2-1-3空间中直线与直线所成的角(夹角)
两条空间直线夹角计算公式
两条空间直线夹角计算公式一、引言在三维空间中,直线是常见的几何形状之一。
当我们研究两条直线之间的关系时,一个重要的概念就是夹角。
本文将介绍两条空间直线夹角的计算公式,并讨论其应用。
二、夹角的定义在平面几何中,夹角是由两条直线在同一平面内的交点和两条直线上的一对相对的射线所围成的角度。
而在三维空间中,夹角的定义相似,但需要考虑两条直线所在的不同平面。
三、两条空间直线夹角的计算公式1. 同向直线的夹角当两条直线的方向向量平行时,它们被认为是同向直线。
此时,可以通过计算两个方向向量的夹角来求得两条直线之间的夹角。
假设两条直线分别为L1和L2,其方向向量分别为a和b。
则两条直线夹角θ的计算公式为:cosθ = |a·b| / (|a|·|b|)其中,·表示向量的点积,|a|表示向量a的模长。
2. 反向直线的夹角反向直线是指两条直线的方向向量相反,即平行但方向相反的直线。
在计算反向直线的夹角时,我们可以使用同向直线夹角的计算公式,然后取其补角。
假设两条直线分别为L1和L2,其方向向量分别为a和b。
则两条直线夹角θ的计算公式为:θ = π - arccos(|a·b| / (|a|·|b|))其中,arccos表示反余弦函数,π表示圆周率。
3. 任意两条直线的夹角当两条直线既不是同向直线也不是反向直线时,我们需要进一步考虑两条直线所在的平面。
首先,我们可以通过计算两个方向向量的夹角来确定两条直线在其所在平面内的夹角。
然后,我们可以利用这个夹角和两个方向向量与其所在平面的夹角来计算最终的夹角。
具体计算步骤如下:1) 计算两个方向向量a和b的夹角α:cosα = |a·b| / (|a|·|b|)2) 计算两个方向向量a和b与其所在平面的夹角β和γ:cosβ = |a·n| / (|a|·|n|)cosγ = |b·n| / (|b|·|n|)其中,n为平面的法向量。
空间中直线及直线之间的位置关系附答案
空间中直线与直线之间的位置关系[学习目标]1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.知识点一空间中两条直线的位置关系1.异面直线(1)定义:不同在任何一个平面的两条直线叫做异面直线.要点分析:①异面直线的定义表明:异面直线不具备确定平面的条件.异面直线既不相交,也不平行.②不能误认为分别在不同平面的两条直线为异面直线.如图中,虽然有a⊂α,b⊂β,即a,b分别在两个不同的平面,但是因为a∩b=O,所以a与b不是异面直线.(2)画法:画异面直线时,为了充分显示出它们既不平行也不相交,即不共面的特点,常常需要画一个或两个辅助平面作为衬托,以加强直观性、立体感.如图所示,a与b为异面直线.(3)判断方法方法容定义法依据定义判断两直线不可能在同一平面定理法过平面外一点与平面一点的直线和平面不经过该点的直线为异面直线(此结论可作为定理使用)反证法假设这两条直线不是异面直线,那么它们是共面直线(即假设两条直线相交或平行),结合原题中的条件,经正确地推理,得出矛盾,从而判定假设“两条直线不是异面直线”是错误的,进而得出结论:这两条直线是异面直线2.空间中两条直线位置关系的分类(1)按两条直线是否共面分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧相交直线:同一平面内,有且只有一个公共点平行直线:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点(2)按两条直线是否有公共点分类 ⎩⎪⎨⎪⎧有且仅有一个公共点——相交直线无公共点⎩⎨⎧平行直线异面直线思考 (1)分别在两个平面的两条直线一定是异面直线吗? (2)两条垂直的直线必相交吗? 答 (1)不一定.可能相交、平行或异面. (2)不一定.可能相交垂直,也可能异面垂直. 知识点二 公理4(平行公理) 文字语言 平行于同一条直线的两条直线互相平行,这一性质叫做空间平行线的传递性符号语言⎭⎬⎫a ∥c b ∥c ⇒a ∥b图形语言知识点三 空间等角定理 1.定理文字语言 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 符号语言OA ∥O ′A ′,OB ∥O ′B ′⇒∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°图形语言作用判断或证明两个角相等或互补2.推广如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 思考如果两条直线和第三条直线成等角,那么这两条直线平行吗?答不一定.这两条直线可能相交、平行或异面知识点四异面直线所成的角1.概念:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).2.异面直线所成的角θ的取值围:0°<θ≤90°.3.如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.两条互相垂直的异面直线a,b,记作a⊥b.4.异面直线所成的角的两种求法(1)在空间任取一点O,过点O分别作a′∥a,b′∥b,则a′与b′所成的锐角(或直角)为异面直线a与b所成的角,然后通过解三角形等方法求角.(2)在其中一条直线上任取一点(如在b上任取一点)O,过点O作另一条直线的平行线(如过点O作a′∥a),则两条直线相交所成的锐角(或直角)为异面直线所成的角(如b与a′所成的角),然后通过解三角形等方法求角(如图).题型一空间两条直线的位置关系的判定例1 若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.平行B.异面C.相交D.平行、相交或异面答案 D解析 可借助长方体来判断.如图,在长方体ABCD -A ′B ′C ′D ′中,A ′D ′所在直线为a ,AB 所在直线为b ,已知a 和b 是异面直线,b 和c 是异面直线,则c 可以是长方体ABCD -A ′B ′C ′D ′中的B ′C ′,CC ′,DD ′.故a 和c 可以平行、相交或异面.