有理数的乘法(1)课件
合集下载
有理数的乘方1初中数学原创课件
n个
aaa a
n个
n个相同因数的积的运算
剖析概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
底数
an
指数 幂
乘方定义理解时需要关注: 1.指数n取正整数. 2.底数a可以代表所有数,可以是正数,负数,零.
3.一个数可以看作这个数本身的一次方, 例如5就是 51,指数1通常省略不写.
剖析概念
底数 an
指数 幂
2. 思想方法 特殊到一般
思考
珠穆朗玛峰是世界的最高峰,今年5 月27日珠峰高程测量登山队登顶成 功,重测它的海拔高度. 这是我们 作为中国人的骄傲,有人说把一张 足够大的厚度为0.1毫米的纸,连续 对折27次的厚度就能超过珠穆朗玛 峰. 这是真的吗?
珠穆朗玛峰是世界的最高峰,今年5月27日珠峰高程测量登山队登 顶成功,重测它的海拔高度. 这是我们作为中国人的骄傲,有人 说把一张足够大的厚度为0.1毫米的纸,连续对折27次的厚度就能 超过珠穆朗玛峰. 这是真的吗?
227
134217728×0.1mm=13421.7728m≈13 422m 2005年测量高度为8844.43米
分析: 对折 1次 2次 3次 4次 次数
纸的 层数 2 4 8 16
层数可 表示为 2
22 23 24
... 27次 ...
134217728 ...
227
对折 1次 2次 3次 4次 次数
纸的 层数 2 4 8 16
层数可 表示为 2
22 23 24
... 27次 ...
134217728 ...
(5) 8
3
想一想
与 一样吗?为什么?
-81
例题
《有理数的乘除法》_优秀课件
第1课时 有理数的乘法法则
【归纳总结】求一个数的倒数的方法:
名称
方法
真分数的倒数
颠倒分子和分母的位置
整数的倒数 把整数看成分母为 1 的分数,再求倒数
带分数的倒数 把带分数化成假分数,再求倒数
小数的倒数
把小数化为分数,再求倒数
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【解析】根据定义,要求 a(a≠0)的倒数,只需求1a即可,或根据乘积
是 1 的两个数互为倒数来求.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
解:(1)因为(-2)×-12=1,所以-2
知识目标 目标突破 总结反思
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识目标
1.经历依次减小乘法中某个因数的值,观察、类比所得算式和 结果的过程,理解有理数的乘法法则,会进行有理数的乘法.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识点二 倒数的概念
概念:乘积是____1____的两个数互为倒数.
求法:数 a(a≠0)的倒数是____1____,其中 0 没有倒数(因
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
1.4第1课时有理数的乘法(1)课件上学期人教版七年级数学上册
4×(-5)=________;
4×(-5)=________;
负数乘负数,积是________.
也就是:有理数相乘,可先确定积的符号,再确定积的绝对值.
(2)如果火车的速度v=-65 km/h,火车行驶的时间t=3.
正数乘负数,积是________;
(-4)×5=________;
负数乘正数,积是________;
第1课时 有理数的乘法(1) 3.计算:4×5=______;
4×(-5)=__-__2_0___; 类似地,(-2)×3=(-2)+(-2)+(-2)=_______;
乘积是_____的两个数互为倒数. 负数乘正数,积是________;
4×(-5)=________;
(-4)×5=__-__2_0___; 2.一个数乘整数是求几个相同加数和的运算,比如2×3=2+2+2=6.
(-4)×(-5)=___2_0__.
知识点 1 有理数的乘法 例 1 计算: (1)(-6)×(+5); (2)-21×-43; (3)134×-72;(4)-713×0.
(1)-30. 3
(2) 8. (3)-21. (4) 0.
4.计算: (1)(+3)×(-5); (2)(-0.125)×(-8); (3)-416×-15; (4)0×(-13.52).
4×(-5)=________;
1.小学我们学过了数的乘法的意义,你能说出来吗? 2.一个数乘整数是求几个相同加数和的运算,比如2×3=2+2+2=6.
1.已知有理数a,b在数轴上对应点的位置如图所示,则ab的结果是
()
积的绝对值等于各乘数__________的积.
