(完整版)小学奥数排列

合集下载

一年级奥数题归类排列

一年级奥数题归类排列

一.队伍1.小朋友列队去参观纪念馆,从前面数阿婷是第5个,从后面数秋秋是第3个。

她们中间还有6个人,这一列队伍共有多少人?2. 8个人排成一排,从左边数起,小明排第7,从右边数起,小明排第()。

3. 一只小黑羊排在小白羊队伍里,从前面数小黑羊是第7只,从后面数小黑羊是第4只。

这队小羊一共()只4、林林前面有2人,后面有7人,这一排一共有()人。

5、小红的左边有5人,右边有3人,这一行一共有()人.6、从前面数起,小林是第5个,从后面数起,小林第4个,一共有()个。

7、11个小孩子站成一行,从前往后数,林林站在第3个,从后往前数,东东站在第3个,林林和东东中间还有()个小朋友。

8、小朋友排队。

小平的左面有4个人,右面有8个人。

这一行有()个人。

9、小朋友排队。

从左数过来小平是第4个,从右数过来是第8个。

这一行有()个人。

二.猜岁数1.小芳今年10岁,妈妈比她大28岁,再过5年,妈妈多少岁?2.小东今年是5岁,小东的阿姨比他大20岁,再过8年,小东的阿姨多少岁?3.爷爷今年是75岁,爸爸比爷爷小30岁,当爷爷60岁时,爸爸多少岁?4.小王今年23岁,小何今年29岁,当小王15岁时,小何应该多少岁?5.今年妈妈比小佳大24岁,10年后,妈妈比小佳大多少岁?6.小亮今年7岁,爸爸比他打30岁,三年前,小亮比爸爸小多少岁?二.1、晾晒1块手帕,要用2只夹子;2块手帕,要用3只夹子;11块手帕,要用()只夹子。

2、老师带了一些小朋友去看电影,一共买了11张票。

问和老师一起看电影的有()个小朋友。

3、8名女同学站成一排,每隔2名女同学插进3名男同学,共插进()名男同学。

5、小朋友排队。

小平的左面有4个人,右面有8个人。

这一行有()个人。

6、小朋友排队。

从左数过来小平是第4个,从右数过来是第8个。

这一行有()个人。

7.小明、小林和小红一起比体重,结果是小明比小林重,小林比小红重,小明比小红重。

他们三人中()最重,()最轻。

小学奥数排列组合[整理版]

小学奥数排列组合[整理版]

奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A = ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C = ,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+- .例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

小学奥数 简单的排列问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  简单的排列问题 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .模块一、排列之计算教学目标例题精讲知识要点7-4-1.简单的排列问题【例 1】 计算:⑴ 25P ;⑵ 4377P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 由排列数公式121m n P n n n n m =---+()()()知:⑴ 255420P =⨯=⑵ 477654840P =⨯⨯⨯=,37765210P =⨯⨯=,所以4377840210630P P -=-=.【答案】⑴20 ⑵630【巩固】 计算:⑴ 23P ;⑵ 32610P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴ 23326P =⨯= ⑵ 326106541091209030P P -=⨯⨯-⨯=-=.【答案】⑴6 ⑵30【巩固】 计算:⑴321414P P -; ⑵53633P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴32141414131214132002P P -=⨯⨯-⨯=;⑵536333(65432)3212154P P -=⨯⨯⨯⨯⨯-⨯⨯=.【答案】⑴2002 ⑵2154模块二、排列之排队问题【例 2】 有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照相时3人站成一排)【考点】简单排列问题 【难度】2星 【题型】解答【解析】 由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:3443224P =⨯⨯=(种)不同的拍照情况.也可以把照相的人看成一个位置,那么共可能有:44432124P =⨯⨯⨯=(种)不同的拍照情况.【答案】24【巩固】 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时4n =,4m =.由排列数公式知,共有44432124P =⨯⨯⨯=(种)不同的排法.【答案】24【巩固】 9名同学站成两排照相,前排4人,后排5人,共有多少种站法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有99P 种不同站法.而问题中,9个人要站成两排,这时可以这么想,把9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.方法一:由全排列公式,共有99987654321362880P =⨯⨯⨯⨯⨯⨯⨯⨯=(种)不同的排法.方法二:根据乘法原理,先排四前个,再排后五个.45 95987654321362880p p⋅=⨯⨯⨯⨯⨯⨯⨯⨯=【答案】362880【巩固】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且4n=.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【巩固】丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,5人并排站成一排,奶奶要站在正中间,有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【例 3】5个同学排成一行照相,其中甲在乙右侧的排法共有_______种?【考点】简单排列问题【难度】3星【题型】填空【关键词】学而思杯,4年级,第8题【解析】5个人全排列有5!120=种,其中甲在乙右侧应该正好占一半,也就是60种【答案】60种【例 4】一列往返于北京和上海方向的列车全程停靠14个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.【考点】简单排列问题【难度】3星【题型】解答【解析】2141413182P=⨯=(种).【答案】182【例 5】班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?【考点】简单排列问题【难度】3星【题型】解答【解析】55120P=(种).【答案】120【例 6】有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中5n=,3m=.由排列数公式知,共可组成3554360P=⨯⨯=(种)不同的信号.【答案】60【巩固】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】23326P =⨯=. 【答案】6【巩固】 在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成333216P =⨯⨯=(种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3216⨯⨯=(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】6模块三、排列之数字问题【例 7】 用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 这是一个从8个元素中取4个元素的排列问题,已知8n =,4m =,根据排列数公式,一共可以组成4887651680P =⨯⨯⨯=(个)不同的四位数.【答案】1680【巩固】 由数字1、2、3、4、5、6可以组成多少没有重复数字的三位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】36120P =. 【答案】120【例 8】 用0、1、2、3、4可以组成多少个没重复数字的三位数?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 (法1)本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由乘法原理得,此种三位数的个数是:24448P ⨯=(个).(法2):从0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是0的.从0、1、2、3、4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:32545434348P P -=⨯⨯-⨯=(个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.【答案】48【例 9】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【考点】简单排列问题【难度】3星【题型】解答【解析】个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n=,2m=,根据排列数公式,一共可以组成255420P=⨯=(个)符合题意的三位数.【答案】20【巩固】用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?【考点】简单排列问题【难度】3星【题型】解答【解析】由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P=⨯=(种)选法.由乘法原理,一共可以组成32060⨯=(个)不同的偶数..【答案】60【例 10】由0,2,5,6,7,8组成无重复数字的数,四位数有多少个?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:先考虑从六个数字中任取四个数字的排列数为466543360P=⨯⨯⨯=,由于0不能在千位上,而以0为千位数的四位数有3554360P=⨯⨯=,它们的差就是由0,2,5,6,7,8组成无重复数字的四位数的个数,即为:36060300-=个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数;第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是:5543300⨯⨯⨯=(个).【答案】300【例 11】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【考点】简单排列问题【难度】4星【题型】解答【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P=⨯=(个)不同的两位数,共可组成248⨯=(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成3 33216P=⨯⨯=(个)不同的三位数,共可组成6424⨯=(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P=⨯⨯⨯=(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P=⨯⨯⨯⨯=(个)不同的五位数.由加法原理,一共有182424120177++++=(个)能被3整除的数,即3的倍数.【答案】177【例 12】用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?【考点】简单排列问题【难度】4星【题型】解答【解析】可以分两类来看:⑴把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有4 4432124P=⨯⨯⨯=(种)放法,对应24个不同的五位数;⑵把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P=种选择.由乘法原理,可以组成33654⨯⨯=(个)不同的五位数.由加法原理,可以组成245478+=(个)不同的五位数.【答案】78【巩固】用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?【考点】简单排列问题【难度】4星【题型】解答【解析】从高位到低位逐层分类:⑴千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P=⨯⨯=(种)排列方式.由乘法原理,有45042016⨯=(个).⑵千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P=⨯=,由乘法原理,有1556280⨯⨯=(个).⑶千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=(个).⑷千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个.综上所述,比5687小的四位数有20162804252343+++=(个),故5687是第2344个四位数.【答案】2344【例 13】用数字l~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___种组成方法.【考点】简单排列问题【难度】4星【题型】填空【关键词】走美杯,六年级,初赛,第7题【解析】l~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.【答案】144种【例 14】 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个.【考点】简单排列问题 【难度】4星 【题型】解答【解析】 比2008小的4位数有2000和2002,比2008小的3位数有23318⨯⨯=(种),比2008小的2位数有236⨯=(种),比2008小的1位数有2(种),所以2008排在第21862129++++=(个). 【答案】29【例 15】 千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 千位数字大于十位数字,千位数字的取值范围为29,对应的十位数字取07,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2个作百位和个位就行了,因此总共有288P ⨯个这样的四位数.⑵千位数字小于十位数字,千位数字取17,十位数字取39,共有287P ⨯个这样的四位数.所以总共有228887840P P ⨯+⨯=个这样的四位数.【答案】840模块四、排列之策略问题【例 16】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【答案】56【例 17】 幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.由排列数公式,共有:36654120P =⨯⨯=(种)不同的坐法.【答案】120【巩固】 幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 与例5不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.由排列公式,共有:36654120P=⨯⨯=(种)不同的坐法.【答案】120【巩固】10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?【考点】简单排列问题【难度】3星【题型】解答【解析】把6辆碰碰车看成是6个位置,而10个人作为10个不同元素,则问题就可以转化成从10个元素中取6个,排在6个不同位置的排列问题.共有6101098765151200P=⨯⨯⨯⨯⨯=(种)不同的坐法.【答案】151200【例 18】一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:此题先确定做中锋的人选,除E以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4个人对应4个位置,有44432124P=⨯⨯⨯=(种)排列.由乘法原理,42496⨯=,故一共有96种不同的站位方法.方法二:五个人分配到五个位置一共有5554321120P=⨯⨯⨯⨯=(种)排列方式,E能做中锋一共有4 4432124P=⨯⨯⨯=(种)排列方式,则E不能做中锋一共有54541202496P P-=-=种不同的站位方法.【答案】96【例 19】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?【考点】简单排列问题【难度】3星【题型】解答【解析】我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO块糖分成了两部分.我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒:○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法.【答案】512。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

