原子结构和元素周期律(精)
原子结构元素周期律知识总结

原子结构元素周期律知识总结一、原子结构1.几个量的关系(X)质量数(A)=质子数(Z)+中子数(N)质子数=核电荷数=原子序数=原子的核外电子数阳离子:核外电子数=质子数—所带电荷数阴离子:核外电子数=质子数+所带电荷数2.同位素(1)要点:同——质子数相同,异——中子数不同,微粒——原子。
(2)特点:同位素的化学性质几乎完全相同;3.核外电子排布规律(1).核外电子是由里向外,分层排布的。
(2).各电子层最多容纳的电子数为2n2个;最外层电子数不得超过8个(第一层为最外层不超过2个),次外层电子数不得超过18个,。
(3).以上几点互相联系。
二、元素周期律和周期表1.几个量的关系周期数=电子层数主族序数=最外层电子数=最高正价数 |最高正价|+|负价|=8O、F无最高正价,金属无负价2.周期表中部分规律总结(1).最外层电子数大于或等于3而又小于8的元素一定是主族元素;最外层电子数为1或2的元素可能是主族、副族或0族(He)元素;最外层电子数为8的元素是稀有气体元素(He除外)。
(2).在周期表中,第ⅡA与ⅢA族元素的原子序数差分别有以下三种情况:①第2、3周期(短周期)元素原子序数相差1;②第4、5周期相差11;③第6、7周期相差25。
(3).同主族相邻元素的原子序数差别有以下二种情况:①第ⅠA、ⅡA族,上一周期元素的原子序数+该周期元素的数目=下一同期元素的原子序数;②第ⅢA~ⅦA族,上一周期元素的原子序数+下一周期元素的数目=下一周期元素的原子序数。
4概念:元素的性质随着元素核电荷数的递增而呈周期性变化的规律叫做元素周期律。
本质:元素性质的周期性变化是元素原子的核外电子排布的周期性变化的必然结果。
(1)、半径(除稀有气体外)同周期元素原子从左到右逐渐减少,同主族元素原子从上到下逐渐增大。
(2)不同电子层数的粒子,电子层数多半径大。
(3)相同核外电子排布的粒子,核电荷数大半径小。
(4)同种元素的原子阴离子半径大于原子半径,原子半径大于阳离子半径。
物质结构、元素周期律精解精析

《物质结构、元素周期律精解精析》一、知识储备1、原子的组成数量关系:质量数(A )=质子数(Z )+中子数(N)质子数(Z )=核电荷数=核外电子数=原子序数2、结构示意图结构示意图包括原子结构示意图和离子结构示意图。
如:Cl 原子Cl -离子3、元素周期表中的基本规律①周期数=原子核外电子层数 主族序数=最外层电子数=最高正化合价(O 、F 除外)②最高正化合价+最低负化合价的绝对值=8③同周期ⅡA 族与ⅢA 族元素的原子序数之差有以下三种情况:第2、3周期(短周期)相差1;第4、5周期相差11;第6、7周期相差25。
这里注意,同学们往往容易疏忽第4到第7周期增加了过渡元素。
④同主族相邻元素的原子序数(IA 族、ⅡA 族)关系为:下一周期元素的原子序数-上一周期元素的原子序数=上一周期元素的数目。
⑤每一周期排布元素的数目为(设n 为周期数):奇数周期为(n +1)2/2、偶数周期为(n +2)2/2。
⑥半径规律:在元素周期表中,原子半径同周期——从左到右逐渐减小(0族除外);同主族——从上到下逐渐增大;离子半径同主族——同价离子从上到下逐渐增大,同周期——阴离子半径大于阳离子半径。
同学们解题时往往容易误认为在同一周期中离子半径也是从左到右逐渐减小的。
⑦单质的沸点规律:元素周期表中,同一主族从上到下,金属元素(部分金属特殊)对应的单质的沸点由高到低;非金属元素对应的单质的沸点由低到高。