跟踪训练1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,判断下列直线的位置关系:(1)直线A 1B 与直线D 1C 的位置关系是________; (2)直线A 1B 与直线B 1C 的位置关系是________; (3)直线D 1D 与直线D 1C 的位置关系是________; (4)直线AB 与直线B 1C 的位置关系是________. 答案 (1)平行 (2)异面 (2)相交 (4)异面 解析 序号 结论 理由(1) 平行 因为A 1D 1綊BC ,所以四边形A 1BCD 1为平行四边形,所以A 1B ∥D 1C(2) 异面 A 1B 与B 1C 不同在任何一个平面(3) 相交 D 1D ∩D 1C =D 1(4) 异面AB 与B 1C 不同在任何一个平面题型二 公理4、等角定理的应用例2E ,F 分别是长方体ABCD -A 1B 1C 1D 1的棱A 1A ,C 1C 的中点,求证:四边形B 1EDF 是平行四边形.证明 设Q 是DD 1的中点, 连接EQ ,QC 1. 因为E 是AA 1的中点, 所以11//D A EQ .又因为在矩形A 1B 1C 1D 1中,1111//C B D A ,所以11//C B EQ .所以四边形EQC 1B 1为平行四边形.所以Q C E B 11//. 又因为Q ,F 分别是矩形DD 1C 1C 两边D 1D ,C 1C 的中点, 所以F C QD 1//.所以四边形DQC 1F 为平行四边形. 所以FD Q C //1.又因为Q C E B 11//,所以FD E B //1. 所以四边形B 1EDF 为平行四边形.跟踪训练2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)若四边形EFGH 是矩形,求证:AC ⊥BD . 证明 (1)在△ABD 中, ∵E ,H 分别是AB ,AD 的中点, ∴EH ∥BD .同理FG ∥BD ,则EH ∥FG . 故E ,F ,G ,H 四点共面. (2)由(1)知EH ∥BD ,同理AC ∥GH . 又∵四边形EFGH 是矩形, ∴EH ⊥GH .故AC ⊥BD .题型三 异面直线所成的角例3 如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角. 解 如图,取BD 的中点G ,连接EG ,FG . 因为E ,F 分别为BC ,AD 的中点,AB =CD ,所以EG ∥CD ,GF ∥AB ,且EG =12CD ,GF =12AB .所以∠GFE 就是EF 与AB 所成的角或其补角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF .所以∠EGF =90°. 所以△EFG 为等腰直角三角形.所以∠GFE =45°,即EF 与AB 所成的角为45°.跟踪训练3 空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E ,F 分别为BC ,AD 的中点,求EF 与AB 所成角的大小.解 取AC 的中点G ,连接EG ,FG , 则EG //12AB ,GF //12CD .故直线GE ,EF 所成的锐角即为AB 与EF 所成的角, 直线GE ,GF 所成的锐角即为AB 与CD 所成的角. ∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°. 由AB =CD ,知EG =FG ,∴△EFG 为等腰三角形. 当∠EGF =30°时,∠GEF =75°; 当∠EGF =150°时,∠GEF =15°. 故EF 与AB 所成的角为15°或75°.转化与化归思想例5 在空间四边形ABCD 中,AD =BC =2a ,E ,F 分别是AB ,CD 的中点,EF =3a ,求异面直线AD ,BC 所成的角.分析 要求异面直线AD ,BC 所成的角,可在空间中找一些特殊点,将AD ,BC 平移至一个三角形中.此题已知E ,F 分别为AB ,CD 的中点,故可寻找一边中点,如BD 的中点M ,则∠EMF (或其补角)为所求角.解 如图,取BD 的中点M .由题意,知EM 为△BAD 的中位线, 所以EM ∥AD 且EM =12AD .同理,MF ∥BC 且MF =12BC .所以EM =a ,MF =a ,且∠EMF (或其补角)为所求角. 在等腰△MEF 中,取EF 的中点N , 连接MN ,则MN ⊥EF . 又因为EF =3a , 所以EN =32a .故有sin ∠EMN =EN EM =32. 所以∠EMN =60°,所以∠EMF =2∠EMN =120°. 因为∠EMF =120°>90°,所以AD ,BC 所成的角为∠EMF 的补角, 即AD 和BC 所成的角为60°.反证法的合理应用例6 如图,三棱锥P -ABC 中,E 是PC 上异于点P 的点.求证:AE 与PB 是异面直线.分析 利用定义直接证明,即从不同在任何一个平面中的“任何”开始入手,一个平面一个平面地寻找是不可能实现的,因此必须找到一个间接证法来证明,反证法即是一种行之有效的方法.证明假设AE与PB不是异面直线,设AE与PB都在平面α,因为P∈α,E∈α,所以PE⊂α.又因为C∈PE,所以C∈α.所以点P,A,B,C都在平面α.这与P,A,B,C不共面(P-ABC是三棱锥)矛盾.于是假设不成立,所以AE与PB是异面直线.1.若空间两条直线a和b没有公共点,则a与b的位置关系是()A.共面B.平行C.异面D.平行或异面2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行或异面B.相交或异面C.异面D.相交3.设P是直线l外一定点,过点P且与l成30°角的异面直线()A.有无数条B.有两条C.至多有两条D.有一条4.如图所示,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填序号)5.在正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与A1B1所成角的余弦值为________.一、选择题1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面2.已知空间两个角α,β,α与β的两边对应平行,且α=60°,则β等于()A.60°B.120°C.30°D.60°或120°3.