小学数学五年级奥数3--排列组合(一)

小学数学五年级奥数3--排列组合(一)

排列组合(一)例1:探究“排列”从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数?乘法原理:排列原理:例2:探究“组合”从1、2、3、4、5中挑选两个数字,有多少种选法?乘法原理:组合原理:例3:排队问题有6个年龄互不相同的人,3人一排,站成两排。

(1)如果可以随便站,那么一共有多少种排法?(2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?例4:圆圈连线如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。

练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法?练习3:学生会召集各班正、副班长,学习委员开会。

五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数?练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形?练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点?练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。

比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。

一共需要比赛多少场?练习8:学校体操队有18名同学,从中选出2名同学,(1)分别担任正副队长,有多少种不同的选法?(2)去参加全市的体操比赛,有多少种不同的选法?练习9:新学期的班会上,大家要从9名候选人中选出4名同学组成班委会,那么一共有多少种选法?如果贝贝一定要当选,有多少种不同的选法?练习10:7本不同的故事书,任选4本分给4名同学,每人一本,有多少种不同的分法?练习11:一本书有400页,数字1在这本书里出现了多少次?第十二届中环杯决赛题选如图,半圆连同直径上共有10个点,以这些点为顶点,可以构成()个三角形。

小学奥数 排列问题

小学奥数  排列问题

排列例1:甲乙两人在16个方格的正方形中各放一枚棋子,要求两枚棋子不在同行同列,共有多少种放法?例2:将赵钱孙李四位同学排成一排,有多少种排法?解析:排位有四个位置,所以第一个位置有四种选择,第二个位置就只剩3种选择,第三个位置则2种选择,第四个只剩1种选择,又因是乘法原理,故4×3×2×1=24(种)。

可以引用乘法原理进行总结:从n个不同元素中取出m个(m≤n)元素的排列问题可以这样计算:第一步:排第一个位置上的元素从n个中任取,可以有n种选法;第二步:排第二个位置的可以有n-1(n个抽掉1个只剩n-1个)种选法;第三步:则有n-2种选法;。

第m步:前面已排了m-1个元素,这里只能从剩下的n-(m-1)中选,则有n-m+1种选法。

整理排列公式得:n×(n-1)×(n-2)。

×(n-m+1)m个例3、有5位同学排成一排拍照,问:(1)共有多少种排列(2)如果有8个位置,有几种排法(3)如果某人不坐两端,共有多少种排法(4)如果二人不相邻,有多少种排法(5)如果二人高,三人矮,高的不相邻有几种排法练习:1、一趟往返于杭州与上海之间的火车,中间要停靠6个站,要准备多少种不同的票?2、有5面颜色不同的小旗,任意取出3面排成1行表示1种信号,共有多少种不同信号?3、用0、1、2、3、4、5可以组成多少个没有重复数字的三位数?4个同学去郊游,拍照时必须有1位同学给其他三人拍照,共有多少种情况?5、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法?6、有5本不同的书,7名同学去借,每人最多一本,书都借出去了,有多少种借法?7、有5名同学拍照,其中甲乙不相邻,有多少种排法?8、舰船信号兵用红、黄、蓝三色上下悬挂表示不同信号,可任挂一面、二面、三面,不同顺序不同信号,有多少种不同信号?9、上午1到4节准备上语数英体各一节,限定数学只在前二,体育在后二,有几种排课方式10、图书室有不同文艺书80本,不同科学书120本,如果最多从这两类图书中各借一本,共有几种借法?11、要排一张6个唱歌节目、4个舞蹈节目的演出节目单,如果任何两个舞蹈不相邻,有多少种排法?12、架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的不分开,有多少种排法?13、甲乙丙丁四人各有一本作业本混放在一起,4人每人随便拿一本,问:(1)甲拿到自己作业本的拿法有多少种?(2)恰有一人拿到自己作业本的拿法有多少种?(3)至少有一人没拿到自己作业本的拿法有多少种?(4)谁也没有拿到自己作业本的拿法有多少种?。

