数学分析(2)期末试题
《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。
()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。
f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。
5、若函数(在有界闭区域D上连续,则函数(在D上可积。
()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。
其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。
第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。
4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。
第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。
得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。
西华师范大学数学分析大二期末试题(含答案)

西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

解此方程组,得
10.设函数 f ( x ) =
∫
0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于
∫
1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)
Ω
= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2
2π
π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为
《数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。
3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。
4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。
5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)x y y x f x y f x y =。
( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。
( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。
( )三、计算题 ( 每小题9分,共45分)1、 用格林公式计算曲线积分(sin 3)(cos 3)x x AO I e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分22()V xy dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。
、计算第一型曲面积分SI d S =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
数学分析(2)期末试题集(填空题)

一、不定积分问题1.设x x ln 为()x f 的一个原函数,则积分()='⎰2e e dx x f x 1212--ee .解: 由原函数概念可得()2ln 1ln x x x x x f -='⎪⎭⎫ ⎝⎛=,因此()()221,0e e f e f -==,于是积分()()()121ln 122222--=--=-='⎰⎰e e xxdx x f x xf dx x f x e ee eee e e. 2. 已知()x f 的一个原函数为x x sin ,设0≠a ,则=⎪⎭⎫⎝⎛⎰dx a x f C a x x a +⎪⎭⎫ ⎝⎛sin 2 .解C a x x a C a x a x a a x d a x f a dx a x f +⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎰⎰sin sin 2.3. 已知21x x f =⎪⎭⎫⎝⎛',则()=x f C x+-1. 4. 已知()x f '的一个原函数为2sin x ,常数0≠a ,则()=+'⎰dx b ax f ()()C b ax ab ax +++2cos 2. 5. 设()0,1ln >+='x x x f ,则()=x f C e x x++ .6.⎰=dx x arctan()C x x x +-+arctan 1(注:用分部积分法⎰⎰⎪⎭⎫⎝⎛+--=x d x x x dx x 111arctan arctan ) 7.⎰=+-+dx x x x 13652()C x x x +-++-23arctan 4136ln 212(注: ()()⎰⎰⎰+-++-+-=+-+43826262113652222x dxx x x x d dx x x x ) 8.()=+⎰dx x e x 221tan C x e x+tan 2 (注: 原式()⎰+=dx x x e x tan 2sec 22) 9.=+⎰dx x x xln ln 1C x x x +++-+++1ln 11ln 1lnln 12 (注: 令t x =+ln 1,原式C t t t dt t t ++-=-=⎰11ln 21222)10.()=-⎰dx x x21ln C x xx x +-+-1ln 1ln (注: 原式()⎰---=x x dx x x 11ln ) 11.()=+⎰--dx e xe x x21()C e ex xx++-+-1ln 1 (注: 原式()()⎰⎰⎰++-+=+-+=+=-----x xx x x x ee d e x e dx e x exd 1111111) 12. =⎰dx x x2sin sin ln C x x x x +---cot sin ln cot (注: 原式()⎰-=x xd cot sin ln )13.()=-⎰dx x x xln 1ln 1C x +ln arcsin 214. ()=++⎰dx xe x x x11C xe xe x x ++1ln(注: 原式()()()()()⎰⎰⎰⎰⎪⎭⎫ ⎝⎛+-=+=+=++=du u u u u du xe x e xe d dx xe x e x e x x x x x x 1111111) 15*()=+⎰dx xx 1ln ()C x x x x +-++arctan 41ln 2(注: 原式()⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛+--+=+-+=+-+=+=x x d dx x x x x xd x x dx x x x x x d x 141ln 21221ln 2121ln 21ln 2 16. ()=+⎰46x x dxC x x ++4ln 24166 (注: 原式⎰⎪⎪⎭⎫ ⎝⎛+-=dx x x x 414165) 17.