在正方体ABCD-A1B1C1D1中,异面直线BA1与CC1所成的角为()A.30°B.45°C.60°D.90°4.下面四种说法:①若直线a、b异面,b、c异面,则a、c异面;②若直线a、b相交,b、c相交,则a、c相交;③若a∥b,则a、b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4B.3C.2D.15.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是()A.梯形B.矩形C.平行四边形D.正方形6.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,则过AB的中点E且平行于BD,AC的截面四边形的周长为()A.10B.20C.8D.47.如图,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°二、填空题8.在四棱锥P-ABCD中,各棱所在的直线互相异面的有________对.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确的序号为________.10.如图所示,在正方体ABCD-A1B1C1D1中,异面直线A1B与AD1所成的角为______.三、解答题11.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=2,DA⊥AC,DA⊥AB,若DA =1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.12.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且有AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.当堂检测答案1.答案 D解析 若直线a 和b 共面,则由题意可知a ∥b ;若a 和b 不共面,则由题意可知a 与b 是异面直线.2.答案 B解析 如图,在正方体ABCD -A 1B 1C 1D 1中,AA 1与BC 是异面直线,又AA 1∥BB 1,AA 1∥DD 1,显然BB 1∩BC =B ,DD 1与BC 是异面直线,故选B.3.答案 A解析 我们现在研究的平台是锥空间.如图所示,过点P 作直线l ′∥l ,以l ′为轴,与l ′成30°角的圆锥面的所有母线都与l 成30°角.4.答案 ②④解析 ①中,∵G ,M 是中点,∴AG 綊BM ,∴GM 綊AB 綊HN ,∴GH ∥MN ,即G ,H ,M ,N 四点共面;②中,∵H ,G ,N 三点共面,且都在平面HGN ,而点M 显然不在平面HGN ,∴H ,G ,M ,N 四点不共面,即GH 与MN 异面;③中,∵G ,M 是中点,∴GM 綊12CD ,∴GM 綊12HN ,即GMNH 是梯形,则HG ,MN 必相交,∴H ,G ,M ,N 四点共面;④中,同②,G ,H ,M ,N 四点不共面,即GH 与MN 异面.5.答案 13 解析 设棱长为1,因为A 1B 1∥C 1D 1,所以∠AED 1就是异面直线AE 与A 1B 1所成的角.在△AED 1中,cos ∠AED 1=D 1E AE =1232=13.课时精练答案一、选择题1.答案 D解析 可能相交也可能异面,但一定不平行(否则与条件矛盾).2.答案 D解析 由等角定理,知β与α相等或互补,故β=60°或120°.3.答案 B解析 如图,在正方体ABCD -A 1B 1C 1D 1中,BB 1∥CC 1,故∠B 1BA 1就是异面直线BA 1与CC 1所成的角,故为45°.4.答案 D解析 若a 、b 异面,b 、c 异面,则a 、c 相交、平行、异面均有可能,故①不对.若a 、b 相交,b 、c 相交,则a 、c 相交、平行、异面均有可能,故②不对.若a ⊥b ,b ⊥c ,则a 、c 平行、相交、异面均有可能,故④不对.③正确.5.答案 D解析 如图,因为BD ⊥AC ,且BD =AC ,又因为E ,F ,G ,H 分别为对应边的中点,所以FG //EH //12BD ,HG //EF //12AC .所以FG ⊥HG ,且FG =HG .所以四边形EFGH 为正方形.6.答案 B解析 设截面四边形为EFGH ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,∴EF =GH =12AC =4,FG =HE =12BD =6,∴周长为2×(4+6)=20. 7.答案 C解析 由于CC 1与B 1E 都在平面C 1B 1BC ,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC ,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.综上所述,故选C.二、填空题8.答案 8解析 以底边所在直线为准进行考察,因为四边形ABCD 是平面图形,4条边在同一平面,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.9.答案 ①③解析 把正方体的平面展开图还原成原来的正方体,如图所示,AB ⊥EF ,EF 与MN 是异面直线,AB ∥CM ,MN ⊥CD ,只有①③正确.10.答案 60°解析 连接BC 1,A 1C 1,∵BC 1∥AD 1,∴异面直线A 1B 与AD 1所成的角即为直线A 1B 与BC 1所成的角.在△A 1BC 1中,A 1B =BC 1=A 1C 1,∴∠A 1BC 1=60°,故异面直线A1B与AD1所成的角为60°.三、解答题11.解取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,∴EF∥CD,∴∠BEF即为所求的异面直线BE与CD所成的角(或其补角).在Rt△ABC中,BC=2,AB=AC,∴AB=AC=1,在Rt△EAB中,AB=1,AE=12AD=12,∴BE=52.在Rt△AEF中,AF=12AC=12,AE=12,∴EF=22.在Rt△ABF中,AB=1,AF=12,∴BF=52.在等腰三角形EBF中,cos∠FEB=12EFBE=2452=1010,∴异面直线BE与CD所成角的余弦值为1010.12.(1)证明因为AE∶EB=AH∶HD,所以EH∥BD.又因为CF∶FB=CG∶GD,所以FG∥DB.所以EH∥FG.所以E,F,G,H四点共面.(2)解当且仅当EH∥FG,EH=FG时,四边形EFGH为平行四边形. 因为EHBD=AEAE+EB=mm+1,所以EH=mm+1BD.同理FG=nn+1BD,由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形. (3)证明当m=n时,AE∶EB=CF∶FB,所以EF∥AC.又因为AC⊥BD,而∠FEH是AC与BD所成的角,所以∠FEH=90°,从而平行四边形EFGH为矩形,所以EG=FH.。