乘积是_____的两个数互为倒数.
5.火车从车站A出发在东西方向的直行道上运行,规定自车站A向 东为正,向西为负.
人教初中数学七上《1.4 有理数的乘除法》PPT课件 (1)
m
(-20)×(+3)=-60 3分钟后它应该在点O左边60m处
(3)如果汽车一直以每分20cm的速 度向右行驶,4分钟前它在什么位置?
O
-80 -60 -40 -20 0 20 40 60 80
m
(+20)×(-4)=-80 3分钟前它应该在点O左边80m处
(4)如果汽车一直以每分20m的速 度向左行驶,3分钟前它在什么位置?
2
8
17 8 20
34 5
解法2:
3
5
1 4
1
2
8
3818 18
5
4
2
24 2 4 5
34 . 5
乘法分 配律
(2)解法1:
3 4
2 3
1
4
5 4 12
解法2:
5. 3
3
知识要点
乘法的结合律
有理数的乘法中,三个数相乘,先把前两 个数相乘,或者先把后两个数相乘,积相等. 即:(ab)c=a(bc)
观察下面两个等式,是否成立?
4 ×[(-5)+(-8)] = 4 ×(-5) +4 ×(-8) (-6)×3+(-6)×(-4)=(- 6)×[3+(-4)
知识要点
乘法的分配律
5
5
5
48
正数除以正数 负数除以正数 零除以正数 正数除以负数 负数除以负数 零除以负数
0能否做除数
9÷3 (-9)÷3 0÷3 9÷(-3) (-9)÷(-3) 0÷(-3)
知识回顾
你能很快地说出下列各数的倒 数吗?
《有理数的乘法(一)》课件 2022年北师大版数学课件
有理数的乘法〔一〕
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库的水位每天升高3厘米,乙水库 的水位每天下降3厘米,4天后甲,乙水 库的水位的总变化量各是多少?
如果用正号表示水位上升,用负号表示水 位下降,那么四天后,甲水库水位的变化量为
3+3+3+3=3×4=12〔厘米〕;
〔5〕7的平方根是
;〔 〕
×
〔6〕-16的平方根是-4 . 〔 〕
×
7
√
×
例3 求满足以下各式的未知数x.
(1) x2=9;
(2) 4x2=9;
(3) (x-1)2=25;
(4) 4(2x-1)2=25.
解 : (1 ) x 9 , x 3.
2 x 2 9 ,
4 x 3.
2
3 x 1 2 25 ,
乙水库水位变化量为
〔-3〕+〔-3〕+〔-3〕+〔-3〕= 〔-3〕×4=-12〔厘米〕
运用上面的运算方法,进行以 下计算: 〔-3〕×3=_____
〔-3〕×2=_____
〔-3〕×1=_____
〔-3〕×0=_____
观察以上算式,你能发现什么规律?
以上算式,第一个因数不变,当第二个因 数减少1时,积增大3.
x 1 5.
x 1 5,
x1 6,x2 4 . ( 4 ) ( 2 x 1 ) 2 25 ,4Leabharlann 2 x 1 25 5 . 42
2x 1 5. 2
x1
7 4
, x2
3. 4
想一想
(1) 52等 于 多 少?( (5)2等 于 多 少?
(2)
49
2
等 于 多 少?
只有一个负号,积为负; 积为负;
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库的水位每天升高3厘米,乙水库 的水位每天下降3厘米,4天后甲,乙水 库的水位的总变化量各是多少?
如果用正号表示水位上升,用负号表示水 位下降,那么四天后,甲水库水位的变化量为
3+3+3+3=3×4=12〔厘米〕;
〔5〕7的平方根是
;〔 〕
×
〔6〕-16的平方根是-4 . 〔 〕
×
7
√
×
例3 求满足以下各式的未知数x.
(1) x2=9;
(2) 4x2=9;
(3) (x-1)2=25;
(4) 4(2x-1)2=25.
解 : (1 ) x 9 , x 3.
2 x 2 9 ,
4 x 3.