小学数学奥数测试题排列_人教版

小学数学奥数测试题排列_人教版
12. 名男生, 名女生,全体排成一行,问下列情形各有多少种不同的排法:
⑴甲不在中间也不在两端;
⑵甲、乙两人必须排在两端;
⑶男、女生分别排在一起;
⑷男女相间.
13.五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目。如果贝贝和妮妮不相邻,共有多少种不同的排法?
14.一台晚会上有 个演唱节目和 个舞蹈节目.求:
参考答案
1.(1)5040(2)720(3)1440(4)240(5)2400(6)5040(7)2880
【解析】(1) (种)。
(2)只需排其余6个人站剩下的6个位置. (种).
(3)先确定中间的位置站谁,冉排剩下的6个位置.2× =1440(种).
(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置. (种).
18.用 排成四位数:
(1)共有多少个四位数?
(2)无重复数字的四位数有多少个?
(3)无重复数字的四位偶数有多少个?
(4)2在3的左边的无重复数字的四位数有多少个?
(5)2在千位上的无重复数字的四位数有多少个?
(6)5不在十位、个位上的无重复数字的四位数有多少个?
19.有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?
5.用 、 、 、 、 这五个数字,不许重复,位数不限,能写出多少个3的倍数?
6.用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?
7.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非 数码组成,且四个数码之和是 ,那么确保打开保险柜至少要试几次?
8.两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?.177

小学奥数简单的排列问题精选练习例题含答案解析(附知识点拨及考点)

小学奥数简单的排列问题精选练习例题含答案解析(附知识点拨及考点)