=⎰dx xx cos tan C x+-cos 218.=+⎰dx x csc 1C x +sin arcsin 219. =-⎰xdx x x arcsin 12()C x x x x +⎥⎦⎤⎢⎣⎡+---3arcsin 131323220. 设()34f x dx xx C '=-+⎰,则()f x = 22x x C -+ .21.32sin cos x xdx =⎰4611sin sin 46x x C -+ . 22. 设()ln 1f x x '=+,则()f x xx e C ++ .23. 设()31xf x e '-=,则()f x ()1133x eC ++ .24. 若()21x f x dx x C =+++⎰,则()f x 2l n 21x + .25. 设()()()()()()11,F x f x g x f x f x f x =-=+,若()()2F x g x '=⎡⎤⎣⎦,且14f π⎛⎫= ⎪⎝⎭,则()f x tan x . 26.214dx x =+⎰ 1a r c t a n 22xC + . 27. 设0a ≠,则()100ax b dx +=⎰()1011101ax b C a++ . 28. 设()ln 1f x x '=+,则()f x xe x C ++ . 29. 设0b ≠,则2xdx a bx =+⎰ 21ln 2a bx C b++ . 30.2xxde -=⎰ 2212x x xe e C --++ . 31. ()f x 的一个原函数为1x ,则()f x '= 32x.32.(211x dx -=⎰8 .33. 若函数()f x 是(),-∞+∞上的连续函数,且()()210x x f t dt x +=⎰,则()2f =15. (注:()()210x x f t dt x +=⎰两边对x 求导,得()()221231f x x x x ⎡⎤+⋅+=⎣⎦,令1x =,得()251f ⋅=,所以()125f =)34.若()x f 的原函数为x ln ,则()='⎰dx x f x ln x C -+ 。
数学分析第二学期期末考试题及答案

数学分析第二学期考试题一、 单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题4分,共32分)1、函数)(x f 在[a,b ]上可积的必要条件是( b )A 、连续B 、有界C 、无间断点D 、有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( b ) A 、⎰⎰=-aa a dx x f dx x f 0)(2)(B 、0)(=⎰-aa dx x f C 、⎰⎰-=-aaa dx x f dx x f 0)(2)(D 、)(2)(a f dx x f aa =⎰-3、下列广义积分中,收敛的积分是( a )A 、 ⎰11dx xB 、 ⎰∞+11dx xC 、 ⎰+∞sin xdxD 、⎰-1131dx x4、级数∑∞=1n n a 收敛是∑∞=1n n a 部分和有界且0lim =∞→n n a 的( c ) A 、充分条件 B 、必要条件 C 、充分必要条件 D 、无关条件5、下列各积分中可以直接运用牛顿-莱布尼兹公式求值的是( a )A 、10arcsin xdx ⎰ B 、11ln eedx x x ⎰C 、1-⎰D 、10sin xdx x⎰ 6、下面结论错误的是( b )A 、若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必有界;B 、若)(x f 在),(b a 内连续,则 )(dx x f ba ⎰存在;C 、 若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必可积;D 、 若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上必可积。
7、下列命题正确的是( d ) A 、)(1x a n n ∑∞=在[a ,b ]绝对收敛必一致收敛B 、)(1x a n n ∑∞=在[a ,b ] 一致收敛必绝对收敛C 、 若0|)(|lim =∞→x a n n ,则)(1x a n n ∑∞=在[a ,b ]必绝对收敛 D 、)(1x a n n ∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为( c )A 、x eB 、x sinC 、)1ln(x +D 、x cos 二、计算题:(每小题7分,共28分) 9、⎰=914)(dx x f ,求⎰+22)12(dx x xf 。
数学分析(二)期末试题

《数学分析(二)》期末试题一、选择题(共20分) 1、dxx dxd b a⎰2sin =( ) A 、22sin sinab - B 、22cos cos ab - C 、2sinxD 、02、下列积分中不是非正常积分的是( ) A 、 dx x⎰+∞+0211 B 、dxx⎰-1211 C 、dx x⎰-42211 D 、dxx ⎰-22)1(13、若任意的),(b a x ∈,有0)0(,0)(>''>'f x f 则)(x f 在),(b a 内是( ) A 、单调增加的凸函数 B 、单调减少的凹函数 C 、单调减少的凸函数 D 、单调增加的凹函数4、cx dx x f x+='⎰2ln2)(ln 1且1)0(=f ,则=)(x f ( )A 、122+xB 、x 2ln 2C 、22xD 、c x +2ln 25.下列级数中条件收敛的是() A 、∑!sin n x B 、1)1(+-∑n n nC 、∑+-]11)1[(nnnD 、nn2sin)1(∑-6、曲线1)1(3--=x y 的拐点是( )A 、)0,2(B 、)1,1(-C 、)2,0(-D 、无拐点 7、若级数∑∞=+0)1(n nu 收敛,则=∞→n n u lim ()。
A 、1B 、-1C 、0D 、不存在。
8、设)(x f 为连续函数,则dtt f dxd xx⎰2)(=( )A 、)()(22x f x xf-B 、)(22x xf C 、)(x f D 、)()21(x f x -9、若1n n μ∞=∑收敛,1nn k k S μ==∑,则下列命题中正确的是( )。
