鲁棒控制与鲁棒控制器设计PPT课件

合集下载

鲁棒稳定性鲁棒控制

鲁棒稳定性鲁棒控制

即为设计K使得A+BK+EF稳定,也即
F(sI A BK )1 E 1
实验
Furuta摆实验
三自由度直升机系统
求使最小的控制器KT就zw(是jH)最优 设计问题。
传递函数的H范数
对于系统的传递函数G (s),若其在右半平面无极点,定义
下面的范数为H范数
Gu
G(s) sup 2 ,
u
2
其中
u 1 u( j) 2 d
2 2
定理:
G(s) sup [G( j)] R
闭环系统鲁棒稳定性分析
▪ 加性不确定性
取k=1,此时闭环传递函数的分母为
s4 r3s3 r2s2 r1s 1 s3 2s2 2s 1 s4 p3s3 p2s2 p1s 2
其中
p1 [2,3], p2 [5,6], p3 [3,4]
此时上面的闭环系统稳定当且仅当下面的四个多项式
稳定
F1(s) 2 3s 5s2 3s3 s4 F2 (s) 2 3s 6s2 3s3 s4 F3(s) 2 2s 5s2 4s3 s4 F4 (s) 2 2s 6s2 4s3 s4
S(s) sup [S( j)] R 1
其中 ()表示最大奇异值,即 ( A) {max (A*A)}2 ,
A*为A的共轭转置阵,
m
a
为最大特征值。
x
H控制问题即为对于给定的 > 0,设计控制器K
使得闭环系统稳定且满足
S(s)
H理论中考虑干扰信号是不确定的,而是属于一个
可描述集
L2
在前面各章中,我们总是假设已经知道了受控对象的 模型,但由于实际中存在种种不确定因素,如:
• 参数变化; • 未建模动态特性; • 平衡点的变化; • 传感器噪声; • 不可预测的干扰输入;

鲁棒控制课件

鲁棒控制课件

.
• 结构奇异值 实际的被控对象可以看作是对象模型 集合 G 中一个元素。结构不确定性Δ 描 述系统模型与标称模型的偏离程度。为 了评价闭环系统的稳定性和性能,可以 将闭环系统分为两部分:广义标称对象 M ( s )和不确定性Δ ,得到如图 所示的M −Δ 结构。
传递函数矩阵 M ( s )包含对象的标称模型、控制器和不确定性的加 权函数。摄动块Δ 是块 对角矩阵,它包含各种类型的不确定性摄动。Δ 结构是根据实际问 题的不确定性和系统所需要 的性能指标来确定的,它属于矩阵集 Δ ( s)。这个集合包含三部分的 块对角结构: (1)摄动块的个数 (2)每个摄动子块得类型 (3)每个摄动子块的维数 本文考虑两类摄动块:重复标量摄动块和不确定性全块。前者表示 对象参数不确定性,后 者表示对象动态不确定性。 定义块结构 Δ ( s)为 {}
实际应用
非线性系统设计的基本问题是我们仅知道被 控对象的部分动态信息,无法获得被控对象的精 确模型,所建立的模型要反映实际的被控对象,就 必然存在未知项和不确定项;如果在控制器设 计阶段没有恰当地处理这些不确定项,可能会使 得被控系统的性能明显地恱化,甚至造成整个闭 环系统不稳定。控制器必须能够处理这些未知 项戒不确定项,因而估计和鲁棒是设计一个成功 的控制器的关键。自适应控制和鲁棒控制及其 相结合的控制器是能够处理这些未知项戒不确 定项,以获得期望的暂态性能和稳态跟踪精度行 之有效的方法。
研究问题:
• 鲁棒控制器问题是控制系统 设计中鱼待解决的问题之一, 它是在所描述的被控对象不 确定性允许范围内,综合其控 制律,使系统保持稳定和性能 鲁棒. • 鲁棒控制理论包括鲁棒性分 析和鲁棒设计两大类问题. • 由于系统中的不确定性对系 统的性能能否保持有决定性 的影响,且高性能指标的保持 要求高精度的标称模型.