⑧氢化物的沸点:在元素周期表中,同一主族从上到下,非金属元素的氢化物的沸点一般从低到高,但注意NH 3、H 2O 、HF 中由于氢键的存在,使他们的沸点比同主族其他氢化物的沸点要高。
⑨金属元素原子的最外层电子数一般小于4,而非金属元素原子的最外层电子数一般大于或等于4,但H 、He 、B 原子的最外层电子数均小于4,其中H 、B 为非金属,He 为稀有气体元素;虽然Ge 、Sn 、Pb 、Sb 、Bi 的最外层电子数大于或等于4,但他们为金属元素。
《原子结构与元素周期律》知识总结

电第一章 原子结构与元素周期律第一节原子结构有关原子结构的知识是自然科学的重要基础知识之一。
原子是构成物质的一种基本微粒,物质的组成、性质和变化都与原子结构密切相关。
1、原子核核素§1原子的组成及微粒间的关系构成原子或离子微粒间的数量关系: 1质子数Z +中子数N =质量数A =原子的近似相对原子质量质量关系2原子的核外电子数=核内质子数=核电荷数3阳离子核外电子数=核内质子数-阳离子所带电荷数 4阴离子核外电子数=核内质子数+阴离子所带电荷数 元素、核素、同位素)(X A Z 原子原质子:相对原子质量为1,1个质子带1中子:相对质量为1,不带电核处电子:质量忽略不计,1个电子例如:氢元素有、、三种不同的核素,它们之间互称同位素。
放射性同位素的应用:1、作为放射源和同位素示踪。
2、用H11H11于疾病诊断和治疗。
§2核外电子排布:如:53号元素碘的电子排布为,2-8-18-18-7元素的化学性质与原子最外层电子排布的关系:如:钠原子最外层只有1个电子,容易失去这个电子而达到稳定结构,因此钠元素在化合物中通常显1价;氯原子最外层有7个电子,只需得到1个电子便可达到稳定结构,因此氯元素在化合物中可显-1价。
第2节元素周期律和元素周期表 §1元素周期律外层电子数从1~8)。
(2)原子半径呈周期性变化(由大~小,稀有气体除外)。
(3)元素的主要化合价呈周期性变化(正化价从1~7,负化合价从-4~-1)。
元素周期律的实质元素原子的核外电子排布呈周期性变化§2元素周期表排列原则(1)按原子序数递增的顺序从左到右排列 (2)将电子层数相同的元素排成一个横行(1横称为1个周期) (3)把最外层电子数相同的无素(个别除外)排成一个纵列(1个纵列称为1个族)元素周期表元素周期律 原子半径比较方法:(1)电子层数越多,半径越大;电子层数越少,半径越小(即周期越大,半径越大)(2)当电子层结构同时,核电荷数多的半径小,核电荷数少的半径大,如:F ->Na +>Mg 2(3)对于同种元素的各种微粒,核外电子数越多,半径越大;核外电子数越少,半径越小。
第一章 物质结构元素周期律(知识点总结)

Z 第一章物质结构元素周期律班级姓名一、原子结构质子(Z个)原子核注意:中子(N个)质量数(A)=质子数(Z)+中子数(N) 1.原子(A X)原子序数=质子数= 核电荷数=原子的核外电子数核外电子(Z个)2.原子核外电子的排布规律:①电子总是尽先排布在能量最低的电子层里;②各电子层最多容纳的电子数是2n2;③最外层电子数不超过8个(K层为最外层不超过2个),次外层不超过18个,倒数第三层电子数不超过32个。
电子层:一(能量最低)二三四五六七对应表示符号: K L M N O P Q3.元素、核素、同位素元素:具有相同核电荷(质子)数的同一类原子的总称。