,,空间中直线与直线所成的角(夹角)
D
C
Q AA'C '中,EFAC '
A
B
FED '即异面直线AC '和B ' D '所成的角或其补角
设正方体棱长为a,则EF 1 AC ' 3 a, ED ' 2 a,
FD ' 5 a
2
2
2
EF 2 ED '2 FD '2 FED' 90
2
直线AC '和B ' D '的夹角是90
思考:如图,在棱长为4正四面体ABCD中,求异面
b bˊ
a
aˊ
o
四.异面直线所成的角
定义:直线a、b为异面直线,经过空间任一点O, 分别引a′∥a,b′∥b,则相交直线a′,b′所 成的锐角(或直角)叫做两条异面直线a、b所成 的角(或夹角)
注1:异面直线a、b所成角,只与a、b的相互位置有关, 而与点O位置无关,一般常把点O取在直线a或b上;
C' B'
Q A' B ' DC,A' B ' DC
D
C
四边形A' B 'CD是平行四边形
A
B
A' DB 'C,A' D B 'C
BA' D即异面直线A' B和B 'C所成的角或其补角
Q A' D DB A' B BA' D 60,即异面直线A' B和B 'C的夹角为60.
典型例题
例1.如图,在正方体ABCD A' B 'C ' D '中,D' (3)直线A' B和B 'C的夹角是多少? A'
空间直线间的夹角
(A)
y O D
B
C
因为A(0,0,0),C1(2,1,3),A1(0,0,3),D(0,1,0) 所以AC1 (2,1,3), A1D (0,1, 3). z
因此 cos s1 , s2
8 0 140
s1 s2 | s1 |1= A1B1 ,求BE1与DF1所成的角的余弦值。
D1
A1 D A x
F1
E1 O B
C1
B1
解:以D为原点,DA,DC,DD1 分别为x轴,y轴,z轴建立直 角坐标系.
cos BE1 DF1
C y
15 | BE1 || DF1 | 17
BE1 DF1
课堂练习
5、已知在正方体ABCD A1 B1C1 D1中,E , F 分别是棱BB1 , DC的中点,则异面直线AE与 D1 F的夹角为(D )
典例精讲
例1、如图,在空间直角坐标系中有长方体ABCD -A1B1C1D1,AB=2,BC=1,AA1=3,求对角线 AC1和侧面对角线A1D的夹角 的余弦值。
B1 z A1 C1 D1
解:设对角线AC1和侧面对角线 A1D的方向向量分别是 s , s
1 2
则s1 AC1, s2 A1D.
当两条直线l1与l2是异面直线时, 在直线l1上任取一点A作AB//l2 我们把直线l1与直线AB的夹角叫作 异面直线l1与l2的夹角.
l2 B A
l1
C
创设情境
如何利用向量法解决空间中两条直线间的夹角 问题呢? 空间直线由一点和一个方向确定,所以空间 两条直线的夹角由它们的方向向量的夹角 确定.
A.
6
B.
直线与平面的夹角
直线与平面的夹角直线与平面是几何学中的两个基本概念,它们之间的夹角是研究二者关系的重要内容之一。
本文将从不同角度探讨直线与平面的夹角,包括夹角的定义、计算方法以及在实际问题中的应用。
一、夹角的定义与性质夹角是指由两条直线或者由一条直线和一个平面所形成的角度。
在几何学中,夹角的度量单位通常采用弧度制。
夹角的定义具体如下:定义1:直线与平面的夹角是两者之间的最小的正向的角,这个角是由直线在相交点上方和平面上方所划分的。
根据这个定义,我们可以得到夹角的一些基本性质:性质1:夹角的度数大小不受直线或平面的方向而改变。
性质2:夹角的度数范围为0到180度(或0到π弧度)。
性质3:如果两条直线平行于同一个平面,那么它们与该平面的夹角为零。
二、计算计算直线与平面的夹角可以借助向量的概念来进行,具体步骤如下:步骤1:设定一条直线L和一个平面P,并选择直线L上的一个点A以及平面P上的一个点B。
步骤2:从点A到平面P作垂线,垂足为C。
步骤3:将向量AC和向量BC分别标记为向量a和向量b。
步骤4:计算向量a和向量b的夹角,即夹角的余弦值。
步骤5:夹角的度数可以通过反余弦函数来表示,即夹角的度数为arccos(cosine),其中cosine是步骤4中计算得到的夹角余弦值。
需要注意的是,在计算夹角时,我们需要确保向量a和向量b之间的夹角范围在0到π之间,以便得到直线与平面的最小夹角。
三、直线与平面夹角的应用直线与平面的夹角在几何学和物理学中有着广泛的应用。
以下列举几个相关的应用例子:例子1:光的反射与折射当光线从一个介质进入另一个介质时,会发生折射和反射现象。
直线与平面的夹角可以帮助我们计算光线在介质之间的折射角和反射角,从而理解和预测光的传播路径。
例子2:建筑和工程设计在建筑和工程设计中,直线与平面的夹角可以帮助工程师确定建筑物的结构和材料的选择。
例如,太阳光的入射角可以影响建筑物的采光和能量效率。
例子3:航天与导航航天器和导航系统通常会使用直线与平面的夹角来确定飞行轨迹和导航目标。
§2.1.2-3空间中直线与直线之间的位置关系(三)
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
17
D
A B
C
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
13
§2.1.2-3空间中直线与直线之间的位置关系(三)
求异面直线间的距离的方法:
——找异面直线的公垂线段(既垂直,又相交) 求异面直线间的距离的步骤: (1)找(作)异面直线的公垂线段——作; (2)证(说)此即为所求的距离——证; (3)求距离——算.