鲁棒控制理论第一章

鲁棒控制理论第一章




模型的不确定性
输出
输入
y = (P + D )u + n
未知对象的摄动
未知噪声或干扰
标称对象的传递函数


不确定性的来源 参数和结构(阶次)的变化规律未知 高频下的未建模动态 更严酷的工作条件 控制系统本身造成的不确定性 广义对象的建模 从广义上来说,系统不确定性按结构可以分为以下两类: 不确定性的结构未知,仅知不确定性变化的界限。 不确定性的结构已知,存在着参数的变化(参数不确定 性)。

再次,既然鲁棒性所表征的是“抗干扰的能力”,则必与 所言事物的某种形式的“扰动”相关联。如
对于控制系统而言,某些参量的变化、外界干扰等都
可视为扰动;
对于矩阵而言,其元素的摄动即是一种扰动。 “扰动”往往都有多种形式,某事物的某性质针对事
物不同形式的扰动决定了该事物、该性质的不同的鲁 棒性。

在一个具体的鲁棒控制系统设计问题中,上述几方面因素 都要有具体的内容或含义。 根据这些因素的内容或含义的不同便决定了不同的鲁棒控 制系统设计问题:
由于我们所研究的系统从性质到描述形式都是多种多

样的,而且它们所受的扰动也可以具有各种特定形式,
人们对于控制系统的性能要求也可能是多方面的, 所以这些因素的不同组合便给出了众多的鲁棒控制系
Lyapunov函数在鲁棒性分析与控制器设计中的应用。 Matlab/MathWorks软件包
三、课程内容

课程性质:
博士生基础课,重点是鲁棒控制理论的基础
讨论对象:单输入单输出,线性,时不变,有限维 前导课程:线性控制系统理论 目的:扎实的基础

现代控制理论鲁棒控制资料课件

现代控制理论鲁棒控制资料课件

鲁棒优化算法的应用
01
02
03
鲁棒优化算法是一种在不确定环 境下优化系统性能的方法。
鲁棒优化算法的主要思想是在不 确定环境下寻找最优解,使得系 统的性能达到最优,同时保证系 统在不确定因素影响下仍能保持 稳定。
鲁棒优化算法的主要应用领域包 括航空航天、机器人、能源系统 、化工过程等。
05
现代控制理论鲁棒控制实 验及案例分析
现代控制理论鲁棒控制的成就与不足
• 广泛应用在工业、航空航天、医疗等领域
现代控制理论鲁棒控制的成就与不足
01
02
不足
控制系统的复杂度较高,难以设 计和优化
对某些不确定性和干扰的鲁棒性 仍需改进
03
实际应用中可能存在实现难度和 成本问题
04
未来研究方向与挑战
研究方向
深化理论研究,提高鲁棒控制器 的设计和优化能力
线性鲁棒控制实验
线性鲁棒控制的基本原理
01
介绍线性鲁棒控制的概念、模型和控制问题。
线性鲁棒控制实验设计
02 说明如何设计线性鲁棒控制实验,包括系统模型的建
立、鲁棒控制器的设计和实验步骤。
线性鲁棒控制实验结果分析
03
对实验结果进行分析,包括稳定性、性能和鲁棒性能
等。
非线性鲁棒控制实验
非线性鲁棒控制的基本原理
03
线性系统的分析与设计:极点配置、最优控制和最优
估计等。
非线性控制系统
1
非线性系统的基本性质:非线性、不稳定性和复 杂性。
2
非线性系统的状态空间表示:非线性状态方程和 输出方程。
3
非线性系统的分析与设计:反馈线性化、滑模控 制和自适应控制等。
离散控制系统