核素:具有一定数目质子和一定数目中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素(对于原子来说)二、元素周期表1.编排原则:①按原子序数递增的顺序从左到右排列;②将电子层数相同......的各元素从左到右排成一横行..③把最外层电子数相同........的元素按电子层数递增的顺序从上到下排成一纵行..(注意:周期序数=原子的电子层数;主族序数=原子最外层电子数)2.结构特点:核外电子层数元素种类第一周期 1 2种元素短周期第二周期 2 8种元素周期第三周期 3 8种元素元(7个横行)第四周期 4 18种元素素(7个周期)长周期第五周期 5 18种元素周第六周期 6 32种元素期不完全周期:第七周期 7 未填满(已有26种元素)表主族:7个主族族副族:7个副族(18个纵行)第Ⅷ族:三个纵行(16个族)零族:稀有气体三、元素周期律1.元素周期律:元素的性质(核外电子排布、原子半径、主要化合价、金属性、非金属性)随着核电荷数的递增而呈周期性变化的规律。
元素性质的周期性变化实质是元素原子核外电..........子排布的周期性变化.........的必然结果。
2.同周期元素性质递变规律(从左到右):电子层数相同,最外层电子数依次增加,原子半径依次减小,金属性减弱,非金属性增强,与H2的化合由难到易,氢化物的稳定性由弱到强。
高一化学元素周期律

NaOH Na × + ··O··+ × H → Na+[ ·O···H]-
··
· · ×
×
H2O2
2H
×
+2
··O·· ··
→
H
×···O······O··×·
H
3、一些重要物质的分子式
H︰H H
H︰‥‥N︰H H
‥ H︰O︰
‥ H
‥
‥
〔 H︰N︰H 〕+〔︰Cl︰〕—
3、元素周期表的结构 (1)周期:由电子层数决定:7个横行为7个周期
各周期稀有气体电子排布:
1 2种元素 2 8 种元素 3 8种元素 4 18种元素 5 18种元素 6 32种元素 7 28种元素
短周期
He 2 Ne 2 8
Ar 2 8 8
长周期
Kr 2 8 18 8 Xe 2 8 18 18 8
14Si:最外层电子数是次外层的一半,最内层的 两倍;地壳中含量排第二位;SiO2唯一原子晶 体氧化物(中学);气态氢化物SiH4;含氧酸 H4SiO4、H2SiO3(比碳酸弱);SiO2是硅酸盐水泥、 玻璃的主要成分。 15P:最外层比次外层少3个电子;PH3鬼火燃烧; P4白磷分子晶体键角60°;含氧酸有二:H3PO4、 HPO3等,磷酸盐有三种形式;磷酸通常为固体; 式量为98。
质
液导电,无 无延展性, 无延展性, 延展性不挥 易挥发升华,不挥发不升
延展性,有金 属光泽
发,易溶于 部分溶于水 华,不溶于
水
任何溶剂
原子量(相对原子质量)
1.国际定义 以1个碳—12原子的质量的1/12为标准,其它原 子的质量与它比较所得的数值即是该原子的相 对原子质量。 该值为“某原子的相对原子质量”,即“同位 素 的相对原子质量”。
原子结构与元素周期律(精)

第10章原子结构与元素周期律思考题1.量子力学原子模型是如何描述核外电子运动状态的?解:用四个量子数:主量子数——描述原子轨道的能级;角量子数——描述原子轨道的形状, 并与主量子数共同决定原子轨道的能级;磁量子数——描述原子轨道的伸展方向;自旋量子数——描述电子的自旋方向。
2.区别下列概念:(1)Ψ与∣Ψ∣2,(2)电子云和原子轨道,(3)几率和几率密度。
解:(1)Ψ是量子力学中用来描述原子中电子运动状态的波函数,是薛定谔方程的解;∣Ψ∣2反映了电子在核外空间出现的几率密度。
(2)∣Ψ∣2 在空间分布的形象化描述叫电子云,而原子轨道与波函数Ψ为同义词。
(3)∣Ψ∣2表示原子核外空间某点附近单位体积内电子出现的几率,即称几率密度,而某一微小体积dV内电子出现的几率为∣Ψ∣2·dV。
3.比较波函数角度分布图与电子云角度分布图,它们有哪些不同之处?解:不同之处为(1)原子轨道的角度分布一般都有正负号之分,而电子云角度分布图均为正值,因为Y 平方后便无正负号了。