简单的排列问题教学目标1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.知识要点一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中取出m(m n )个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n )个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做 P n m.根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2 :从剩下的( n 1)个元素中任取一个元素排在第二位,有(n 1)种方法;步骤m :从剩下的 [n (m 1)]个元素中任取一个元素排在第m个位置,有 n (m 1) n m 1 (种)方法;由乘法原理,从n 个不同元素中取出m个元素的排列数是 n(n 1)(n 2)(n m 1),即P n m(n n 1)(. n 2)(n m 1),这里,m n,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n的情况,排列数公式变为 P n n n(n 1)(n 2) 3 2 1 .表示从n个不同元素中取n个元素排成一列所构成排列的排列数.这种n个排列全部取出的排列,叫做n个不同元素的全排列.式子右边是从n开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为 n!,读做n的阶乘,则 P n n还可以写为: P n n n! ,其中 n! n(n 1)(n 2) 3 2 1 .例题精讲模块一、排列之计算巩固】 4 名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法? 考点】简单排列问题 【难度】 2 星 【题型】解答 解析】 4 个人到照相馆照相,那么 4 个人要分坐在四个不同的位置上.所以这是一个从 4 个元素中选 4个,排成一列的问题.这时 n 4, m 4 .由排列数公式知,共有 P 444 3 2 1 24 (种 )不同的排法. 答案】 24巩固】 9名同学站成两排照相,前排 4人,后排 5 人,共有多少种站法? 考点】简单排列问题【难度】 3 星 【题型】解答 解析】 如果问题是 9名同学站成一排照相, 则是 9个元素的全排列的问题, 有P 99种不同站法. 而问题中, 9 个人要站成两排,这时可以这么想,把 9 个人排成一排后,左边 4个人站在前排,右边 5 个人站在后 排,所以实质上,还是 9 个人站 9 个位置的全排列问题.方法一:由全排列公式,共有 P 999 8 7 6 5 4 3 2 1 362880 (种 )不同的排法. 方法二:根据乘法原理 ,先排四前个,再排后五个. 【考简单排列问题 【难度】 1 星 【 题型】解答【解析】 由 排列数公式 P n m (n n 1)(. n 2)( n m1)知: 2 ⑴ P 5 4 20⑵ P 74 7 6 5 4 840 ,P 73 7 6 5 210 ,所以 P 74 P 73 840 210 630 .【答案】 ⑴ 20 ⑵ 630【巩固】 计算:⑴ P 32 ;⑵ 32 P 6 P 10 . 【考点】 简单排列问题 【难度】 1 星 【 题型】解答【解析】 2 ⑴ P 3 2 6 32 ⑵ P 63 P 120 6 5 4 10 9 120 90 30 . 【答案】 ⑴6 ⑵ 30 【巩固】 计算:⑴ P 134 P 124 ; ⑵ 3P 65 P 33 . 【考点】 简单排列问题 【难度】 1 星 【 题型】解答【解析】32 ⑴ P 134 P 142 14 13 12 14 13 2002 ; 53 ⑵ 3P 65 P 33 3 (6 5 4 3 2) 3 2 1 2154 . 【答案】 ⑴ 2002 ⑵ 2154模块二 、排列之排队问题【例 2】 有 4 个同学一起去郊游, 照相时,必须有一名同学给其他 3 人拍照,共可能有多少种拍照情况? 相时 3 人站成一排 )【考点】 简单排列问题 【难度】 2 星 【 题型】解答【解析】 由于 4 人中必须个人拍照,所以,每张照片只能有 3 人,可以看成有 3个位置由这 3 人来站 .由 于要选一人拍照,也就是要从四个人中选 3 人照相,所以,问题就转化成从四个人中选 3人,排在 3 个位置中的排列问题.要计算的是有多少种排法. 由排列数公式,共可能有: P 434 3 2 24 (种)不同的拍照情况. 也可以把照相的人看成一个位置,那么共可能有: P 444 3 2 1 24 (种) 不同的拍照情况.答案】 24例 1】 计算:⑴ P 52 ;⑵ P 74 P 73. (45p 9 p 5 9 8 7 6 5 4 3 2 1 362880答案】 362880巩固】 5 个人并排站成一排,其中甲必须站在中间有多少种不同的站法? 考点】简单排列问题【难度】 3 星 【题型】解答 解析】 由 于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且 n 4 .由全排列公式,共有 P 444 3 2 1 24 (种)不同的站法. 答案】 24 巩固】 丁丁和爸爸、妈妈、奶奶、哥哥一起照 “全家福 ”, 5人并排站成一排,奶奶要站在正中间,有多少 种不同的站法?考点】简单排列问题 【难度】 3 星 【题型】解答 解析】 由 于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且 n=4 .4 由全排列公式,共有 P 444 3 2 1 24 (种)不同的站法.答案】 24 例 3】 5 个同学排成一行照相,其中甲在乙右侧的排法共有 _ 种?考点】简单排列问题 【难度】 3 星 【题型】填空 关键词】学而思杯, 4 年级,第 8 题解析】 5个人全排列有 5! 120种,其中甲在乙右侧应该正好占一半,也就是 60 种 答案】 60 种 例 4】 一列往返于北京和上海方向的列车全程停靠 不同的车票. 考点】简单排列问题 【难度】 3 星解析】 P 124 14 13 182 (种 ). 答案】 182 例 5】 班集体中选出了5 名班委, 他们要分别担任班长, 有多少种不同的分工方式? 考点】简单排列问题 【难度】 3 星 解析】 P 55120 (种).答案】 120 例 6】 有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信 号?考点】简单排列问题 【难度】 3 星 【题型】解答解析】 这 里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的 问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关, 而且与不同旗子所在的位置有关,所以是排列问题,且其中 n 5 , m3. 由排列数公式知,共可组成 P 535 4 3 60 (种)不同的信号. 答案】 60巩固】 有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少 种不同的信号?【考点】简单排列问题 【难度】 3 星 【题型】解答2【解析】 P 323 2 6 . 【答案】 614 个车站 (包括北京和上海 ),这条铁路线共需要多少种题型】解答学习委员、 生活委员、 宣传委员和体育委员. 问【巩固】在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题【难度】 3 星【题型】解答【解析】方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成 P333 2 1 6 (种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有 3 种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2 种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是: 3 2 16(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】 6模块三、排列之数字问题【例7】用 1、2、3、4、5、6、7、8 可以组成多少个没有重复数字的四位数?【考点】简单排列问题【难度】 2 星【题型】解答【解析】这是一个从 8个元素中取4个元素的排列问题,已知 n 8, m 4 ,根据排列数公式,一共可以组成 P848 7 6 5 1680 (个)不同的四位数.【答案】 1680【巩固】由数字1、2、3、4、5、 6可以组成多少没有重复数字的三位数?【考点】简单排列问题【难度】 2 星【题型】解答【解析】 P63120 .【答案】 120【例8】用0、1、2 、 3 、4可以组成多少个没重复数字的三位数?【考点】简单排列问题【难度】 3 星【题型】解答【解析】(法1)本题中要注意的是 0 不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有 P42种方法.由乘法原理得,此种三位数的个数是: 4 P4248 (个).(法2):从 0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是 0 的.从320 、1 、2 、 3 、4 这五个数字中任选三个数字的排列数为P53,其中首位是 0 的三位数有 P42个.三位数的个数是:32P53P425 4 3 4 3 48 (个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.答案】 48例9】用 1、2、3、4、5、6 可以组成多少个没有重复数字的个位是5的三位数?考点】简单排列问题【难度】 3 星【题型】解答解析】个位数字已知,问题变成从从 5 个元素中取2个元素的排列问题,已知 n 5 ,m 2 ,根据排列数公式,一共可以组成 P525 4 20 (个)符合题意的三位数.答案】 20巩固】用 1、2、 3、4、5、6 六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?考点】简单排列问题【难度】 3 星【题型】解答解析】由于组成偶数,个位上的数应从2,4, 6中选一张,有 3种选法;十位和百位上的数可以从剩下的5 张中选二张,有 P525 4 20 (种)选法.