鲁棒控制

鲁棒控制
研究
鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动。因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。
现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。
1鲁棒性(robustness)就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。鲁棒性一般定义为在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能保证。
鲁棒控制方法适用于稳定性和可靠性作为首要目标的应用,同时过程的动态特性已知且不确定因素的变化范围可以预估。飞机和空间飞行器的控制是这类系统的例子。
过程控制应用中,某些控制系统也可以用鲁棒控制方法设计,特别是对那些比较关键且(1)不确ห้องสมุดไป่ตู้因素变化范围大;(2)稳定裕度小的对象。
但是,鲁棒控制系统的设计要由高级专家完成。一旦设计成功,就不需太多的人工干预。另一方面,如果要升级或作重大调整,系统就要重新设计。
2当今的自动控制技术都是基于反馈的思想。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论应用于自动控制的关键是,做出正确的测量和比较后,如何利用误差才能更好地纠正系统。

《鲁棒控制系统》课件

《鲁棒控制系统》课件
详细描述
在工业自动化生产线上,各种设备、传感器和执行器需要精 确控制和协调工作。鲁棒控制系统能够有效地处理各种不确 定性,如设备故障、传感器漂移等,保证整个生产过程的稳 定性和效率。
航空航天
总结词
在航空航天领域,鲁棒控制系统用于 确保飞行器的安全和稳定运行。
详细描述
航空航天领域的飞行器面临着复杂的 环境和严苛的飞行条件,鲁棒控制系 统能够有效地处理各种不确定性和干 扰,保证飞行器的安全和稳定运行。
05
鲁棒控制系统的发展趋势 与展望
人工智能与鲁棒控制
人工智能在鲁棒控制中的应用
利用人工智能算法优化控制策略,提高系统的鲁棒性和 自适应性。
深度学习在鲁棒控制中的潜力
通过训练深度神经网络,实现对不确定性和干扰的高效 处理,提升系统的鲁棒性能。
网络化与鲁棒控制
网络控制系统的发展
随着网络技术的进步,网络化控制系统成为研究的热点,对鲁棒控制提出了新的挑战和 机遇。
鲁棒优化控制
总结词
通过优化方法来设计鲁棒控制律,以实现系统在不确定性和干扰下的最优性能 。
详细描述
鲁棒优化控制是一种基于优化方法的控制策略,通过考虑系统的不确定性和干 扰,来设计最优的控制律。这种方法能够保证系统在各种工况下的最优性能, 提高系统的鲁棒性和适应性。
自适应控制
总结词
通过在线调整控制律参数来适应系统参数的 变化和外部干扰。
要点二
详细描述
电力系统的稳定运行对于整个社会的正常运转至关重要。 鲁棒控制系统能够有效地处理电力系统中的各种不确定性 和干扰,保证电力供应的稳定和可靠。
04
鲁棒控制系统的挑战与解 决方案
系统不确定性
系统不确定性描述
01

鲁棒控制讲义-第1-2章

鲁棒控制讲义-第1-2章

第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。

在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。

这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。

经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。

1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。

如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。

模型不确定性包括:参数、结构及干扰不确定性等。

1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。

以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。

事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。

鲁棒控制与鲁棒控制器设计

鲁棒控制与鲁棒控制器设计

9
高等应用数学问题的MATLAB求解——MATLAB语
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
2020/7/15东北大学Fra bibliotek息学院10
【例7-2】
高等应用数学问题的MATLAB求解——MATLAB语
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
2020/7/15
东北大学信息学院
5
【例7-1】
高等应用数学问题的MATLAB求解——MATLAB语
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
2020/7/15
东北大学信息学院
若想在对象模型的输出端恢复环路传递函数,则
高等应用数学问题的MATLAB求解——MATLAB语
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
2020/7/15
东北大学信息学院
20
【例7-5】 对【例7-3】选定一个 q 向量,设计 LTR 控制器,并绘制出不同 q 值下环路传递函数 的 Nyquist 图。
高等应用数学问题的MATLAB求解——MATLAB语
言与应用——MATLAB语言与应用——MATLAB语
言与应用——MATLAB语言与应用
2020/7/15
东北大学信息学院
21
7.2 鲁棒控制问题的一般描述
2020/7/15
东北大学信息学院
18
高等应用数学问题的MATLAB求解——MATLAB语