(1)求证:MN⊥AC
(2)当AB=CD=a,BD=b,
B M α
2013-1-29 重庆市万州高级中学 曾国荣 wzzxzgr@
A N C
16
AC=c时,求MN的长.
D
§2.1.2-3空间中直线与直线之间的位置关系(三)
课堂练习 <<教材>> P.5
练习1.2
书面作业
<<教材>> P.20 习题1.1 A组1
§2.1.2-3空间中直线与直线之间的位置关系(三)
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.1.2-3空间中直线与直线之间的位置关系(三)
教学目的:
1. 理解两条异面直线垂直的概念; 2.了解两条异面直线的公垂线、公垂线段 3.会求两条异面直线间的距离及主要方法。
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
2
§2.1.2-3空间中直线与直线之间的位置关系(三)
教学重点:
异面直线间的距离。
教学难点:
两条异面直线的距离的求法.
2013-1-29
重庆市万州高级中学 曾国荣 wzzxzgr@
空间中直线与直线之间的位置关系
与直线BA′成异面直线的有直线B′C′,AD,CC′,DD′,DC,D′C′.
√ (与2直)线那直线垂B么A直′和. 这CC′的两夹角是组多少直? 线所成的锐角(或直角)相等.(
)
同理,FG∥BD,且FG= BD.
理解空间两直线的位置关系,并掌握异面直线的
2.填空: (1) 空间两条不重合的直线的位置关系有 平行 、
=
5+5-4 2× 5×
5
=
3 5
.
F E
5.如图,已知长方体ABCD-EFGH中, AB=2 3 ,AD=2 3 , AE=2. (1)求BC和EG所成的角是多少度? (2)求AE和BG所成的角是多少度?
H
G
E
2 2 3D
A
23
F C
B
解答:
(1)因为GF∥BC, 所以∠EGF(或其补角)为所求. H
(4)直线 AB 与直线 B1C 的位置关系是________.
相交 异面
问题探究
例2在如图同,已一知正方平体A面BCD内-A′B,′C′D′.如果两条直线都与第三条直线平行,那
有且仅有一个公共点——相交直线
若两条异面直线所成的角为90°,则称它们互相垂直.
么这两条直线互相平行.在空间中,是否有类似的规律? 公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.
证明:连接BD. 因为 EH是△ABD的中位线, 所以EH∥BD,且EH=1 BD.
21 同理,FG∥BD,且FG= BD.
2 因为EH∥FG,且EH =FG,
A
H
E
D G
B
F
C
所以四边形EFGH是平行四边形.
[拓展1] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,则四边形EFGH为 菱形 . [拓展2] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC⊥BD,则四边形EFGH为 矩形 . [拓展3] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,AC⊥BD,则四边形EFGH 为 正方形 . (以上三个问题你会证明吗?不妨一试)
选2-13.2立体几何中的向量方法(夹角问题)
∴AE⊥平面DBC,
∴∠ADE即为AD与平面CBD所成的角。
E
∵AB=BD,∠CBA=∠DBC,EB=EB
∴∠ABE=∠DBE
∴△DBE≌△ABE
∴DE⊥CB且DE=AE
∴∠ADB=45°
∴AD与平面CBD所成的角为45°
(2)由(1)知CB⊥平面ADE ∴AD⊥BC即AD与BC所成的角为90°
所以异面直线BF与DE所成的角的大小为60°. (2)证明 由AM (1 ,1, 1),CE (1,0,1), AD (0,2,0),
22
可得CE AM 0,CE AD 0.因此CE AM,CE AD. 又AM∩AD=A,故CE⊥平面AMD.而CE 平 面
CDE,所以平面AMD⊥平面CDE.
求法向量坐标
求两法向量夹角
定值
例5 如图5,在底面是直角梯形的四棱锥S—ABCD
中,AD//BC,∠ABC=900,SA⊥面ABCD,
SA 1 , AB=BC=1, AD 1 .