由乘法原理,一共可以组成 3 20 60 (个)不同的偶数..答案】 60例10】由0,2, 5, 6, 7 , 8组成无重复数字的数,四位数有多少个?考点】简单排列问题【难度】 3 星【题型】解答解析】方法一:先考虑从六个数字中任取四个数字的排列数为P646 5 4 3 360 ,由于 0不能在千位上,而以 0为千位数的四位数有 P535 4 3 60 ,它们的差就是由 0,2,5,6,7,8组成无重复数字的四位数的个数,即为: 360 60 300 个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数;第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是: 5 5 4 3 300 (个).答案】 300例11】用1、2、 3、4 、 5这五个数字,不许重复,位数不限,能写出多少个3的倍数?考点】简单排列问题难度】 4 星题型】解答解析】按位数来分类考虑:⑴ 一位数只有1个 3 ;⑵ 两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成P222 1 2(个)不同的两位数,共可组成 2 4 8 (个)不同的两位数;⑶ 三位数:由1,2与 3;1, 3与 5;2,3与4; 3,4与5 四组数字组成,每一组可以组成3P333 2 1 6 (个)不同的三位数,共可组成 6 4 24(个)不同的三位数;⑷ 四位数:可由1,2,4, 5这四个数字组成,有 P444 3 2 1 24 (个)不同的四位数;⑸ 五位数:可由1,2,3,4, 5组成,共有 P555 4 3 2 1 120 (个)不同的五位数.由加法原理,一共有 1 8 24 24 120 177 (个)能被 3整除的数,即 3的倍数.答案】 177例12】用 1、2、3、4、5 这五个数字可组成多少个比 20000大且百位数字不是 3的无重复数字的五位数?考点】简单排列问题【难度】 4 星【题型】解答解析】可以分两类来看:⑴ 把 3 排在最高位上,其余 4 个数可以任意放到其余 4 个数位上,是 4 个元素全排列的问题,有P444 3 2 1 24(种)放法,对应 24 个不同的五位数;⑵ 把 2,4,5放在最高位上,有 3 种选择,百位上有除已确定的最高位数字和 3 之外的 3个数字可以选择,有 3 种选择,其余的 3 个数字可以任意放到其余 3个数位上,有 P336 种选择.由乘法原理,可以组成 3 3 6 54 (个)不同的五位数.由加法原理,可以组成 24 54 78 (个)不同的五位数.答案】 78巩固】用 0 到 9 十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687 是第几个数?考点】简单排列问题【难度】 4 星【题型】解答解析】从高位到低位逐层分类:⑴ 千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0 ~ 9中除千位已确定的数字之外的 9 个数字中选择,因为数字不重复,也就是从 9 个元素中取 3个的排列问题,所以百、十、个位可有 P939 8 7 504(种)排列方式.由乘法原理,有 4 504 2016 (个).⑵ 千位上排 5 ,百位上排 0 ~ 4 时,千位有1 种选择,百位有 5 种选择,十、个位可以从剩下的八个数字中选择.也就是从 8个元素中取2 个的排列问题,即 P828 7 56 ,由乘法原理,有 1 5 56 280 (个).⑶ 千位上排 5 ,百位上排 6 ,十位上排 0,1,2,3,4 , 7时,个位也从剩下的七个数字中选择,有 1 1 6 7 42 (个).⑷ 千位上排 5 ,百位上排 6 ,十位上排 8时,比 5687 小的数的个位可以选择 0,1,2,3,4共 5个.综上所述,比 5687 小的四位数有 2016 280 42 5 2343 (个),故 5687是第2344 个四位数.答案】 2344例13】用数字l~8各一个组成8 位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___ 种组成方法.考点】简单排列问题【难度】 4 星【题型】填空关键词】走美杯,六年级,初赛,第 7 题解析】 l ~8中被三除余 1和余 2 的数各有 3个,被 3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以 3位周期”,所以 8个数字,第 1、4、7位上的数被 3除同余,第 2、5、8 位上的数被 3 除同余,第 3、6 位上的数被 3 除同余,显然第 3、6 位上的数被 3整除,第 1、4、7 位上的数被 3 除可以余 1 也可以余 2,第2、5、8 位上的数被 3 除可以余 2 可以余 1,余数的安排上共有 2 种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144 种方法.【答案】144种【例14】由数字 0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列. 2008 排在个.【考点】简单排列问题【难度】 4 星【题型】解答【解析】比 2008小的4位数有 2000和2002 ,比 2008小的3位数有 2 3 3 18 (种),比 2008小的2位数有2 3 6 (种),比 2008小的1位数有2(种),所以 2008排在第 2 18 6 2 1 29 (个).【答案】 29【例15】千位数字与十位数字之差为 2(大减小),且不含重复数字的四位数有多少个? 【考点】简单排列问题【难度】 4 星【题型】解答【解析】千位数字大于十位数字,千位数字的取值范围为 2: 9 ,对应的十位数字取 0: 7 ,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2 个作百位和个位就2行了,因此总共有 8 P82个这样的四位数.⑵千位数字小于十位数字,千位数字取 1: 7 ,十位数字取3: 9,共有 7 P82个这样的四位数.所以总共有 8 P827 P82840 个这样的四位数.【答案】 840模块四、排列之策略问题【例16】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0 数码组成,且四个数码之和是 9,那么确保打开保险柜至少要试几次?【考点】简单排列问题【难度】 4 星【题型】解答【解析】四个非 0数码之和等于 9 的组合有 1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3 六种.第一种中,可以组成多少个密码呢?只要考虑 6的位置就可以了, 6可以任意选择4个位置中的一个,其余位置放1,共有4 种选择;第二种中,先考虑放2,有4种选择,再考虑 5 的位置,可以有 3种选择,剩下的位置放1,共有4 3 12(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似, 3的位置有4种选择,其余位置放2,共有4 种选择.综上所述,由加法原理,一共可以组成 4 12 12 12 12 4 56(个)不同的四位数,即确保能打开保险柜至少要试 56 次.【答案】 56【例17】幼儿园里的 6 名小朋友去坐 3把不同的椅子,有多少种坐法?【考点】简单排列问题【难度】 3 星【题型】解答【解析】在这个问题中,只要把 3把椅子看成是 3个位置,而 6名小朋友作为 6 个不同元素,则问题就可以转化成从 6 个元素中取 3个,排在 3个不同位置的排列问题.由排列数公式,共有: P636 54 120(种)不同的坐法.【答案】 120【巩固】幼儿园里 3 名小朋友去坐 6 把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题【难度】 3 星【题型】解答【解析】与例 5 不同,这次是椅子多而人少,可以考虑把 6 把椅子看成是 6个元素,而把 3名小朋友作为 3个位置,则问题转化为从 6把椅子中选出 3把,排在 3 名小朋友面前的排列问题.3由排列公式,共有: P636 5 4 120(种)不同的坐法.答案】 120巩固】 10个人走进只有 6 辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?考点】简单排列问题【难度】 3 星【题型】解答解析】把 6辆碰碰车看成是 6个位置,而 10 个人作为 10个不同元素,则问题就可以转化成从 10 个元素中取 6 个,排在 6 个不同位置的排列问题.共有 P10610 9 8 7 6 5 151200 (种)不同的坐法.答案】 151200例18】一个篮球队有五名队员A,B,C,D ,E ,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?考点】简单排列问题【难度】 3 星【题型】解答解析】方法一:此题先确定做中锋的人选,除E 以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4 个人对应4 个位置,有 P444 3 2 1 24(种)排列.由乘法原理, 424 96 ,故一共有 96 种不同的站位方法.方法二:五个人分配到五个位置一共有P555 4 3 2 1 120(种)排列方式,E 能做中锋一共有P444 3 2 1 24(种)排列方式,则E 不能做中锋一共有 P55P44120 24 96 种不同的站位方法.答案】 96例19】小明有 10 块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?考点】简单排列问题【难度】 3 星【题型】解答解析】我们将 10块大白兔奶糖从左至右排成一列 ,如果在其中 9个间隙中的某个位置插入“木棍”则,将 lO 块糖分成了两部分.我们记从左至右 ,第1部分是第 1天吃的,第 2部分是第 2天吃的 , ⋯,如 : ○○○ | ○○○表○示○第○一○天吃了 3 粒 ,第二天吃了剩下的 7 粒:○○○○ | ○○表○示第| 一○天○吃○了 4粒,第二天吃了 3 粒,第三天吃了剩下的 3粒.不难知晓 ,每一种插入方法对应一种吃法 ,而 9 个间隙 ,每个间隙可以插人也可以不插入 ,且相互独立,9故共有 29=512 种不同的插入方法 ,即 512 种不同的吃法.答案】 512。