鲁棒控制理论.ppt

鲁棒控制理论.ppt

例如跟踪控制中,若希望跟踪误差e的幅值小于给定
的 ,则性能指标为: S , S为灵敏度函数
定义权函数
W1( j)
1 ,则有
W1S
1
若P取摄动为 (1 W2)P0,那么S的摄动为:
S
1
S0
1 (1 W2 )L0 1 W2T0
显然RP的条件为:
|| W2T || 1 且
W1
1
S0 W2T
下面研究一种特殊的摄动形式——分子分母摄动,它依赖于对象传递函数P的分式 表示 P N ,若P为有理的,则N和D分别
D
为分子,分母多项式。分子-分母摄动模型 将摄动表示为
P N0 P N0 M NW2
D0
D0 M DW1
N0和D0表示标称系统; M DW1和M NW2分别为
分母和分子的不确定性模型; 频率函数MW1和
数 S0 和输入灵敏度函数 U0 满足不等式:
H
2
sup(W1( j)S0 ( j)V ( j) 2 R
W2 ( j)U0 (
j)V ( j) 2 ) 1
令w1 VW1, w2 VW2 / P0,则上式可以表示为:
S0 ( j)w1( j) 2 T0 ( j)w2 ( j) 2 1, R
S sup S( j) R
这一问题的合理性在于:极小化S的峰值相当 于极小化最坏干扰对输出的影响。
假设干扰v具有未知频率成分,但是有有限能
量 v 2 , 我们定义干扰的2范数 2
v v2(t)dt
2
v的能量是它2范数的平方。则下图的系统范
数 S 定义为
z
S sup
2
v v
2
2
z
S

鲁棒控制理论

鲁棒控制理论
• 根据LQ最优调节器的性质,LQ(LQG)状态反馈系统 的幅值稳定裕度为0.5~ ∞,而相角稳定裕度大于等于+60o.
• LQG控制系统具有一定的相对稳定性,但LQG控制系统 甚至LQ最优调节器对被控对象的模型摄动(模型误差) 的鲁棒稳定性在某些场合很差。
– 如果被控对象不是由一个确定的模型来描述的,而仅 知道其模型属于某个已知的模型集合;
– 1982年,Doyle针对H∞性能指标发展了“结构奇异值”来检验 鲁棒性,极大程度地促进了以∞范数为性能指标的控制理论的 发展
– Youla等人提出的控制器参数化,使Zames的H∞性能指标以及 Doyle的结构奇异值理论揭开了反馈控制理论的新篇章
– H∞控制理论蓬勃发展:从频域到时域、定常系统到时变系统、 线性系统到非线性系统、连续系统到离散系统、确定性系统到 不确定系统、无时滞系统到时滞系统、单目标控制到多目标控 制……
鲁棒控制理论
第六章 H∞标准控制
前言
• 本章在标准框架下讨论H∞控制问题的求解。 • H∞控制理论可分为频域方法和时域方法。本章开始介
绍时域方法。 • 时域状态空间方法包括Riccati方法和LMI (Linear
Matrix Inequality,线性矩阵不等式)方法。 • 本章将重点介绍理论上成熟的Riccati方法(包括状态
– 外部信号(包括干扰信号、传感器噪声和指令信号等) 不是具有已知特性(如统计特性或能量谱)的信号, 也仅知道其属于某个已知的信号集合。
• 在以上两种情况下,控制系统的设计如果采用传统的H2 性能指标,在某些场合不能满足实际的需要。