(2)除s轨道的电子云以外,电子云角度分布图比原子轨道的角度分布图要稍“瘦”一些,这是因为︱Y︱≤ 1,除1不变外,其平方后Y2的其他值更小。
4.科顿原子轨道能级图与鲍林近似能级图的主要区别是什么?解:Pauling近似能级图是按能级高低顺序排列的,把能量相近的能级组成能级组,依1、2、3…能级组的顺序,能量依次增高。
按照科顿能级图中各轨道能量高低的顺序来填充电子,所得结果与光谱实验得到的各元素原子中电子排布情况大致相符合。
科顿的原子轨道能级图指出了原子轨道能量与原子序数的关系,定性地表明了原子序数改变时,原子轨道能量的相对变化。
从科顿原子轨道能级图中可看出:原子轨道的能量随原子序数的增大而降低,不同原子轨道能量下降的幅度不同,因而产生能级交错现象。
但氢原子轨道是简并的,即氢原子轨道的能量只与主量子数n有关,与角量子数l无关。
5.判断题:(1)当原子中电子从高能级跃迁至低能级时,两能级间的能量相差越大,则辐射出的电磁波波长越大。
第九章 原子结构和元素周期律(最终版)

三个量子数的取值限制和物理意义
1. 主量子数 (principal quantum number) — n n = 1, 2, 3… 非零的任意正整数 n 又称为电子层数(electron shell number) 光谱学上:K、L、 M、N、O、P、Q… 物理意义:决定电子能量和离核平均距离 n 它决定电子在核外空间出现概率最大的 区域离核的远近,并且是决定电子能量高低的 主要因素。
三、测不准原理(Uncertainty Principle)
1927海森堡(Heisenberg)提出的著名的 测不准原理。
Δx·Δpx≥h/4π
测不准原理是量子力学的基本原理之一。 它并不意味着微观粒子运动无规律可言, 只是说它不符合经典力学的规律,应该用量子 力学来描述微观粒子的运动。
第二节
二、电子的波粒二象性 (particle-wave duality)
1905 年爱因斯坦根 据光的干涉、衍射和光电 效应,提出了光具有波粒 二象性。
L de Broglie的假设
1924年法国物理学家德 布罗意(L.de Brogile) 在研究 电子的运动规律时,受光的 波粒二象性的启发,大胆提 出了电子等实物粒子(微观粒 子:原子、质子、中子)不仅 具有粒子性,也具有波动性 h h 的假设。提出了“物质波” λ p m 公式,称为德布罗意关系式,
氢原子的波函数
一、量子数
Schrö dinger E,奥地利物理学 家,于1926年提出了微观粒子
运动的波动方程,即薛定鄂方 程,通过复杂的求解可得出如 下结论: (1) 波函数 是Schrodinger方程的解,它 不是一个数值,而是一个空间坐标的函数式。
(2) 解 Schrodinger 方程可以获得一系列 合理的解 及其相应的能量 E ,电子的能 量是不连续的(量子化)。每一能量 E 称 为“定态”,能量最小的称为 “基态” , 其余的称为“激发态” 。 (3) 本身的物理意义不明确, 但 ψ 却 有明确的物理意义。它表示在空间某处电子 出现的概率密度,即在该点周围微单位体积 中电子出现的概率,常用电子云来形象直观 地表示它。如下图:
第一章 原子结构与元素周期律 知识点

第一章原子结构元素周期律考点一、原子结构核外电子排布一、原子构成1.构成原子的微粒及其作用原子(A Z XZ 个)——决定元素的种类[(A -Z )个]在质子数确定后决定原子种类同位素Z 个)——最外层电子数决定元素的化学性质2.质量数(1)概念:将原子核中质子数和中子数之和称为质量数,常用A 表示。