2
3 x 1 2 25 ,
乙水库水位变化量为
〔-3〕+〔-3〕+〔-3〕+〔-3〕= 〔-3〕×4=-12〔厘米〕
运用上面的运算方法,进行以 下计算: 〔-3〕×3=_____
〔-3〕×2=_____
〔-3〕×1=_____
〔-3〕×0=_____
观察以上算式,你能发现什么规律?
以上算式,第一个因数不变,当第二个因 数减少1时,积增大3.
x 1 5.
x 1 5,
x1 6,x2 4 . ( 4 ) ( 2 x 1 ) 2 25 ,4Leabharlann 2 x 1 25 5 . 42
2x 1 5. 2
x1
7 4
, x2
3. 4
想一想
(1) 52等 于 多 少?( (5)2等 于 多 少?
(2)
49
2
等 于 多 少?
只有一个负号,积为负; 积为负;
1.4.1有理数的乘法(一)
o
-2 0
2ห้องสมุดไป่ตู้
4
6
8
3分钟前蜗牛应在o点的右边6cm处。 可以表示为:(-2)×(-3) =+6
观察这四个式子:
(+2)×(+3)=+6
(-2)×(+3)=-6
(-2)×(-3)=+6
(+2)×(-3)=-6
根据你对有理数乘法的思考,总结填空:
(同号得正) 正 正 正数乘正数积为__数:负数乘负数积为__数: 负 负 负数乘正数积为__数:正数乘负数积为__数: (异号得负 积 乘积的绝对值等于各乘数绝对值的_____。 )
能力提升
1)如果a×b=0,则这两个数
A 都等于0,
(C )
B 有一个等于0,另一个不等于0; D 互为相反数 (A ) Da≤0 ( D) B. a<0,b<0 D. a,b同号
C 至少有一个等于0, 2)已知-3a是一个负数,则 A a>0 B a<0 C a≥0
3)若ab>0 ,则a,b的符号 A. a>0,b>0 C. a,b异号
计算 (1)-2006 x1 解(1)-2006 x1=-2006
1 1 (2)(-8) x(-1)(3) (13)(2 4)
(2)(-8)x(-1)=8x1=8
1 1 49 1) ( 2 ) 3 (3)( 3 4 34
(1)、1乘以一个数仍得这个数,-1乘以一个数得这个 数的相反数。 (2)、两个带分数相乘,一般要化成假分数以便约分。
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。
第13课 有理数的乘法(1)
谢谢!
解:规定向上为正,向下为负;海平面上为正,海平面 下为负.
-800+(+200)-30×10=-900(米) 答:向下潜沉10分钟后潜水艇距海平面900米.
5. 在-2,3,4,-5四个数中,任取两个数相乘,所
得最小的积是( B)
A. 20
B. -20
C. 12
D. 10
6. 下列说法,正确的有_①__②__③___. ①一个数同1相乘,仍得这个数; ②一个数同-1相乘,得这个数的相反数; ③一个数同0相乘,仍得0.
8. 下列说法不正确的是(D ) A. 同号两数相乘,符号得正 B. 异号两数相加,和取绝对值较大加数的符号 C. 两数相乘,积为负数,则两数异号 D.两数相乘,积为正数,则两数都是正数
9. 比较a和3a的大小关系,正确的是( D)
A. 3a>a
B. 3a=a
C. 3a<a
D. 上述情况都有可能
7. 某登山队员攀登珠穆朗玛峰时发现在海拔3 000米时,气 温为-20 ℃,且每登高1 000米,气温降低6 ℃.问当海拔 为5 000米时,气温是多少?
解:(5 000-3 000)÷1 000=2 2×6 =12(℃) -20 -12=-32(℃) 答:海拔5 000米时,气温是-32 ℃.
PPT课程: 第13课 有理数的乘法(1) 主讲老师:
1. 下列算式中,积为正数的是( B)
A. -2×5 B. -6×(-2) C.0×(-1) D. 5×(-3)
2. 填空: (1)5×(-7)=___-__3_5__; (2)(-6)×6=__-__3_6___; (3)(-9)×(-2)=___1_8____; (4)(-50)×0=___0_____.