考虑SISO被控对象,其传递函数为P0
s
s
2s
1
3

第7章鲁棒控制简介

第7章鲁棒控制简介

灵敏度函数
e( s) S ( s)r ( s)
6.2 控制性能的鲁棒性
公称性能
d
e

r
K (s)
u
P( s )

y
1 T 1 PK 1 y d : 对外部干扰的灵敏度 1 PK 1 e r : (指令响应) 1 PK
图 反馈控制系统 P : 对特性变动的灵敏度
(目标值r 0 )
d
e

K (s ( s ) d ( s ) P( s ) K ( s ) y ( s ) (1 P( s) K ( s)) y( s) d ( s)
1 y( s) d ( s) 1 P( s ) K ( s )
灵敏度函数
y ( s) S ( s)d ( s)
| G( j ) |

对外部干扰的灵敏度
d
1 y d 1 PK
1 z W1 d 1 PK

r0
e

K (s)
u
P( s )


y
使用频域权 W1
d

W1 (s)
z
z W1Sd
d
K (s)
u
P( s )


y
G (s)
P( s )
W1 (s)
z


K (s)
u
y
K (s)
对偏差的灵敏度
1 P ( s) T ( s ) 1 P( s) K ( s)
1 是开环系统的变动影响闭环 1 P( s) K ( s) 倍
K ( s ) 的增益大
灵敏度函数

灵敏度低

鲁棒控制与鲁棒控制器设计

鲁棒控制与鲁棒控制器设计
精品PPT
精品PPT
【例5】带有双积分器的非最小相位受控对象
设计系统的最优
,选择加权函数
并选择极点漂移为 控制器。
精品PPT
精品PPT
3、新鲁棒控制工具箱 及应用
3.1 不确定系统的描述
精品PPT
【例6】典型二阶开环传函 选定标称值为
构造不确定系统模型。
精品PPT
对叠加型不确定性 对乘积型的不确定性
假定系统对象模型的状态方程为 的状态方程模型为
状态方程模型为
的模型表示为
,加权函数 的
,而非正则的
式中
精品PPT
这时鲁棒控制问题可以集中成下面三种形式:
灵敏度问题
并不指定
稳定性与品质的混合鲁棒问题
假定
为空
一般的混合灵敏度问题
要求三个加权函数都存在。
精品PPT
1.3 鲁棒控制系统的 MATLAB 描述
精品PPT
【例8】
精品PPT
假设系统的不确定部分为乘积型的,且已知 ,并已知不确定参数的变化范围为 ,设计固定的 控制器
精品PPT
4、 总结
小增益定理以及基于范数的鲁棒控制三种形式: 控制、 控制及最优 控制器,三种鲁棒控制问题,即灵
敏度问题、稳定性与品质的混合鲁棒问题及一般混合灵 敏度问题。 基于范数的鲁棒控制问题的 MATLAB 描述方法和鲁棒 控制器的计算机辅助设计的理论与求解方法。 新版本的鲁棒控制工具箱将三种著名的方法,统一到一 个框架下,给出了统一的模型描述与设计函数。
鲁棒控制工具箱的设计方法
精品PPT
2.1 鲁棒控制工具箱的 设计方法
鲁棒控制器的状态方程表示
其中 X 与 Y 由下面的两个代数 Riccati 方程求解

鲁棒控制与鲁棒控制器设计ppt课件.ppt

鲁棒控制与鲁棒控制器设计ppt课件.ppt

28
对叠加型不确定性 对乘积型的不确定性
2024/9/30
29
3.2 灵敏度问题的鲁棒控制器设计
一般情况下,受控对象 G 的 D 矩阵为非满秩矩阵时, 不能得出精确的成型控制器,这时回路奇异值的上下限 满足式子