(2)质量数为A ,质子数为Z 的X 原子可表示为A Z X 。
如:146C 的质量数为14,质子数为6,中子数为8。
2311Na +的质量数为23,质子数为11,核外电子数为10。
3.微粒之间的关系(1)原子中:质子数(Z )=核电荷数=核外电子数(2)质量数(A )=质子数(Z )+中子数(N )。
(3)阳离子的核外电子数=质子数-阳离子所带的电荷数。
(4)阴离子的核外电子数=质子数+阴离子所带的电荷数。
4.【拓展】微粒符号周围数字的含义二、元素、核素、同位素1.元素、核素、同位素的关系【特别提醒】1.同位素的研究对象是原子;不同核素之间的转化属于核反应,不属于化学反应。
2.同位素的“六同”:同一元素,质子数相同,核电荷数相同,和外电子数相同,在元素周期表中位置相同,化学性质相同。
“三不同”:中子数不同,质量数不同,物理性质不同。
3.氢元素的三种核素11H :用字母H 表示,名称为氕,不含中子;21H :用字母D 表示,名称为氘或重氢,含有1个中子;31H :用字母T 表示,名称为氚或超重氢,含有2个中子。
4.几种重要核素的用途核素23592U 146C 21H 31H用途核燃料考古断代制氢弹三、核外电子排布1.核外电子排布规律2.核外电子排布的表示方法——原子或离子结构示意图(1)原子结构示意图:(2)离子结构示意图:如Cl-:、Na+:。
3.核外电子排布与元素性质的关系(1)金属元素原子的最外层电子数一般小于4,较易失去电子,形成阳离子,表现出还原性,在化合物中显正化合价。
“”(2)非金属元素原子的最外层电子数一般大于或等于4,较易得到电子,活泼非金属原子易形成阴离子,表现出氧化性,在化合物中主要显负化合价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,1,0, ;2,1,1, ;2,1,-1,
在书写20号元素以后基态原子的电子组态时,虽然电子填充按近似能级顺序进行,但电子组态必须按电子层排列。
为简化电子组态的书写,把内层达到稀有气体电子层结构的部分称为原子芯,用稀有气体元素符号加方括号表示。原子芯写法还指明了元素的价层电子结构。化学反应中价电子的结构发生改变,引起元素化合价的变化;原子芯部分的电子结构一般不改变。价电子所处的电子层称为价层。
Rn,l(r)称为波函数的径向部分或径向波函数,它是电子与核距离r的函数,与n和l有关。Yl,m(θ,φ)称为波函数的角度部分或角度波函数,它是方位角θ和φ的函数,与l和m有关,表达电子在核外空间的取向。角度波函数Yl ,m(θ,φ)的图形随方位角改变而变化。
1. s轨道角度分布图是一个球形。
2. p轨道角度分布图是双波瓣图形,俗称“哑铃”形,每一波瓣是一个球体。三个p轨道分别在x轴、y轴和z轴方向上伸展。坐标平面上波函数值为零,称为节面。p轨道的电子云图形比相应的角度波函数图形瘦,而且两个波瓣没有代数符号的区别。
2.1.2原子轨道的角度分布图和径向分布函数图;了解原子结构的有核模型和Bohr模型;了解了解元素和健康的关系。
2.1.3电子组态的书写、与元素周期表的关系;元素性质的变化规律。
2.2难点
2.2.1电子的波粒二象性、测不准原理;波函数和原子轨道。
2.2.2原子轨道的角度分布图和径向分布函数图。
2.2.3熟悉电子组态与元素周期表的关系。
电子层符号
K
L
M
N ···
n
1
2
3
4 ···
(2)轨道角动量量子数l决定原子轨道的形状,取值受主量子数限制,只能取小于n的正整数和零:0、1、2、3 … (n–1),共可取n个值,给出n种不同形状的轨道。