1.11 有理数的乘方 第1课时 有理数的乘方课件(共19张PPT)
D
D
4.下面各组数中,相等的一组是 ( )A.-22与(-2)2 B.与C.-|-2|与-(-2) D.(-3)3与-33
5.用“△”定义一种新运算:对于任意有理数a和b,规定a△b=ab3(a>b);a△b=a3b(a<b).如:2△3=23×3=24.试比较(-1)△4与4△(-1)的大小.
(-2)3与-23的意义是否相同?(-2)4与-24呢?
(-2)3表示3个-2相乘,-23是23的相反数
根据有理数的乘法法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
注意:当底数是负数或分数时,底数一定要加上括号,这也是辨认底数的方法.
随 堂 小 测
3.一个数的立方等于它本身,这个数是( ) A.1 B.-1或1 C.0 D.-1或1或0
1.11 有理数的乘方
课时导入
知识讲解
随堂小测
小结
第1课时 有理数的乘方
学习目标
1.理解并掌握有理数的乘方、幂、底数、指数的概念及意义.2.能够正确进行有理数的乘方运算.
课时导入
某种细胞每过30 min便由一个分裂成2个.经过5h,这种细胞由一个能 分裂成多少个?
细胞分裂示意图
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月15日
知识点1 有理数的乘方的意义
知识讲解
如图,边长为a厘米的正方形的面积为______平方厘米.
a
a×a
如图,一正方体的棱长为a厘米, 则它的体积为________立方厘米
a×a×a
a
a×a=a2
a×a×a=a3
读作:a的平方(或a的2次方)
D
4.下面各组数中,相等的一组是 ( )A.-22与(-2)2 B.与C.-|-2|与-(-2) D.(-3)3与-33
5.用“△”定义一种新运算:对于任意有理数a和b,规定a△b=ab3(a>b);a△b=a3b(a<b).如:2△3=23×3=24.试比较(-1)△4与4△(-1)的大小.
(-2)3与-23的意义是否相同?(-2)4与-24呢?
(-2)3表示3个-2相乘,-23是23的相反数
根据有理数的乘法法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
注意:当底数是负数或分数时,底数一定要加上括号,这也是辨认底数的方法.
随 堂 小 测
3.一个数的立方等于它本身,这个数是( ) A.1 B.-1或1 C.0 D.-1或1或0
1.11 有理数的乘方
课时导入
知识讲解
随堂小测
小结
第1课时 有理数的乘方
学习目标
1.理解并掌握有理数的乘方、幂、底数、指数的概念及意义.2.能够正确进行有理数的乘方运算.
课时导入
某种细胞每过30 min便由一个分裂成2个.经过5h,这种细胞由一个能 分裂成多少个?
细胞分裂示意图
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月15日
知识点1 有理数的乘方的意义
知识讲解
如图,边长为a厘米的正方形的面积为______平方厘米.
a
a×a
如图,一正方体的棱长为a厘米, 则它的体积为________立方厘米
a×a×a
a
a×a=a2
a×a×a=a3
读作:a的平方(或a的2次方)
有理数的乘法(第1课时) (共24张PPT)
零没有倒数
智能闯关
第一关
计算: ① 12×(- 5) ② (- 8)×(- 7)
-60
5 ③ () 0 6
5 ④ (- 4.8)× (- ) 24
56
0
1
第二关
写出下列各数的倒数:
1 ; 4 1 1 2 2 3
-15;
1 15
0.7;
10 7
4
第三关
用“>、<、=”填空。 ①、如果a >0,b >0,则a×b________0 > ;
1.4 有理数的乘法(第1课时) 1.天上升3cm
第四天 第三天 第二天 第一天
乙水库的水位每 天下降3cm
第一天 第二天 第三天 第四天
乙 甲 思考:4天后,甲、乙水库的水位总变化 量各是多少?
如果用正号表示水位上升,用负号表 示水位下降,那么4天后 解:甲水库的水位变化量为: 3+3+3+3 =12 (厘米) =3×4
解: 6
答:气温下降18℃。
例题反馈
乙水库的水位每天下降 3cm ,上升记 为正,下降记为负,4天后,乙水库水位 变化量是多少?