时,控制器作用下实际回路奇异值介于
之间。
2024/9/30
30
【例7】
2024/9/30
20
【例3】对【例1】中的增广的系统模型,分别 设计
2024/9/30
21
绘制在控制器作用下系统的开环 Bode 图和 闭环阶跃响应曲线
2024/9/30
22
【例4】
加权矩阵
并设置 设计最优 控制器,并绘制出该控制器作用下的 阶跃响应曲线和开环系统的奇异值曲线。
2024/9/30
23
2024/9/30
2024/9/30
15
变换出系统矩阵 P
2024/9/30
16
【例2】用【例1】中的对象模型和加权函数, 得出其系统矩阵模型 P
2024/9/30
17
2、 鲁棒控制器的 计算机辅助设计
鲁棒控制工具箱的设计方法
2024/9/30
18
2.1 鲁棒控制工具箱的 设计方法
鲁棒控制器的状态方程表示
其中
31
绘制在此控制器下的回路奇异值及闭环 系统的阶跃响应曲线
2024/9/30
32
3.3 混合灵敏度问题的鲁棒 控制器设计
2024/9/30
33
【例8】
2024/9/30
34
假设系统的不确定部分为乘积型的,且已知 ,并已知不确定参数的变化范围为 ,设计固定的 控制器

现代鲁棒控制(吴敏)完整课件

现代鲁棒控制(吴敏)完整课件

7
2007年10月9日
鲁棒控制理论及应用
中南大学信息科学与工程学院 吴 敏
控制系统设计与不确定性
控控 制制 理理 论论
设计方法
模模 建模 型型
制制实实 对对际际 象象控控
控控 实施 制制 器器
8

动 信 号 。
• •
来 自 控 制 系 统 本 身 和 外 部 的 扰
来 自 控 制 对 象
的 模 型 化 误 差 ;
鲁棒控制其存在的条件应指出: • 模型不确定性或外界扰动不确定性的范围。
在应用中要解决的问题:
• 实际控制问题如何转换成鲁棒控制问题; • 鲁棒控制器在实际应用中的条件、实现方法和应用效
果等。
23
2007年10月9日
鲁棒控制理论及应用
第二讲:
中南大学信息科学与工程学院 吴 敏
基本知识与基本概念
24
鲁棒控制理论及应用
(研究生课程)
吴敏
中南大学信息科学与工程学院,长沙,410083
1
鲁棒控制理论及应用
课程的目标
中南大学信息科学与工程学院 吴 敏
• 了解鲁棒控制研究的基本问题; • 掌握鲁棒控制的基础知识和基本概念; • 明确鲁棒控制问题及其形式化描述; • 掌握几种鲁棒稳定性分析与设计方法; • 掌握状态空间H∞控制理论;
卡尔曼-布西滤波器 (Kalman-Bucy Filter)理论 现代控制理论
15
2007年10月9日
鲁棒控制理论及应用
LQG 控制器
K
u P
中南大学信息科学与工程学院 吴 敏
d y
xˆ 卡尔曼--布西
滤滤波波器器
控制问题的解 (分离原理): • 设计卡尔曼-布西滤波器,获得x的估计值; • 设计基于x的估计值的状态反馈增益矩阵K。

鲁棒控制器设计1讲解

鲁棒控制器设计1讲解
F1(s) 2 3s 5s2 3s3 s4 F2 (s) 2 3s 6s2 3s3 s4 F3(s) 2 2s 5s2 4s3 s4 F4 (s) 2 2s 6s2 4s3 s4
鲁棒控制系统
鲁棒控制系统设计
希望
T (s) Y (s) 1 R(s)
系统的伯德图平整,具有无限带宽的0db增益并且相角始终为零
r1
4,5, r2
[3,4], r3
[2,3]
取k=1,此时闭环传递函数的分母为
其中
s4 r3s3 r2s2 r1s 1 s3 2s2 2s 1 s4 p3s3 p2s2 p1s 2 p1 [2,3], p2 [5,6], p3 [3,4]
此时上面的闭环系统稳定当且仅当下面的四个多项式稳定
T (s) Y (s) Gc (s)G1(s)G2 (s) R(s) 1 Gc (s)G1(s)G2 (s)
Y(s)
G2 (s)
D(s) 1 Gc (s)G1(s)G2 (s)
鲁棒控制系统
T (s) 对D(s) 的灵敏度
SGT