A 、lim 0nn S →∞=B 、lim n n S →∞存在C 、lim n n S →∞不存在 D 、}{n S 单调 10、13n nn xn ∞=⋅∑的收敛半径为( )A 、0B 、1C 、3D 、13二、填空题(共20分) 1、=⎰-xdx x arccos117( )2、23sin limxx t dt x→=⎰( )3、=--⎰dx x x)cos 312(2( )曲线)10(,2≤≤=x x y 绕x 轴旋转一周所成的旋转体的体积是( ) 5、dxxx p⎰+∞1sin 条件收敛,那么p 的取值范围为( )6、设13--=ax x y 在1=x 处存在极值,则=a ( )7、函数)1()1()(>-+=p x xx f pp在]1,0[上的最大值为( )8、曲线2y x=和2y x=所围城的平面图形的面积为( ) 9.级数()111n n n ∞=+∑的和为( )。
数学分析(Ⅱ)试题与参考答案

数学分析(2)期末试题课程名称数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班 应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B .1nn ∞=.21(1)n n n ∞=-∑ D .11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . 2D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =. 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为. 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a =,b =.5、数集(1)1, 2 , 3, 1nnn n ⎧⎫-=⎨⎬+⎩⎭的聚点为. 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++1(1)dx x x ∴+⎰(3分)11()1dx x x =-+⎰ln ln 1.x x C =-++(3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰(3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+(3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得⎰2220cos atdt π=⎰(3分)6722(1cos2)2at dtπ=+⎰221(sin2)22at tπ=+2.4aπ=(3分)4.解由洛必达(L'Hospital)法则得2coslimsinxxtdtx→⎰2coslimcosxxx→=(4分)lim cosxx→=1=(2分)5.解=(2分)2sin cosx x dxπ=-⎰424(cos sin)(sin cos)x x dx x x dxπππ=-+-⎰⎰(2分)244(sin cos)(sin cos)x x x xπππ=+-+2.=(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(,),x n∀∈-∞∞∀+(正整数)22sin1nxn n≤(3分)而级数211nn∞=∑收敛,故由M判别法知,21sinnnxn∞=∑在区间(,)-∞+∞上一致收敛.(3分)682. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-.(2分)易知1n n x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-.(2分) 01, (1, 1)1n n x x x ∞==∈--∑(2分) 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑(2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析(2)期末试题
课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业
一、单项选择题(每小题3分,3×6=18分)
1、 下列级数中条件收敛的是( ).
A .1(1)n
n ∞
=-∑ B . 1
n n ∞
= C .
2
1(1)n
n n
∞
=-∑ D . 1
1(1)n
n n ∞
=+∑
2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在
它的间断点x 处 ( ).
A .收敛于()f x
B .收敛于1
((0)(0))2
f x f x -++
C . 发散
D .可能收敛也可能发散
3、函数)(x f 在],[b a 上可积的必要条件是( ).
A .有界
B .连续
C .单调
D .存在原
函数
4、设()f x 的一个原函数为ln x ,则()f x '=( )
A . 1x
B .ln x x
C . 21
x
- D . x e
5、已知反常积分2
0 (0)1dx
k kx +∞>+⎰收敛于1,则k =( )
A . 2
π
B .22π
C . 2
D . 24π
6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+收敛,则( )
A . x e <
B .x e >
C . x 为任意实数
D . 1e x e -<<
二、填空题(每小题3分,3×6=18分)
1、已知幂级数1n n n a x ∞
=∑在2x =处条件收敛,则它的收敛半径为 .
2、若数项级数1
n n u ∞
=∑的第n 个部分和21
n n
S n =
+,则其通项n u = ,和S = . 3、曲线1
y x
=
与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1
()()b
x
x
a
e f e dx f x dx =⎰⎰,则a = ,b = .
5、数集(1) 1, 2 , 3, 1n
n n n ⎧
⎫
-=⎨⎬+⎩
⎭
的聚点为 . 6、函数2
()x f x e =的麦克劳林(Maclaurin )展开式为 .
65
三、计算题(每小题6分,6×5=30分)
1、 (1)dx
x x +⎰. 2、2ln x x dx ⎰.
3、 0
(0)dx a >⎰
. 4、 2 0
cos lim
sin x
x t dt x
→⎰.
5、dx ⎰.
四、解答题(第1小题6分,第2、3 小题各8分,共22分)
1、讨论函数项级数2
1
sin n nx
n ∞
=∑
在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1n
n x n
∞
=∑的收敛域以及收敛区间内的和函数.
3、设()f x x =, 将f 在(,)ππ-上展为傅里叶(Fourier )级数.