2
2
求侧面SCD与面SBA所成的二面角的余弦 。
z S
A
By
D
x
C
图5
解: 以A为原点如图建立空间直角坐标系,
则
S
例3 如图,在四棱锥P—ABCD中,底面ABCD为矩形,
侧棱PA⊥底面ABCD,PA=AB=1,AD= 3,在线段BC
上是否存在一点E,使PA与平面PDE所成角的大小为450? 若存在,确定点E的位置;若不存在说明理由。
P
Az By
E
D
C
x
设BE=m,则 A(0, 0, 0), P(0, 0,1), D( 3, 0, 0), E(m,1, 0),
人教版必修二:2.1.3空间中直线与直线之间的位置关系教案
《空间中直线与直线之间的位置关系》教学设计一、教材分析本节课选自普通高中课程标准实验教科书《数学必修二》,第二章第一节。
空间中直线与直线的位置关系,是初中平面中直线与直线的位置关系的拓展延伸,是后续学习直线与平面、平面与平面位置关系以及空间几何体的基础,具有承上启下的作用。
其中,等角定理解决了角在空间中的平移问题,在平移变换下角的大小不变,它是两条异面直线所成角的依据,它提供了一个研究角之间关系的重要方法。
教材在编写时注意从平面到空间的变化,通过观察实物,直观感知,抽象概括出定义及定理培养学生的观察能力和分析问题的能力,通过联系和比较,理解定义、定理,以利于正确的进行运用。
因此,做好本节课的教学对学生建立空间观念尤为重要。
二、学情分析1.空间直线的三种位置关系在现实中大量存在,学生对他们已有一定的感性认识,其中,相交直线和平行直线都是共面直线,学生对它们已经很熟悉,异面直线的概念学生比较生疏;2.学生在初中已经学过平面中直线与直线的位置关系,具有一定的学习几何的经验,但长时间的平面几何学习的影响,学生的思维往往受平面的局限,不利于学生构建空间观念;3.学生善于形象思维,思维活跃,能积极参与讨论。
三、教学目标1.知识与技能(1)了解空间中两条直线的位置关系,并能正确判断空间中直线与直线之间的位置关系;(2)理解异面直线的概念,画法,培养学生的语言转化能力和空间想象能力;(3)能运用公理4证明简单的几何问题;(4)会用异面直线所成的角的定义找出或作出异面直线所成的角,会在直角三角形中求简单异面直线所成的角;(5)通过等角定理及异面直线夹角的求法的学习,逐步提高将立体图形转为平面图形的能力。
2.过程与方法(1)自主合作探究、师生的共同讨论与讲授法相结合;(2)增强动态意识,培养学生观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想。
3.情感态度与价值观(1)通过联系生活实例让学生直观感知空间两条直线关系,提高学生的学习兴趣;(2)通过探究增强学生的合作意识、动脑和动手能力,初步培养学生空间思维能力。
空间中直线与直线所成角
空间中直线与直线所成角1、异面直线及其所成的角1、异面直线所成的角:直线a ,b 是异面直线,经过空间任意一点O ,作直线a ′,b ′,并使a ′∥a ,b ′∥b .我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.异面直线所成的角的范围:⎥⎦⎤ ⎝⎛∈20πθ,;当θ=90°时,称两条异面直线互相垂直.2、求异面直线所成的角的方法:求异面直线的夹角关键在于平移直线,常用相似比,中位线,梯形两底,平行平面等手段来转移直线. 2、空间中直线与直线之间的位置关系 位置关系共面情况公共点个数图示相交直线 在同一平面内 有且只有一个平行直线 在同一平面内 无异面直线不同时在任何一个平面内无例1、(2013•嘉定区一模)以下说法错误的是()A.直角坐标平面内直线的倾斜角的取值范围是[0,π)B.直角坐标平面内两条直线夹角的取值范围是C.平面内两个非零向量的夹角的取值范围是[0,π)D.空间两条直线所成角的取值范围是例2、(2017秋•清远期末)已知直线m⊄平面α,直线n⊂平面α,且点A∈直线m,点A∈平面α,则直线m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行例3、(2016秋•临沂期末)下列结论中正确的是()A.∵a∥α,b∥α,∴a∥b B.∵a∥α,b⊂α,∴a∥bC.∵α∥β,a∥β,∴a∥αD.∵α∥β,a⊂β,∴a∥α例4、(2014秋•上城区校级期中)如图,在正方体ABCD﹣A1B1C1D1中,下面结论错误的是()A.BD∥平面CB1D1B.异面直线AD与CB1所成的角为30°C.AC1⊥平面CB1D1D.AC1⊥BD1、(2015•淮南一模)设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,m⊥α,则l⊥α;②若m∥l,m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.其中正确命题的个数是()A.1 B.2 C.3 D.42、(2017春•穆棱市期末)已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中的正确的个数为()①若m∥n,m⊥α,则n⊥α;②若m⊥α,m∥n,n∥β,则α⊥β;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥β,α∥β,则m∥n.A.1 B.2 C.3 D.43、(2018•钦州三模)在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是A.A1C1与B1C成60°角B.D1C1⊥ABC.AC1与DC成45°角D.A1C1⊥AD4、(2015春•咸宁期末)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④5、(2016秋•威海期末)如图,O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,则下列直线中与D1O垂直的是()A.B1C B.AA1 C.AD D.A1C16、(2014•安庆三模)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体的各个顶点的所有直线中,“黄金异面直线对”共有()A.12对B.18对C.24对D.30对。