第一天
第二天
第三天 第四天
解(-3)Χ 4 =-(3Χ4) =-12 答:乙水库水位 下降12cm.
乙
知识点2 倒数及其意义
一口深3.5米的深井,一只青蛙从井底沿井壁往 上爬,第一次爬了0.7米又下滑了0.1米,第二次往上 爬了0.42米又下滑了0.15米,第三次往上爬了1.25米 又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1
米,第五次往上爬了0.65米.
问题:小青蛙爬出井了吗?
义务教育教科书
智能闯关
第一关
计算: ① 12×(- 5) ② (- 8)×(- 7)
-60
5 ③ () 0 6
5 ④ (- 4.8)× (- ) 24
56
0
1
第二关
写出下列各数的倒数:
1 ; 4 1 1 2 2 3
-15;
1 15
0.7;
10 7
4
第三关
用“>、<、=”填空。 ①、如果a >0,b >0,则a×b________0 > ;
1.4 有理数的乘法(第1课时) 1.天上升3cm
第四天 第三天 第二天 第一天
乙水库的水位每 天下降3cm
第一天 第二天 第三天 第四天
乙 甲 思考:4天后,甲、乙水库的水位总变化 量各是多少?
如果用正号表示水位上升,用负号表 示水位下降,那么4天后 解:甲水库的水位变化量为: 3+3+3+3 =12 (厘米) =3×4
解: 6
答:气温下降18℃。
例题反馈
乙水库的水位每天下降 3cm ,上升记 为正,下降记为负,4天后,乙水库水位 变化量是多少?
第一天
第二天
第三天 第四天
解(-3)Χ 4 =-(3Χ4) =-12 答:乙水库水位 下降12cm.
乙
知识点2 倒数及其意义
一口深3.5米的深井,一只青蛙从井底沿井壁往 上爬,第一次爬了0.7米又下滑了0.1米,第二次往上 爬了0.42米又下滑了0.15米,第三次往上爬了1.25米 又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1
米,第五次往上爬了0.65米.
问题:小青蛙爬出井了吗?
义务教育教科书
人教版初一数学 2.2.1 有理数的乘法 第1课时PPT课件
巩固练习
说出下列各数的倒数.
1, –1, 1 , – 1 , 5, –5, 0.75, –2 1 .
33
3
1, –1, 3, –3,
1, 5
-1, 5
4 , - 3.
3
7
当堂训练
基础巩固题
1. 2的倒数是( B )
A.2
B. 1
2
C.– 1
2
2. –2×(–5)的值是( D )
A.–7
B.7
C.–10
负
4. (–2)×(–3)×(–4)×(–5) 正
5. 7.8×(–8.1)×0×(–19.6) 零
探究新知
【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
归纳总结
几个不等于零的数相乘,积的符号由_负__因__数__的__个__数__决定.
} 当负因数有_奇__数__个时,积为负; 奇负偶正
D.–2 D.10
当堂训练
3. 若a、b互为相反数,若x、y互为倒数,则a–xy+b= –1 . 4. 相反数等于它本身的数是 0 ;
倒数等于它本身的数是 1,–1 ; 绝对值等于它本身的数是 非负数 .
当堂训练 能力提升题
计算: (1) (125) 2 (8) 2000
(2)
( 2)( 7)( 6 ) 3 3 5 14 2
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知: 3.乘积的绝对值等于各乘数绝对值的_积_;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 4 ) ( 3 ) -12 ( 4 ) ( 1 ) +4 ( 4 ) ( 3 ) +12 ( 4 ) 0 0
( 4 ) ( 3 ) -12
两数相乘,同号得正, 异号得负,并把它们
( 4 ) (0 ) 0 ( 4 ) ( 1 ) +4
的绝对值相乘。1乘 以任何数得任何数,1乘以一个数得这个 数的相反数,0乘以
2.9 有理数的乘法
广州市萝岗区镇龙二中 李小兵
h
1
一、生活中的实例Βιβλιοθήκη 建模问题1)小虫沿东西走向的路线爬行,以3米/分的速度 向东爬了2分钟,那么它位于原来位置的哪个方向?相 距多少? 规定向东为正) 可以列出算式吗?用什么法?
