a -,2)a-,过点E 作EH x ⊥轴于点H ,则2HE a =,242(E M MH x x HE a a a=-=---==,故EMN ∠的度数为45︒;(3)存在,理由:当点C 在PB 的下方时,由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t ,过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-,90NPB MPC ∠+∠=︒ ,90MCP CPM ∠+∠=︒,NPB PCM ∴∠=∠,90CMP PNB ∠=∠=︒ ,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得1012m =1012-,当点C 在PB 的上方时,过点P 作PK OB ⊥于K ,CH KP ⊥交KP 的延长线于H .同法可证,CHP PKB ∆≅∆,可得CH PK =,HP BK =,t m n -=,3t n m -=-,223n m m =-++32m ∴=,154n =,3(2P ∴,15)4,故点P 的坐标为210(2-,32或10(12+,3)2或3(2,15)4.5.(2021•江西)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯(1,3)B -(0,0)O (1,1)C -(A 2,)(3,3)D ⋯⋯(5,3)B '-(4,0)O '(3,1)C '(2,0)A '(1,3)D '-⋯①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L '都有唯一交点,这条抛物线的解析式可能是(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,当3x -时,L '的函数值随着x 的增大而减小,找出公共部分即可;②设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,分下面两种情形:)i 当1a '=-时,)ii 当1a '≠-时,分别讨论计算即可;③观察图1和图2,可知直线y m =与抛物线22y x mx =-及“孔像抛物线”L '有且只有三个交点,即直线y m =经过抛物线L 的顶点或经过抛物线L '的顶点或经过公共点A ,分别建立方程求解即可.【解答】解:(1)①(1,3)B - 、(5,3)B '-关于点A 中心对称,∴点A 为BB '的中点,设点(,)A m n ,1522m -+∴==,3302n -==,故答案为:(2,0);②所画图象如图1所示,(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,对称轴为直线1x =-,开口向上,当1x -时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,对称轴为直线3x =-,开口向下,当3x -时,L '的函数值随着x 的增大而减小,∴当31x --时,抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,故答案为:31x --;② 抛物线22y x mx =-的“孔像抛物线”是2268y x mx m =-+-,∴设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,抛物线M 与抛物线L '有唯一交点,∴分下面两种情形:)i 当1a '=-时,无论b '为何值,都会存在对应的m 使得60b m '-=,此时方程无解或有无数解,不符合题意,舍去;)ii 当1a '≠-时,△22(6)4(1)(8)0b m a c m ='--'+'+=,即22212364(1)84(1)0b b m m a m c a '-'+-'+⋅-''+=,整理得22[3632(1)]124(1)0a m b m b c a -'+-'+'-''+=,当m 取不同值时,两抛物线都有唯一交点,∴当m 取任意实数,上述等式都成立,即:上述等式成立与m 取值无关,∴23632(1)01204(1)0a b b c a -'+=⎧⎪-'=⎨⎪'-''+=⎩,解得18a '=,0b '=,0c '=,则218y x =,故答案为:2y ax =;③抛物线222:2()L y x mx x m m =-=--,顶点坐标为2(,)M m m -,其“孔像抛物线”L '为:22(3)y x m m =--+,顶点坐标为2(3,)N m m ,抛物线L 与其“孔像抛物线”L '有一个公共点(2,0)A m ,∴二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点时,有三种情况:①直线y m =经过2(,)M m m -,2m m ∴=-,解得:1m =-或0m =(舍去),②直线y m =经过2(3,)N m m ,2m m ∴=,解得:1m =或0m =(舍去),③直线y m =经过(2,0)A m ,0m ∴=,但当0m =时,2y x =与2y x =-只有一个交点,不符合题意,舍去,综上所述,1m =±.6.(2021•云南)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-.(1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.【分析】(1)当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,可得对称轴为直线4x =-,且抛物线22y x bx c =-++经过点(0,2)-,列出方程组即可得答案;(2)由r 是抛物线22162y x x =---与x 轴的交点的横坐标,可得2810r r ++=,218r r +=-,两边平方得222(1)(8)r r +=-,4222164r r r ++=,即可得结果4222160r r r -+=;(3)1m >正确,可用比差法证明,由(2)可得426210r r -+=,即753620r r r -+=,而975395952111601601r r r r r r m r r r r +-++--=-=+-+-,再由2810r r ++=,判断0r <,956010r r +-<,故950601r r r >+-,从而1m >.