立体几何求角、距离的解法
立体几何求角、距离的解法考点一、空间中的夹角空间中的各种角包括异面直线所成的角,直线与平面所成的角和二面角,要理解各种角的概念定义和取值范围,其范围依次为(0°,90°]、[0°,90°]和[0°,180°]。
(1)两条异面直线所成的角求法:○1先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;○2通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是]2,0(π,向量所成的角范围是],0[π,如果求出的是钝角,要注意转化成相应的锐角(2)直线和平面所成的角 求法:“一找二证三求”,三步都必须要清楚地写出来。
除特殊位置外,主要是指平面的斜线与平面所成的角,根据定义采用“射影转化法”(3)二面角的度量是通过其平面角来实现的解决二面角的问题往往是从作出其平面角的图形入手,所以作二面角的平面角就成为解题的关键。
通常的作法有:(Ⅰ)定义法;(Ⅱ)利用三垂线定理或逆定理;(Ⅲ)自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法.此外,当作二面角的平面角有困难时,可用射影面积法解之,cos =SS ',其中S 为斜面面积,S ′为射影面积, 为斜面与射影面所成的二面角例题1:已知边长为1的正方体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底面正方形的中心,求二面角O 1-BC-O 的大小。
2:已知边长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 11的中点,求平面EFCA 与底面ABCD 所成的二面角。
点评:利用平面角定义法中特殊位置的线段。
3:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求二面角B-EF-C 的棱,连A 1C ,易证A 1C ⊥平面BDC 1,垂足为H ,取AD 1中点O ,连OC 交EF 于G ,连GH 。
立体几何两直线夹角公式
立体几何两直线夹角公式在咱们学习立体几何的时候,有一个特别重要的公式,那就是两直线夹角公式。
这玩意儿可有意思啦,就像一把神奇的钥匙,能帮咱们打开好多难题的大门。
先来说说啥是两直线夹角。
想象一下,在一个三维的空间里,有两条线,它们不平行,就会形成一个夹角。
这个夹角可不是随便量量就行的,得用专门的公式来算。
两直线夹角公式就像是一个精准的测量工具。
假设咱们有直线 L1和直线 L2,它们的方向向量分别是 v1 和 v2 。
那这两条直线的夹角的余弦值就等于这两个方向向量的点积除以它们的模长的乘积。
用数学式子表示就是cosθ = (v1·v2) / (|v1| × |v2|) 。
记得我之前教过一个学生小明,这孩子特别聪明,就是有时候有点马虎。
有一次做作业,碰到一道要用两直线夹角公式的题。
题目是这样的:在一个空间直角坐标系里,直线 L1 的方向向量是 (1, 2, 3) ,直线 L2 的方向向量是 (4, -5, 6) ,让求这两条直线的夹角。
小明拿到题,刷刷刷就开始算,结果算出来夹角的余弦值是个负数。
他就有点懵了,跑来问我:“老师,这咋算出个负数呢?”我一看,原来他在计算向量点积的时候,符号弄错了。
我就给他仔细地又讲了一遍点积的计算方法,还让他重新做了一遍。
这孩子呀,经过这次小挫折,以后再碰到这种题就特别小心,再也没出过错。
咱们再来说说这个公式的用处。
比如说在建筑设计里,工程师们要确定不同钢梁之间的角度,是不是就得靠这个公式呀?还有在机器人的运动规划中,为了让机器人的手臂能够准确地到达指定的位置,也得用这个公式来计算关节之间的角度。
在学习这个公式的时候,大家可别死记硬背。
要多做几道题,通过实际的运用来加深理解。
比如说,给你一个正方体,让你求其中两条棱之间的夹角,这时候你就得先找到这两条棱的方向向量,然后再代入公式计算。
还有啊,有些同学可能会觉得这个公式有点复杂,其实只要你一步一步来,别着急,肯定能掌握的。
空间中直线与直线所成的角(夹角)
感谢您的观看
THANKS
详细描述
当两条重合的直线在空间中相交,它 们之间的夹角是0度。这是因为重合的 直线实际上是同一条直线,所以它们 在任何点处的角度都是相同的。
05
直线与直线所成的角的计算 方法
利用三角函数计算角度
总结词
利用三角函数计算直线与直线所成的角度,需要知道直线的 倾斜角,然后通过三角函数关系计算出两直线之间的夹角。
详细描述
首先,我们需要确定两条直线的倾斜角。然后,使用三角函数 中的正切或余切函数,通过两条直线的斜率来计算它们之间的 夹角。具体地,设两直线的斜率为k1和k2,夹角为θ,则有 tan(θ/2) = |k2 - k1| / (1 + k1 * k2)。
利用向量计算角度
总结词
通过向量的点积和模长来计算直线与 直线所成的角度。首先,我们需要将 直线表示为向量,然后利用点积公式 和向量的模长来计算两向量之间的夹 角。
夹角的几何意义在解 析几何、射影几何等 领域有着广泛的应用。
夹角的大小反映了直 线之间的倾斜程度。
03
直线与直线所成的角的实际 应用
空间几何问题
确定物体位置关系
在空间几何问题中,通过 计算两条直线所成的角, 可以确定物体之间的相对 位置关系。
判断形状和性质
通过分析直线之间的夹角, 可以判断几何形状的性质, 如平行、垂直、相交等。
通过作出的几何图形,利 用量角器或三角板测量夹 角的度数。