(完整版)小学各题型奥数题(含答案)

(完整版)小学各题型奥数题(含答案)

小学各题型奥数题及答案一.比例问题1.AB两人在河边钓鱼,A钓了三条,B钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,A、B怎么分?答案:A收8元,B收2元。

解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“A钓了三条”,相当于A吃之前已经出资3*6=18元,“B钓了两条”,相当于B吃之前已经出资2*6=12元。

而AB两人吃了的价值都是10元,所以A还可以收回18-10=8元B还可以收回12-10=2元刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

增加的成本2份刚好是下降利润的2份。

售价都是25份。

所以,今年的成本占售价的22/25。

3.AB两车分别从甲乙两地出发,相向而行,出发时,A.B的速度比是5:4,相遇后,A的速度减少20%,B的速度增加20%,这样,当A到达乙地时,B离甲地还有10千米,那么甲乙两地相距多少千米?解:原来A.B乙的速度比是5:4现在的A:5×(1-20%)=4现在的B:4×(1+20%)4.8A到乙地后,B离甲地还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3”,可知体积是原来的4/3。

体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。

(完整版)四年级奥数

(完整版)四年级奥数

小学四年级奥数找规律[经典例题]把自然数按下图的方式排列:1 2 5 10 17…4 3 6 11 18…9 8 7 12 19…16 15 14 13 20…25 24 23 22 21……问:1、第9行第9列的那个数是多少?2.、2009在第几行第几列?(如8在第3行第2列,22在第5行第4列)解答:(1)据观察得出的规律可知第9行第9列的数是9×9=81,所以第9行第9列的数是81-8=73;(2)因为45×45=2025,所以第45行第一列的数是2025,2009比2025少16,所以2009在第45行第17列。

【小结】对于找规律的题目:我们应该先细心观察,找到规律以后记得要验证规律是否正确。

有趣的数字谜数字谜是指在一个数学运算式子里,有些数字或运算符号未确定,要求我们开动脑筋,进行合理的判断推理,从而解开谜底,即找到真正的数字,这种问题也被称为“虫蚀算”,是起源于中国古代、风靡世界的一种有趣的数学问题。

数字谜题,一般有三种情况:用汉字代替数字、用字母代替数字和用符号代替数字。

【例1】在下面的加法算式中,只知道一个数字3,而且相同的汉字代表相同的数字,不同的汉字代表不同的数字。

那么“数字谜”代表的三位数是多少?谜字谜+数字谜3 字谜【分析与解】(1)解答数字谜问题,寻找突破口非常关键。

经过观察思考后发现,可以从个位入手,三个相同的数字相加,其和的个位上数字还是这个数字,只有0或5。

通过结合十位上的数字分析,得出结论:“谜”=5。

(2)分析十位上的数字。

两个相同的数字相加,再加上个位满十所进的“1”,其和的个位上数字还是这个数字,经试验,“字”= 9。

(3)很容易推出百位上的“数”=2。

因此,“数字谜”代表的三位数是295。

【试一试】1、学数学爱数学+ 喜爱数学1 9 9 22、在下面的算式中,“三”、“好”、“学”、“生”4个汉字各代表一个阿拉伯数字,那么“三”、“好”、“学”、“生”分别代表什么?学生好学生+ 三好学生1 9 8 9【例2】下面算式中不同的汉字请你用1~9中不同的数字去代替,使等式成立。

小学奥数之排列组合问题.(完整资料).doc

小学奥数之排列组合问题.(完整资料).doc

【最新整理,下载后即可编辑】计数问题教学目标1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。

5.根据不同题目灵活运用计数方法进行计数。

知识点拨:例题精讲:一、排列组合的应用【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】(1)775040P=(种)。

(2)只需排其余6个人站剩下的6个位置.66720P=(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

小学奥数思维训练-排列组合(经典透析)(通用,含答案)

小学奥数思维训练-排列组合(经典透析)(通用,含答案)

保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。

他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。

小学六年级奥数题及答案:排列组合

小学六年级奥数题及答案:排列组合

红黄蓝白四种颜色不同的小旗各有2233面任意取出三面按顺序排成一行表示一种信号问
红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示 多少种不同的信号?如果白旗不能打头又有多少种? 【解析】
取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类 第一类,一种颜色:都是蓝色的或者都是白色的,2种可能; 第二类,两种颜色:(4×3)×3=36 第三类,三种颜色:4×3×2=24 所以,根据加法原理,一共可以表示2+36+4×4=16种情况.所以白棋不打头的信号有62-16=46种.

小学奥数排列和组合试题及答案

小学奥数排列和组合试题及答案

小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。

(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。

小学奥数 排列组合

小学奥数 排列组合

一.计数专题:④排列组合一. 进门考1.有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?3.甲组有6人,乙组有8人,丙组有9人。

从三个组中各选一人参加会议,共有多少种不同选法?4.从1到500的所有自然数中,不含有数字4的自然数有多少个?5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米?(2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱?6*.按1,2,3,4的顺序连线,有多少种不同的连法?二.授新课5 87 6①奥数专题:乘法原理专题简析在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。

排列公式:由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘.组合公式: 从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作..例1:排列数:1. 三个人排成一排照相,有多少种不同的排法?2. 有3名男生和2名女生排成一排照相,有多少种不同的排法?如果要求两名女生必须相邻,有多少种排法?3.有从1到9共计9个号码球,请问,可以组成多少个三位数?n m 121n n n n m ⋅-⋅-⋅⋅-+()()()121m n P n n n n m =---+()()()m n ≤n 1m n m m n ≤n mm n C 12)112321m m n nm m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()()121m n P n n n n m =---+()()()4.5人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 多少?例2:组合数:1. 从有3名男生和2名女生中选出2名同学参加数学竞赛,有多少种选法?2.在“星星杯”,“排球比赛中,共有10个小球队参加比赛。

小学奥数系统讲义完整版

小学奥数系统讲义完整版

小学奥数系统复习讲义(完整版)小学奥数大约80个知识点,可分成5大类,数论和行程是重点也是难点第一部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式1 .运算顺序第一级:括号:()T T{ }第二级:X+:同一级别可以交换运算次序第三级:+ —: 同一级别可以交换运算次序2. 去括号①a+(b+ c)=a + b + c a+ (b —c)=a + b— c②a—(b+ c)=a — b — c a— (b —c)=a—b+ c③a>(b疋)=a花比a>(b -c)=a以弋④a—b >0)=a —a—b 弋)=a —xc3 .分配律/结合律乘法:a (b + c) = a b+ a>ca>b+ a>c = a (b + c)除法:(a+ b) —= a —+ b—ca—:+ b—c = (a + b)—4 .两个必须掌握的性质两个数的和一定,则两数越相近,积越大5 .几个计算公式__ 2 2 2完全平方和(差)公式:( a±b) = a ±ab+b2 2平方差公式: a -b = (a+b)(a-b)求和公式一:1+2+3+ ....... +n =两个数的积一定,则两数越分散,和越大求和公式二:1 +1 22 +3 2+……n =3 3 3 3求和公式三:1 +2 +3 +……n = __________________________6. 速算巧算基本方法凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】,【构造法】等较难的计算方法。

拆分裂项公式:等差数列公式:简单等比公式:例题分析1. 393+404+397+398+405+401+400+399+391+4022. 比较下面A,B 两数的大小:A=2009X 2009,B=2008X 20103. 99讣9创x 99 —99 4 199—99结果末尾有多少个零?訐胆,.p “站-1 ?4. 100 + 99+ 98 —97 —96 —95+ ……+ 10+ 9 + 8—7 —6—5+ 4 + 3+ 2 —1巩固练习5. 376 + 385 + 391 + 380 + 377 + 389 + 383 + 374 + 366 + 3786. 1 —50+2 —50+3 —50+50 - 50 2010二二呦10第二部分基础知识基础知识点列表7. 9999999 >2009 7777 >333 出1118. 99*.**.+ 9 乂gg.*・*.*9 + -99*—..* 9 =99Ti9. 比较下面A,B两数的大小:归一问题A =987654321 >23456789;B =987654322 >2345678810. 1996 + 1994 —1992 —1990 + 1988 + 1986 —1984 —1982 + 1980 + 1978—1976 —1974 + 1972 + 1970…… + 4 + 2【含义】在解题时,先求岀一份是多少(即单一量),然后以单一量为标准,求岀所要求的数量。