问题2)小虫沿东西走向的路线爬行,以3米/分的速 度向西爬了2分钟,那么它位于原来位置的哪个方向? 相距多少? 规定向东为正)
问题1(+3)×2= (+6)
说明虫在原来位置的东 方6米处---记作+6
问题2 (-3)×2= (-6)
说明虫在原来位置的西 方6米处---记作-6
h
2
巩固与提升(注意观察\发现)
问题1 3×2=+6
问题2 -3×2=-6
你注意了吗?请同 学们大胆去发现, 大胆去观察、总结! 可以说说!
观察并思考:问题1与问 题2比较,一个式子是小学 的乘法,两个因数都是正 数,一个是有负因数的乘 法,只改变了一个因数的
h
15
谢谢指导.
2006年10月
h
16
( 3 ) 3 ( 4 ) = -12
( 4 ) ( 7 ) ( 9 ) = 63
(5 )3 ( 7 ) = 7
51
17
h
10
练习计算.
1 .( 3 ) 7 74
=-
3 7
7 4
3 4
2 .(
8 ) 9
(
3) 4
=+
(8 9
3) 4
2 3
3 .( 1 2 ) ( 1 3 ) 4
大家试一试!! 你能行的!!!!
(4)如果水位每天下降4cm,那么3天前的水位比今
天高还是低?高(或低)多少?
又发
(-4)×(-3)=? +12 现了
什么?
h
5
都来说说:发现了什么?
两数相乘,若把一个因数 换成它的相反数,所得的 积是原来的积的相反数.
h
6
( 4 ) ( 3 ) +12 ( 4 ) ( 1 ) -4
探索和发 现
结论:几个不等于0的 数相乘,积的符号由 负因数的个数决定,
( 4 ) 2 3 ( - 4 ) ( - 5 ) =120
当负因数有奇数个时, 积为负;当负因数有
( 5 ) 2 ( - 3 ) ( - 4 ) ( - 5 ) =-120 偶数个时,积为正
( 6 ) ( - 2 ) ( - 3 ) ( - 4 ) ( - 5 ) =120
h
11
来源于生
实际运用 举一个实例说明
活
运用于生 活
(4) (3) 12的意义
一单生意,每日亏4元,那么3天前 比现在少亏多少元?(结果不唯一)
h
12
计算
( 1 ) 1 2 3 4 =+24 ( 2 ) 2 3 4 5 =120 ( 3 ) 2 3 4 ( - 5 ) =-120
几个数相乘, 有一个为0,
( 7 ) 2 0 0 6 ( 2 0 0 8 ) 1 =0
12 h
积就为0
13
应用思考\拓展延伸:
镇龙二中内宿生交伙食费问题: 略)------------你能举出一道有利 用乘法运算的题吗?
h
14
课堂小结:
(1)会运用乘法法则
进行有理数的乘法 运算.
(2)要将数学与生活实 际联系 起来.
任何数都得0!
( 4 ) ( 1 ) -4 h
7
思考?
两个有理数相乘,积的符号 怎样确定?积的绝对值怎样 确定?
h
8
有理数乘法 法则
两数相乘,同号得 正 ,异号
得 负 ,并把各因数绝对值 相乘.
任何数与0相乘都得0
h
9
例题,计算.
( 1 ) 9 6 = 54
( 2 ) ( 9 ) 6 = -54
符号,积的结果会发生 了怎样的变化??
两数相乘,若把一个因数换成它的相
反数,所得的积与原来积有什么不同?
h
3
同学们再仔细看看!! 我们把水位上升记为正,水位下降 记为负;几天后记为正,几天前记为 负.
请记得我们的 约定-------------
-------------
(1)如果水位每天上升4cm,那么3天后
的水位比今天高还是低?高(或低)多少?
(+4)×(+3)=?+12
(2)如果水位每天上升4cm,那么3天前的 水位比今天高还是低?高(或低)多少?
(+4)×(-3)=?
-12
注意有什么特 点?结果有什
h
么不同? 4
(3)如果水位每天下降4cm,那么3天后的水位比今 天高还是低?高(或低)多少?
(-4)×(+3)=?-12