利用向量计算
通过向量的点积和模长, 利用向量公式计算夹角的 余弦值,从而得出夹角的 度数。
02
直线与直线所成的角的性质
角度的范围
01
02
03
04
直线与直线所成的角, 其角度范围在0°到180° 之间。
02 教学设计_直线与平面的夹角(第1课时)(2)
1.2.3 直线与平面的夹角(1)本节课选自《2019人教B 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节主要学习直线与平面的夹角。
学生在学习了异面直线所成角的概念,对空间角的问题有了一定的经验,线面角的问题,依然按照将空间问题化为平面问题、将立体几何问题化为空间向量运算问题的基本思路展开。
为培养学生直观想象、数学抽象、逻辑推理、数学建模和数学运算的核心素养提供舞台。
1.教学重点:利用空间向量求直线与平面所成的角问题.2.教学难点:线面角的概念多媒体一、情境导学日常生活中,很多场景中都有直线与平面成一定角度的形象,例如如图1所示,握笔写字时,如果把笔抽象成直线,把纸抽象成平面,则直线与平面呈一定角度;如图2所示,地球仪的地轴(即旋转轴)与赤道所在的平面垂直,并且与水平桌面呈一定角度,那么怎样来刻画直线与平面所成的角呢?二、探究新知问题1:如图所示,设l是平面α的一条斜线,m是平面α内的任意一条直线. 能否将m与l所成的角定义为直线l与平面α所成的角?如果不能,该怎样规定直线l与平面α所成的角?1.直线与平面所成的角1.判断(1)直线与平面所成的角就是该直线与平面内的直线所成的角. ()(2)若直线与平面相交,则该直线与平面所成角的范围为0,π2 . ()答案:(1)×(2)×2.直线与平面的夹角的取值范围是什么?斜线与平面的夹角的取值范围是什么?],斜线与平面的夹提示:直线与平面的夹角的取值范围是[0,π2).角的取值范围是(0,π2问题2:如图所示,设AO是平面α的一条斜线段,O为斜足,A′为A在平面α内的射影,而OM是平面α内的一条射线,A′M ⊥OM记∠OAA′=θ1,∠A′OM=θ2, ∠A OM =θ(1)从直观上判断θ1与θ2的大小关系;(2)说明AM⊥OM是否成立,探究θ1,θ2,θ三者之间的等量关系2.最小角定理(1)线线角、线面角的关系式如图,设OA是平面α的一条斜线段,O为斜足,B为A在平面α内的射影,OM是平面α内的一条射线.θ是OA与OM所成的角,θ1是OA与OB所成的角,θ2是OB与OM所成的角.则有cos θ=cos θ1cos θ2.(2)最小角定理平面的斜线与平面所成的角,是斜线和这个平面内所有直线所成角中最小的角.3. 已知平面α内的角∠APB=60°,射线PC与P A,PB所成角均为135°,则PC与平面α所成角的余弦值是()A.-√63B.√63C.√33D.-√33解析:设PC与平面α所成的角为θ,由最小角定理知cos 45°=cos θcos 30°,∴cos θ=√63.答案:B4.将公式cos θ=cos θ1cos θ2中角的余弦值换成正弦值是否成立?提示:不成立.只有在特定的条件下能相等.也只能是数值上的相等,不具有等式的一般性结论.问题3:如果v是直线l的一个方向向量,n是平面α的一个法向量,设直线l与平面α所成角的大小为θ,通过作图讨论θ与<v,n >的关系3.用空间向量求直线与平面的夹角如果v 是直线l 的一个方向向量,n 是平面α的一个法向量,设直线l 与平面α所成角的大小为θ,则有 (1)θ=π2-<v ,n >,θ=<v ,n >-π2;(2)cos θ=sin <v ,n >,sin θ=|cos <v ,n >|.5.判断:直线与平面所成的角等于直线的方向向量与该平面法向量夹角的余角.( ) 答案:×例1 已知ABCD −A ′B ′C ′D ′是正方体,求B ′D ′与平面A ′BCD ′所成角的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注2:规定两条平行直线的夹角为0°,则异面直线所成角 的取值范围是:0 90 , 如果两条异面直线所成的角是90°,则称这两条异面 直线互相垂直,记作:a b .
四.异面直线所成的角
等角定理 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补.
复习巩固
2.如图, a, c , ca, b , a b A, 求证:b, c为异面直线.
证明:假设b, c不是异面直线, 则b, c平行或相交. (1)若b, c平行,由ca得ba.
c
A
a
b
这与a b A矛盾,所以b, c不平行.
(2)若b, c相交,设b c B. b , c B是平面 和的公共点 c与a相交,这与ca矛盾 又 a B a b, c不相交 综上,假设不成立,b, c是异面直线.
四.异面直线所成的角
空间中直线与直线所成的 角(夹角)
知识回顾
异面直线 不同在任何一个平面内的两条直线
①从有无公共点的角度: 有且仅有一个公共点---------相交直线 平行直线 没有公共点--------异面直线 ②从是否共面的角度 不同在任何一个平面内---------异面直线 相交直线 在同一平面内-------平行直线 三线平行公理 平行同一条直线的两条直线互相平行
思考1:两条异面直线之间有一个相对倾斜度,若将两异面 直线分别平行移动,它们的相对倾斜度是否发生变化? 思考2:设想用一个角反映异面直线的相对倾斜度,但不能 直接度量,你有a aˊ
o
四.异面直线所成的角
定义:直线a、b为异面直线,经过空间任一点O, 分别引a′∥a,b′∥b,则相交直线a′,b′所 成的锐角(或直角)叫做两条异面直线a、b所成 的角(或夹角)
想一想:在平面几何中,垂直于同一条直线的两直线互相 平行,在空间中这个结论还成立吗 ? 不成立 再想想:如果两条平行直线中有一条与某一条直线垂直, 那么另一条是否也与这条直线垂直?为什么?成立(定理)
若ab,a c,则b c.