1
1 Gc (s)G1(s)G2 (s)
要想降低系统的灵敏度S,就应该提高环路开环增益L(jw)
鲁棒控制系统
常用乘性摄动来描述受控对象的不确定性 乘性摄动更符合直觉 在低频段对象模型精确,乘性摄动较小 在高频段对象模型不够精确,乘性摄动较大
鲁棒控制系统
具有不确定参数的系统
假设系统的特征多项式为
其系数满足
f (s) ansn an1sn1 a1s a0
ai ai ai , i 0,1,, n,0 [ai , ai ]
鲁棒控制系统
鲁棒控制系统
鲁棒控制系统
鲁棒性分析

鲁棒控制

鲁棒控制

线性鲁棒控制理论

其它方法
- 多项式、矩阵的摄动界、实稳定半径(L. Qiu, et al., 1995) - 混合摄动问题(Djaferis, 1996) - 概率预测方法(Probabilistic Prediction Formula) (Barmish, Polyak, 1996) - 其它,Gain Scheduling, H2/ H,L1, 鲁棒 决策,鲁棒自适应,等等。 各方法间相互联系、相互交叉,不断发展
线性鲁棒控制理论

参数化方法(多项式代数方法) (代表工作) - Kharitonov定理(1978, Barmish, 1984) - 棱边定理(Bartlett, Hollot and Huang, 1988)
- 菱形族定理(Barmish, Tempo, et al., 1990),CB定 理(Bhattacharyya and Chapellat, 1991) - 边界定理(黄琳,王龙,1991),原象定理 (王恩平, 1992),时滞系统的边界定理(徐道义,1995) - 区间对象族的16顶点镇定定理(Barmish, Hollot, et al., 1992) - Kharitonov域与凸方向(Rantzer, 1992)
线性鲁棒控制理论

参数化方法(专著) - Barmish, 1994 - Ackermann, 1994, 2002 - Bhattacharyya, Chapellat, Keel, 1995 - Kogan, 1995 - Djaferis, 1996 - 黄琳, 2003 - et al.
线性鲁棒控制理论
线性鲁棒控制理论

H控制理论(优点)
- 提法基于输入输出、频域描述、工程上易 于接受 - 摄动是非结构的(未建模动态摄动), 用H 范数刻划 - 状态空间解--Riccati方程--LMI - 对控制器综合有效 - 理论与H2优化控制理论平行,完
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/13
(b) 小增益定理示意图
4
• 小增益定理
假设
为稳定的,则当且仅当小增益条件 满足时
图 (b) 中所示的系统对所有稳定的 且是内部稳定的。
都是良定的,
即如果系统的回路传递函数的范数小于 1,则闭 环系统将总是稳定的。
2020/4/13
5
1.2 鲁棒控制器的结构
闭环系统中引入的增广对象模型
小增益定理以及基于范数的鲁棒控制三种形式: 控制、 控制及最优 控制器,三种鲁棒控制问题,即灵
敏度问题、稳定性与品质的混合鲁棒问题及一般混合灵 敏度问题。 基于范数的鲁棒控制问题的 MATLAB 描述方法和鲁棒 控制器的计算机辅助设计的理论与求解方法。 新版本的鲁棒控制工具箱将三种著名的方法,统一到一 个框架下,给出了统一的模型描述与设计函数。
一般的混合灵敏度问题
要求三个加权函数都存在。
2020/4/13
11
1.3 鲁棒控制系统的 MATLAB 描述
▪ 鲁棒控制工具箱中的系统描述方法
建立鲁棒控制工具箱可以使用的系统模型
2020/4/13
12
2020/4/13
13
2020/4/13
14
【例1】
ห้องสมุดไป่ตู้
2020/4/13
15
分析与综合工具箱和 LMI 工具箱的 模型描述
25
【例5】带有双积分器的非最小相位受控对象
设计系统的最优
,选择加权函数
并选择极点漂移为 控制器。
2020/4/13
26
2020/4/13
27
3、新鲁棒控制工具箱 及应用
3.1 不确定系统的描述
2020/4/13
28
【例6】典型二阶开环传函 选定标称值为
构造不确定系统模型。
2020/4/13
其对应的增广状态方程为
2020/4/13
6
闭环系统传递函数为
2020/4/13
7
鲁棒控制的目的是设计出一个镇定控制器
使得闭环系统
的范数取
一个小于 1 的值,亦即
鲁棒控制问题的三种形式:
最优控制问题 其中需求解