【解答】(1)解:22y x bx c =-++ 经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,即对称轴为直线4x =-,∴244c b =-⎧⎪⎨-=-⎪⎩-,解得162b c =-⎧⎨=-⎩;(2)证明:由题意,抛物线的解析式为22162y x x =---,r 是抛物线22162y x x =---与x 轴的交点的横坐标,221620r r ∴++=,2810r r ∴++=,218r r∴+=-222(1)(8)r r ∴+=-,4222164r r r ∴++=,4222160r r r ∴-+=;(3)1m >正确,理由如下:由(2)知:4222160r r r -+=;426210r r ∴-+=,753620r r r ∴-+=,而9753952111601r r r r r m r r +-++--=-+-9753959521(601)601r r r r r r r r r +-++--+-=+-7539562601r r r r r r -++=+-95601r r r =+-,由(2)知:2810r r ++=,281r r ∴=--,210r --< ,80r ∴<,即0r <,956010r r ∴+-<,∴950601r r r >+-,即10m ->,1m ∴>.7.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数2y x =+,2y x x =-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0)y x x=>,y x b =-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC ∆的面积为3时,求b 的值;(3)若函数22()y x x m =-的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当1W ,2W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【分析】(1)根据“等值点”的定义建立方程求解即可得出答案;(2)先根据“等值点”的定义求出函数3(0)y x x=>的图象上有两个“等值点”A ,同理求出1(2B b ,1)2b ,根据ABC ∆的面积为3可得111|||3222b b ⨯⨯=,求解即可;(3)先求出函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),再利用翻折的性质分类讨论即可.【解答】解:(1)在2y x =+中,令2x x =+,得02=不成立,∴函数2y x =+的图象上不存在“等值点”;在2y x x =-中,令2x x x -=,解得:10x =,22x =,∴函数2y x x =-的图象上有两个“等值点”(0,0)或(2,2);(2)在函数3(0)y x x =>中,令3x x=,解得:x =A ∴,在函数y x b =-+中,令x x b =-+,解得:12x b =,1(2B b ∴,1)2b ,BC x ⊥ 轴,1(2C b ∴,0),1||2BC b ∴=,ABC ∆ 的面积为3,∴111|||3222b b ⨯⨯=,当0b <时,2240b --=,解得b =-当0b <时,2240b -+=,△2(4124840=--⨯⨯=-<,∴方程2240b -+=没有实数根,当b 时,2240b --=,解得:b =综上所述,b 的值为-;(3)令22x x =-,解得:11x =-,22x =,∴函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),①当1m <-时,1W ,2W 两部分组成的图象上必有2个“等值点”(1,1)--或(2,2),21:2()W y x x m =-,22:(2)2()W y x m x m =--<,令2(2)2x x m =--,整理得:22(41)420x m x m -++-=,2W 的图象上不存在“等值点”,∴△0<,22(41)4(42)0m m ∴+--<,98m ∴<-,②当1m =-时,有3个“等值点”(2,2)--、(1,1)--、(2,2),③当12m -<<时,1W ,2W 两部分组成的图象上恰有2个“等值点”,④当2m =时,1W ,2W 两部分组成的图象上恰有1个“等值点”(2,2),⑤当2m >时,1W ,2W 两部分组成的图象上没有“等值点”,综上所述,当1W ,2W 两部分组成的图象上恰有2个“等值点”时,98m <-或12m -<<.8.(2021•大连)已知函数2211()22()x x m x m y x mx m x m ⎧-++<⎪=⎨⎪-+⎩,记该函数图象为G .(1)当2m =时,①已知(4,)M n 在该函数图象上,求n 的值;②当02x 时,求函数G 的最大值.(2)当0m >时,作直线12x m =与x 轴交于点P ,与函数G 交于点Q ,若45POQ ∠=︒时,求m 的值;(3)当3m 时,设图象与x 轴交于点A ,与y 轴交与点B ,过点B 作BC BA ⊥交直线x m =于点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,求m 的值.【分析】(1)先把2m =代入函数y 中,①把(4,)M n 代入222y x x =-+中,可得n 的值;②将02x 分为两部分确定y 的最大值,当02x <时,将211222y x x =-++配方可得最值,再将2x =代入222y x x =-+中,可得2y =,对比可得函数G 的最大值;(2)分两种情况:Q 在x 轴的上方和下方;证明POQ ∆是等腰直角三角形,得OP PQ =,列方程可得结论;(3)分两种情况:①03m ,如图2,过点C 作CD y ⊥轴于D ,证明()ABO BCD ASA ∆≅∆,得OA BD =,列方程可得结论;②3m <,如图3,同理可得结论.