排列组合小学奥数

排列组合小学奥数

排列与组合(一)排列例1、张华、李明等七个同学照相,分别求出在下列条件下有多少种站法。

(1)、七个人排成一排;(2)、七个人排成一排,张华必须站在中间;(3)、七个人站成一排,张华,李明必须有一人站在中间;(4)、七个人站成一排,张华,李明必须站在两边;(5)、七个人站成一排,张华,李明都没有站在边上;(6)、七个人排成两排,前排三人,后排四人;(7)、七个人排成两排,前排三人,后排四人,张华,李明不在同一排。

例2、用0,1,2,3四个数码可以组成()个没有重复数字的四位偶数。

例3、某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0的数字组成,且四个数字之和是9,为确保打开保险柜,至少要试()次。

例4、从1,3,5中任选两个数字,从0,2,4中任选两个数字,共可组成()个没有重复数字的四位数,其中偶数有()个。

例5、在前10000个自然数中,不含数码“1”的数有()个。

练习:1、甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本。

(1)、甲拿到自己作业本的拿法有()种;(2)、恰有一人拿到自己作业本的拿法有()种;(3)、至少有一人没拿到自己作业本的拿法有()种;(4)、谁也没拿到自己作业本的拿法有()种。

2、用0,1,2,3,4,可以组成()个小于1000的没有重复数字的自然数。

3、自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同,这样的数有()个。

4、由1000到1999这1000个自然数中,有()个千位,百位,十位,个位数字中恰有两个相同的数。

5、从1,3,5中任选两个数字,从2,4,6中任选两个数字,共可组成()个没有重复数字的四位数。

6、用1,2,3,4,5这五个数字可以组成120个没有重复数字的四位数,将它们从小到大排列起来,4125是第()个。

7、在所有的三位自然数中,组成数的三个数码既有大于5的数码,又有小于5的数码的自然数共有()个。

找规律小学奥数题100道及答案(完整版)

找规律小学奥数题100道及答案(完整版)