五、证明题(每小题6分,6×2=12分)
1、已知级数1
n n a ∞
=∑与1
n n c ∞
=∑都收敛,且
, 1, 2, 3 n n n a b c n ≤≤=,
证明:级数1
n n b ∞
=∑也收敛.
2、证明:
22 0
sin cos n
n x dx x dx π
π
=⎰⎰.
66
试题参考答案与评分标准
课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业
一、 单项选择题(每小题3分,3×6=18分)
⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D
二、 填空题(每小题3分,3×6=18分)
⒈ 2 ⒉ 2
, =2(1)
n u S n n =
+ ⒊ ln 2
⒋ 1, a b e == ⒌ 1± ⒍ 201, (,)!
n
n x x n ∞
=∈-∞+∞∑
三、 计算题(每小题6分,6×5=30分)
1. 解
111
(1)1x x x x
=-++
1
(1)dx x x ∴+⎰ (3分)
11()1dx x x =-+⎰
ln ln 1.x x C =-++ (3分)
2. 解 由分部积分公式得
2
31
ln ln 3x xdx xdx =
⎰⎰ 3311
ln ln 33x x x d x =-⎰ (3分) 33111ln 33x x x dx x =-⋅⎰ 3211
ln 33x x x dx =-⎰ 3311
ln 39
x x x C =-+ (3分) 3. 解 令sin , [0, ]2
x a t t π
=∈ 由定积分的换元积分公式,得
⎰
2
220
cos a
tdt π
=⎰
(3分)
67
68
220
(1cos 2)2
a t dt π
=+⎰
2
20
1
(sin 2)22
a t t π=+
2
.4
a π=
(3分)
4. 解 由洛必达(L 'Hospital)法则得
20
cos lim
sin x
x tdt
x →⎰
20cos lim cos x x x →= (4分) 0
limcos x x →=
1= (2分)
5. 解
= (2分)
20
sin cos x xdx π
=-⎰
420
4
(cos sin ) (sin cos )x x dx x x dx π
π
π=-+-⎰⎰ (2分)
2
40
4
(sin cos )
(sin cos )
x x x x ππ
π=+-+
2.= (2分)
四、 解答题(第1小题6分,第2、3小题各8分,共22分)
1. 解 (, ), x n ∀∈-∞∞∀+(正整数)
22
sin 1
nx n n ≤ (3分) 而级数211
n n ∞
=∑收敛,故由M 判别法知,
2
1
sin n nx
n ∞
=∑在区间(,)-∞+∞上一致收敛. (3分)
2. 解 幂级数1n
n x n
∞
=∑的收敛半径1R =
=,
收敛区间为(1,1)-. (2分)
易知1n
n x n ∞
=∑在1x =-处收敛,而在1x =发散,
故1n
n x n
∞
=∑的收敛域为[1,1)-. (2分)
1
, (1, 1)1n n x x x ∞
==∈--∑ (2分) 逐项求积分可得
0001, (1,1)1x
x n
n dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n n
n n x x x x n n
+∞
∞
==--==∈-+∑∑ (2分) 3. 解 函数f 及其周期延拓后的图形如下
函数f 显然是按段光滑的,
故由收敛性定理知它可以展开为Fourier 级数。
(2分)
由于()f x 在(,)ππ-为奇函数, 故 0, 0, 1, 2, n a n ==…, 而
1
sin 11
cos cos n b x nxdx
x nx nxdx
n n π
ππ
ππ
πππ
π-
-
=
=-+
-⎰⎰
1(1)2
n n
+-⋅= (4分)
所以在区间(,)ππ-上,
11
sin ()2(1).n n nx
f x x n ∞
+===-∑ (2分)
69
70
五、 证明题(每小题5分,5×2=10分)
1. 证明 由1
n n a ∞
=∑与1
n n c ∞
=∑都收敛知,
级数
1
()n
n n c
a ∞
=-∑也收敛。
(1分)
又由 , 1, 2, 3 n n n a b c n ≤≤=,
可知, 0, 1,2,3,
n n n n b a c a n ≤-≤-=
从而由正项级数的比较判别法知
1
()n
n n b
a ∞
=-∑收敛, (2分)
于是由 (), 1,2,3,n n n n b b a a n =-+=
知级数1
n
n b
∞
=∑收敛. (2分)
2. 证明 令2
x t π
=
-,则2
t x π
=
-. (1分)
由定积分的换元积分公式,得
202
sin sin ()2n n xdx t dt π
ππ
=-⎰⎰- (2分) 2200sin ()cos 2
n
n t dt tdt π
π
π
=-=⎰⎰ 20
cos n xdx π
=⎰ (2分)。