【解答】解:(1)当2m =时,22112(2)2222(2)x x x y x x x ⎧-++<⎪=⎨⎪-+⎩,①(4,)M n 在该函数图象上,2424210n ∴=-⨯+=;②当02x <时,22111112(222228y x x x =-++=--+,102-< ,∴当12x =时,y 有最大值是128,当2x =时,222222y =-⨯+=,1228< ,∴当02x 时,函数G 的最大值是128;(2)分两种情况:①如图1,当Q 在x 轴上方时,由题意得:12OP m =,45POQ ∠=︒ ,90OPQ ∠=︒,POQ ∴∆是等腰直角三角形,OP PQ ∴=,∴211111()22222m m m m =-⋅+⋅+,解得:10m =,26m =,0m > ,6m ∴=;②当Q 在x 轴下方时,同理得:211111()22222m m m m =⋅-⋅-解得:10m =,214m =,0m > ,14m ∴=;综上,m 的值是6或14;(3)分两种情况:①如图2,当03m 时,过点C 作CD y ⊥轴于D ,当0x =时,y m =,OB m ∴=,CD m = ,CD OB ∴=,AB BC ⊥ ,90ABC ABO CBD ∴∠=∠+∠=︒,90CBD BCD ∠+∠=︒ ,ABO BCD ∴∠=∠,90AOB CDB ∠=∠=︒ ,()ABO BCD ASA ∴∆≅∆,OA BD ∴=,当x m <时,0y =,即211022x x m -++=,220x x m --=,解得:112x =,212x +=,1812OA ∴=,且138m -, 点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,13OD c a ∴==-,13BD m OD m a ∴=-=+,OA BD = ,∴13m =+,解得:10m =(此时,A ,B ,C 三点重合,舍),2209m =;②当0m <时,如图3,过点C 作CD y ⊥轴于D ,同理得:OA BD =,当x m 时,0y =,则20x mx m -+=,解得:1x =,2m =),2m OA a +∴==,∴13c m a m =-=--,解得:10m=,216 21m=-;综上,m的值是209或1621-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数创新题
1.已知y是关于x的函数,若其函数图象经过点P(t,t),则称点P为函数图象上的“bingo点”,例如:y=2x﹣1上存有“bingo点”P(1,1)
(1)直线(填写直线解析式)上的每一个点都是“bingo点”;双曲线y=上的“bingo点”是
(2)若抛物线y=x2+(a+1)x﹣a2﹣a+2上有“bingo点”,且“bingo点”A、B(点A和点B能够重合)的坐标为A(x1,y1),B(x2,y2),求x12+x22的最小值
(3)若函数y=x2+(n﹣k+1)x+m+k﹣1的图象上存有唯一的一个“bingo点”,且当﹣2≤n≤1时,m的最小值为k,求k的值.
2.定义:若存有实数对坐标(x,y)同时满足一次函数y=ax+b和反比例函数y=﹣,则二次函数y=ax2+bx+c 为一次函数和反比例函数的“新时代”函数.
(1)试判断(需要写出判断过程):一次函数y=﹣x+3和反比例函数y=是否存有“新时代”函数,若存有,写出它们的“新时代”函数和实数对坐标:若不存有,请说明理由;
(2)已知:整数m,n,t满足条件t<n<9m,并且一次函数y=(6+n)x+2m+2与反比例函数y=存有“新时代”函数y=(3m+t)x2+(10m﹣t)x﹣2017,求m的值;
(3)若同时存有两组实数对坐标(x1,y1)和(x2,y2)使一次函数y=ax+2b(a≠0)和反比例函数y=﹣(c ≠0)有“新时代”函数,其中,实数a>2b>3c,a+b+c=0,设S=|x1﹣x2|,S的取值范围.
3.在平面直角坐标系中,对于点P(m,n)和点Q(x,y).给出如下定义:若,则称点Q为点P的“伴
随点”.例如:点(1,2)的“伴随点”为点(5,0).
(1)若点Q(﹣2,﹣4)是一次函数y=kx+2图象上点P的“伴随点”,求k的值.
(2)已知点P(m,n)在抛物线C1:y=﹣x上,设点P的“伴随点”Q(x,y)的运动轨迹为C2.
①直接写出C2对应的函数关系式.
②抛物线C1的顶点为A,与x轴的交点为B(非原点),试判断在x轴上是否存有点M,使得以A、B、Q、M
为顶点的四边形是平行四边形?若存有,求点M的坐标;若不存有,说明理由.
③若点P的横坐标满足﹣2≤m≤a时,点Q的纵坐标y满足﹣3≤y≤1,直接写出a的取值范围.
4.在平面直角坐标系xOy中,当图形W上的点P的横坐标和纵坐标相等时,则称点P为图形W的“梦之点”.(1)已知⊙O的半径为1.
①在点E(1,1),F(﹣,﹣),M(﹣2,﹣2)中,⊙O的“梦之点”为;
②若点P位于⊙O内部,且为双曲线y=(k≠0)的“梦之点”,求k的取值范围.
(2)已知点C的坐标为(1,t),⊙C的半径为,若在⊙C上存有“梦之点”P,直接写出t的取值范围.(3)若二次函数y=ax2﹣ax+1的图象上存有两个“梦之点”A(x1,y1),B(x2,y2),且|x1﹣x2|=2,求二次函数图象的顶点坐标.
5.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;
②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;
(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.
6.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:。

相关文档
最新文档