最优控制问题 其中需求解

控制问题 需要得出一个控制器满足
2020/4/13
8
加权灵敏度问题的控制结构框图
加权函数 即传递函数在
,使得 均正则。 时均应该是有界的。
2020/4/13
9
假定系统对象模型的状态方程为 的状态方程模型为
状态方程模型为
的模型表示为
,加权函数 的
,而非正则的
式中
2020/4/13
10
这时鲁棒控制问题可以集中成下面三种形式:
灵敏度问题
并不指定
稳定性与品质的混合鲁棒问题
假定
为空
21
【例3】对【例1】中的增广的系统模型,分别 设计
2020/4/13
22
绘制在控制器作用下系统的开环 Bode 图和 闭环阶跃响应曲线
2020/4/13
23
【例4】
加权矩阵
并设置 设计最优 控制器,并绘制出该控制器作用下的 阶跃响应曲线和开环系统的奇异值曲线。
2020/4/13
24
2020/4/13
32
绘制在此控制器下的回路奇异值及闭环 系统的阶跃响应曲线
2020/4/13
33
3.3 混合灵敏度问题的鲁棒 控制器设计
2020/4/13
34
【例8】
2020/4/13
35
假设系统的不确定部分为乘积型的,且已知 ,并已知不确定参数的变化范围为 ,设计固定的 控制器
2020/4/13
36
4、 总结
X 与 Y 由下面的两个代数 Riccati 方程求解
2020/4/13
20
控制器存在的前提条件为
足够小, 且满足

控制器 Riccati 方程的解为 正定矩阵;
观测器 Riccati 方程的解为 正定矩阵;
。该式说明两个 Riccati 方程的积
矩阵的所有特征值均小于 。
2020/4/13
29
对叠加型不确定性 对乘积型的不确定性
2020/4/13
30
3.2 灵敏度问题的鲁棒控制器设计
一般情况下,受控对象 G 的 D 矩阵为非满秩矩阵时, 不能得出精确的成型控制器,这时回路奇异值的上下限 满足式子

时,控制器作用下实际回路奇异值介于
之间。
2020/4/13
31
【例7】
2020/4/13
2020/4/13
37
Thank you !
2020/4/13
38
鲁棒控制与鲁棒控制器 设计
2020/4/13
1
主要内容
鲁棒控制问题的一般描述 鲁棒控制器的计算机辅助设计 新鲁棒控制工具箱及应用
2020/4/13
2
1、鲁棒控制问题的 一般描述
小增益定理 鲁棒控制器的结构 鲁棒控制系统的 MATLAB 描述
2020/4/13
3
1.1 小增益定理
(a) 标准反馈控制结构
2020/4/13
16
变换出系统矩阵 P
2020/4/13
17
【例2】用【例1】中的对象模型和加权函数, 得出其系统矩阵模型 P
2020/4/13
18
2、 鲁棒控制器的 计算机辅助设计
鲁棒控制工具箱的设计方法
2020/4/13
19
2.1 鲁棒控制工具箱的 设计方法
鲁棒控制器的状态方程表示
其中
相关文档
最新文档