找规律小学奥数题100道及答案(完整版)题目1:1,3,5,7,9,()答案:11(相邻两个数的差为2,依次递增)题目2:2,4,6,8,10,()答案:12(相邻两个数的差为2,依次递增)题目3:5,10,15,20,25,()答案:30(相邻两个数的差为5,依次递增)题目4:1,4,9,16,25,()答案:36(分别是1、2、3、4、5 的平方,下一个是 6 的平方)题目5:3,6,9,12,15,()答案:18(相邻两个数的差为3,依次递增)题目6:1,2,4,8,16,()答案:32(后一个数是前一个数的2 倍)题目7:2,6,12,20,30,()答案:42(相邻两个数的差依次为4、6、8、10、12)题目8:1,1,2,3,5,8,()答案:13(前两个数相加等于后一个数)题目9:3,4,7,11,18,()答案:29(前两个数相加等于后一个数)题目10:1,3,7,13,21,()答案:31(相邻两个数的差依次为2、4、6、8、10)题目11:2,5,10,17,26,()答案:37(相邻两个数的差依次为3、5、7、9、11)题目12:9,16,25,36,()答案:49(分别是3、4、5、6 的平方,下一个是7 的平方)题目13:1,8,27,64,()答案:125(分别是1、2、3、4 的立方,下一个是5 的立方)题目14:5,12,19,26,33,()答案:40(相邻两个数的差为7,依次递增)题目15:3,8,15,24,()答案:35(相邻两个数的差依次为5、7、9、11)题目16:2,3,5,8,13,()答案:21(前两个数相加等于后一个数)题目17:1,4,10,22,46,()答案:94(相邻两个数的差依次为3、6、12、24、48)题目18:1,5,14,30,55,()答案:91(相邻两个数的差依次为4、9、16、25、36)题目19:2,6,18,54,()答案:162(后一个数是前一个数的3 倍)题目20:7,14,28,56,()答案:112(后一个数是前一个数的2 倍)题目21:1,2,6,24,120,()答案:720(后一个数依次是前一个数乘2、3、4、5、6)题目22:3,5,9,17,33,()答案:65(相邻两个数的差依次为2、4、8、16、32)题目23:1,3,8,19,42,()答案:89(相邻两个数的差依次为2、5、11、23、47,这些差依次增加3、6、12、24)题目24:2,4,10,28,82,()答案:244(相邻两个数的差依次为2、6、18、54、162,后一个差是前一个差的 3 倍)题目25:5,9,17,33,65,()答案:129(相邻两个数的差依次为4、8、16、32、64)题目26:1,4,27,256,()答案:3125(分别是1、2、3、4 的1、2、3、4 次方,下一个是5 的 5 次方)题目27:1,6,21,66,201,()答案:606(相邻两个数的差依次为5、15、45、135、405,后一个差是前一个差的3 倍)题目28:3,8,15,24,35,()答案:48(相邻两个数的差依次为5、7、9、11、13)题目29:2,3,7,18,47,()答案:123(7 = 3×2 + 1,18 = 7×2 + 4,47 = 18×2 + 11,下一个数应为47×2 + 16 = 123)题目30:1,2,5,14,41,()答案:122(相邻两个数的差依次为1、3、9、27、81,后一个差是前一个差的3 倍)题目31:2,5,11,23,47,()答案:95(相邻两个数的差依次为3、6、12、24、48)题目32:4,9,16,25,36,()答案:49(分别是2、3、4、5、6 的平方,下一个是7 的平方)题目33:6,12,20,30,42,()答案:56(相邻两个数的差依次为6、8、10、12、14)题目34:1,3,7,15,31,()答案:63(相邻两个数的差依次为2、4、8、16、32)题目35:3,9,27,81,()答案:243(后一个数是前一个数的3 倍)题目36:5,13,25,41,()答案:61(相邻两个数的差依次为8、12、16、20)题目37:2,8,32,128,()答案:512(后一个数是前一个数的4 倍)题目38:7,16,29,46,()答案:67(相邻两个数的差依次为9、13、17、21)题目39:1,5,13,25,()答案:41(相邻两个数的差依次为4、8、12、16)题目40:6,18,54,162,()答案:486(后一个数是前一个数的3 倍)题目41:8,18,32,50,()答案:72(相邻两个数的差依次为10、14、18、22)题目42:1,4,13,40,()答案:121(相邻两个数的差依次为3、9、27、81)题目43:3,10,21,36,()答案:55(相邻两个数的差依次为7、11、15、19)题目44:5,15,45,135,()答案:405(后一个数是前一个数的3 倍)题目45:2,6,14,30,()答案:62(相邻两个数的差依次为4、8、16、32)题目46:9,25,49,81,()答案:121(分别是3、5、7、9 的平方,下一个是11 的平方)题目47:7,19,37,61,()答案:91(相邻两个数的差依次为12、18、24、30)题目48:4,12,36,108,()答案:324(后一个数是前一个数的3 倍)题目49:1,6,15,28,()答案:45(相邻两个数的差依次为5、9、13、17)题目50:8,20,36,56,()答案:80(相邻两个数的差依次为12、16、20、24)题目51:3,11,23,39,()答案:59(相邻两个数的差依次为8、12、16、20)题目52:6,15,35,77,()答案:143(相邻两个数的差依次为9、20、42、66,差依次增加11、22、24)题目53:2,9,28,65,()答案:126(分别是1、2、3、4 的立方加1,下一个是5 的立方加1)题目54:1,7,19,37,()答案:61(相邻两个数的差依次为6、12、18、24)题目55:5,16,29,46,()答案:67(相邻两个数的差依次为11、13、17、21)题目56:3,12,27,48,()答案:75(相邻两个数的差依次为9、15、21、27)题目57:7,18,33,52,()答案:77(相邻两个数的差依次为11、15、19、25)题目58:2,10,30,68,()答案:130(相邻两个数的差依次为8、20、38、62,差依次增加12、18、24)题目59:4,15,32,55,()答案:84(相邻两个数的差依次为11、17、23、29)题目60:6,21,42,72,()答案:106(相邻两个数的差依次为15、21、30、34)题目61:1,9,25,49,()答案:81(分别是1、3、5、7 的平方,下一个是9 的平方)题目62:8,24,48,80,()答案:120(相邻两个数的差依次为16、24、32、40)题目63:3,13,31,57,()答案:91(相邻两个数的差依次为10、18、26、34)题目64:5,19,41,71,()答案:105(相邻两个数的差依次为14、22、30、34)题目65:2,11,26,47,()答案:76(相邻两个数的差依次为9、15、21、29)题目66:9,27,51,81,()答案:117(相邻两个数的差依次为18、24、30、36)题目67:7,17,33,55,()答案:83(相邻两个数的差依次为10、16、22、28)题目68:4,14,30,52,()答案:78(相邻两个数的差依次为10、16、22、26)题目69:6,18,36,60,()答案:90(相邻两个数的差依次为12、18、24、30)题目70:1,11,27,51,()答案:81(相邻两个数的差依次为10、16、24、30)题目71:5,17,33,53,()答案:77(相邻两个数的差依次为12、16、20、24)题目72:3,14,31,58,()答案:91(相邻两个数的差依次为11、17、27、33)题目73:8,22,42,70,()答案:106(相邻两个数的差依次为14、20、28、36)题目74:2,13,30,53,()答案:84(相邻两个数的差依次为11、17、23、31)题目75:9,29,55,91,()答案:133(相邻两个数的差依次为20、26、36、42)题目76:7,20,39,64,()答案:95(相邻两个数的差依次为13、19、25、31)题目77:4,16,36,64,()答案:100(分别是2、4、6、8 的平方,下一个是10 的平方)题目78:3,15,33,57,()答案:87(相邻两个数的差依次为12、18、24、30)题目79:6,22,44,74,()答案:110(相邻两个数的差依次为16、22、30、36)题目80:1,13,29,53,()答案:89(相邻两个数的差依次为12、16、24、36)题目81:5,21,41,67,()答案:99(相邻两个数的差依次为16、20、26、32)题目82:8,26,50,82,()答案:118(相邻两个数的差依次为18、24、32、36)题目83:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目84:7,23,45,73,()答案:107(相邻两个数的差依次为16、22、28、34)题目85:2,14,32,56,()答案:88(相邻两个数的差依次为12、18、24、32)题目86:9,31,59,95,()答案:139(相邻两个数的差依次为22、28、36、44)题目87:6,24,48,84,()答案:126(相邻两个数的差依次为18、24、36、42)题目88:1,15,33,57,()答案:87(相邻两个数的差依次为14、18、24、30)题目89:5,23,47,77,()答案:113(相邻两个数的差依次为18、24、30、36)题目90:8,28,52,82,()答案:118(相邻两个数的差依次为20、24、30、36)题目91:3,19,41,69,()答案:105(相邻两个数的差依次为16、22、28、36)题目92:7,27,51,81,()答案:117(相邻两个数的差依次为20、24、30、36)题目93:4,18,38,66,()答案:100(相邻两个数的差依次为14、20、28、34)题目94:6,26,50,80,()答案:116(相邻两个数的差依次为20、24、30、36)题目95:2,16,36,60,()答案:90(相邻两个数的差依次为14、20、24、30)题目96:9,33,63,99,()答案:141(相邻两个数的差依次为24、30、36、42)题目97:8,28,56,92,()答案:136(相邻两个数的差依次为20、28、36、44)题目98:5,21,43,71,()答案:105(相邻两个数的差依次为16、22、28、34)题目99:3,17,37,67,()答案:107(相邻两个数的差依次为14、20、30、40)题目100:7,25,49,79,()答案:115(相邻两个数的差依次为18、24、30、36)。

最新小学奥数 排列组合

最新小学奥数 排列组合

最新小学奥数排列组合分类相加,分步组合,有序排列,无序组合✧基础知识(数学概率方面的基本原理)一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。

二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别⏹做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P mn表示.P mn=n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C mn表示.C mn = P mn/m!=n!(n-m)!×m!一般当遇到m比较大时(常常是m>0.5n时),可用C mn = C n-mn来简化计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列
在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.
前提测评
1、在1~500的自然数中,不含数字0和1的数有多少个?
2、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?
例如某客轮航行于天津、青岛、大连三个城市之间.问:应准备有多少种不同船票?
为叙述方便,我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是在三个不同的元素中取出两个,按照一定的顺序排成一列的问题.我们把每一种排法叫做一个排列(如天津——青岛就是一个排列),把所有排列的个数叫做排列数.那么上面的问题就是求排列数的问题.
一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.
由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.
例2有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?
例3用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?例4幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?
例5幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?
例6有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)
例74名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?
例8 9名同学站成两排照相,前排4人,后排5人,共有多少种站法?
例9 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?
营养加加餐
2.某铁路线共有14个车站,这条铁路线共需要多少种不同的车票.
3.有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?
4.班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?。

相关文档
最新文档