轨道角动量量子数还决定多电子原子电子能量高低。当n给定,l愈大,原子轨道能量越高。
l又称为能级或电子亚层。电子亚层用下列符号表示:
离子的电子组态仿照原子电子组态的方式书写。
4.3.3元素周期表
4.3.3.1能级组和元素周期
按能级的高低把原子轨道划分为若干能级组,不同能级组的原子轨道之间能量差别大,同一能级组内各能级之间能量差别小。能级组与近似能级顺序一致。(n+0.7l)计算法同样能预测能级组。
每一个能级组对应元素周期表的一个周期。第1能级组只有1s能级,容纳2个电子,对应的第1周期只有2个元素。。其后第n能级组从ns能级开始到np能级结束,形成第n周期。根据电子排布规律,各周期元素的数目按2、8、8、18、18、32、32的顺序增加。
4.1.3测不准原理
海森堡指出,无法同时确定微观粒子的位置和动量,它的位置越准确,动量(或速度)就越不准确;反之,它的动量越准确,位置就越不准确:
△x·△px≥h/4π
式中△x为坐标上粒子在x方向的位置误差,△px为动量在x方向的误差。
测不准原理表明微观粒子不存在确定的运动轨迹,可以用量子力学来描述它在空间出现的概率及其它全部特征。
3讲授学时[TOP]
建议4~6学时
4内容提要[TOP]第一节第二节第三节第四节第五节
4.1第一节 氢原子的结构
4.1.1氢光谱和氢原子的玻尔模型
α粒子散射实验提供了原子结构的有核模型,但卢瑟福模型没有解决原子核外的空间如何被电子所占有问题。
量子力学基于两点认识原子结构:一是量子化现象,二是测不准原理。
4.1.4氢原子的波函数
电子在原子核外空间出现的概率可以用波函数ψ来描述。 表示在原子核外空间某处电子出现的概率密度,即在该处单位体积中电子出现的概率。 的几何图形表现电子概率密的度大小,俗称电子云。
4.2第二节 量子数和原子轨道[TOP]
4.2.1量子数
原子中电子的波函数(原子轨道)是空间坐标的函数,由一套量子数n、l、m来确定,记作ψn,l,m。
能级符号
s
p
d
f
g ···
l
0
1
2
3
4 ···
(3)磁量子数m决定原子轨道的空间取向,取值受轨道角动量量子数的限制,可以取-l到+l的2l+1个值:0、±1、±2,…,±l。所以,l亚层共有2l+1个不同空间伸展方向的原子轨道。
磁量子数与电子能量无关。l亚层的2l+1个原子轨道能量相等,称为简并轨道或等价轨道。
屏蔽作用主要来自内层电子。当l相同时,n越大,电子层数越多,外层电子受到的屏蔽作用越强,轨道能级愈高:
E1s<E2s<E3s<…
E2p<E3p<E4p<…
…
n相同时,l愈小,径向分布函数D(r)的峰越多,电子在核附近出现的可能性越大,受到的屏蔽就越弱,能量就愈低:
Ens<Enp<End<Enf<…
n、l都不同时,一般n越大,轨道能级愈高。但有时会出现反常现象,比如E4s<E3d,称为能级交错。
普朗克提出,热物体吸收或释放能量不连续,称量子化的。
氢原子的线状光谱也表现了原子辐射能量的量子化。
玻尔假定:电子沿着固定轨道绕核旋转;当电子在这些轨道上跃迁时就吸收或辐射一定能量的光子。轨道能量为
,n=1,2,3,4,…
4.1.2电子的波粒二象性
波粒二象性是指物质既有波动性又有粒子性的特性。光子的波粒二象性关系式
4.3第三节 电子组态和元素周期表[TOP]
4.3.1多电子原子的能级
多电子原子中某电子受其它电子的排斥,抵消了部分核电荷它的吸引,称为屏蔽作用,屏蔽常数σ表示抵消掉的部分核电荷。有效核电荷Z′是核电荷Z和屏蔽常数σ的差:
Z′=Z–σ
电子能量的计算:
电子的能量与n、Z、σ有关。n越小,能量越低;Z愈大,能量愈低;σ愈大,能量越高。
量子数的取值限制和它们的物理意义如下:
(1)主量子数n是决定电子能量的主要因素,可以取任意正整数值:1,2,3,…。n越小,能量越低。n= 1时能量最低。氢原子的能量只由主量子数决定。多电子原子由于存在电子间的静电排斥,能量在一定程度上还取决于量子数l。
主量子数也称为电子层,决定原子轨道的大小。n愈大,原子轨道也愈大。电子层用下列符号表示:
1.3掌握n、l、m、s 4个量子数的意义、取值规律及其与电子运动状态的关系;掌握基态原子电子组态书写的三条原则,正确书写基态原子电子组态和价层电子组态。
2重点难点[TOP]
2.1重点
2.1.1原子轨道、概率密度的观念;n、l、m、s4个量子数;电子组态和价层电子组态。熟悉的意义和特征;熟悉电子组态与元素周期表的关系,有效核电荷、原子半径及电负性变化规律。
鲍林的近似能级顺序是:
E1s<E2s<E2p<E3s<E3p<E4s<E3d<E4p<…
徐光宪用(n+0.7l)估算原子轨道的能级。
4.3.2原子的电子组态
原子核外的电子排布又称为电子组态。基态原子的电子排布遵守三条规律。
3.3.2.1Pauli不相容原理
在同一原子中不可能有2个电子具有四个完全相同的量子数。或者说一个原子轨道最多只能容纳自旋相反的两个电子。据此,一个电子层最多可以容纳2n2个电子。
每个电子层的轨道总数为n2。
(4)自旋角动量量子数s表示电子自旋的两种相反方向,可以取 和 两个值。一个原子轨道由n、l和m三个量子数决定,但电子的运动状态由n、l、m、s四个量子数确定。电子自旋也可用箭头符号↑和↓表示,自旋方向相同称为平行自旋,方向相反称反平行自旋。一个原子轨道最多容纳自旋相反的两个电子,每电子层最多容纳的电子总数应为2n2。
3. d轨道的角度分布图一般各有两个节面,四个橄榄形波瓣。 的图形很特殊,负波瓣呈环状。dxy、dxz和dyz的波瓣在坐标轴夹角45o处伸展, 和 在坐标轴上伸展。共轴线的波瓣代数符号相同。电子云图形相应比较瘦且没有符号的区别。
4.2.3原子轨道的径向分布
原子轨道的径向分布可以用径向径向分布函数作图,表现电子离核的远近。
表9-1量子数和轨道数
主量子数
n
轨道角动量量子数
l
磁量子数
m
波函数
ψ
同一电子层的轨道数(n2)
同一电子层容纳电子数(2n2)
1
0
0
1
2
2
0
0
4
8
1
0
±1
* ,*
3
0
0
9
18
1
0
±1
* ,*
2
0
±1
* ,*
±2
* ,*
﹡这些实波函数是经过组合以后得到的。
4.2.2原子轨道的角度分布
原子轨道有其图形和空间方向。把波函数ψn,l,m(r,θ,φ)写成:ψn,l,m(r,θ,φ)=Rn,l(r)·Yl,m(θ,φ)
第九章原子结构和元素周期律
首页
基本要求
重点难点
讲授学时
内容提要
1基本要求[TOP]
1.1了解原子结构的有核模型和Bohr模型;电子的波粒二象性、测不准原理;了解了解元素和健康的关系。
1.2熟悉原子轨道和概率密度的观念;熟悉原子轨道的角度分布图、径向分布函数图的意义和特征;熟悉电子组态与元素周期表的关系,有效核电荷、原子半径及电负性变化规律。
4.3.3.3元素分区
(1)s区元素的价层电子组态是ns1和ns2,包括ⅠA和ⅡA族元素。除H外都是活泼金属。
(2)p区元素的价层电子组态是ns2np1~6,包括ⅢA~ⅧA族。大部分是非金属元素。ⅧA族是稀有气体。第1周期的He在p区,电子组态是1s2,属稀有气体。p区元素多有可变的氧化值。
(3) d区元素的价层电子组态一般为(n-1)d1~8ns2,包括ⅢB~ⅧB族。它们都是金属,每种元素都有多种氧化值。
4.3.2.2能量最低原理