高中数学~定积分和微积分基本原理
第3讲 定积分与微积分基本定理
定积分与微积分基本定理一、知识梳理 1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x ,即⎠⎛ab f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、习题改编1.(选修2-2P66T14改编)设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112x d xC.⎠⎛-10x 2d x +⎠⎛012x d xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102x d x +⎠⎛01x 2d x .故选D.2.(选修2-2P66A 组T14改编)⎠⎛2e +11x -1d x =________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1.答案:13.(选修2-2P55A 组T1改编)若⎠⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪π20=1-a =2,a =-1. 答案:-14.(选修2-2P60A 组T6改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎝⎛⎭⎫32t 2+2t 21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)×二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛022-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛022-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2⎪⎪⎪20=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究) 角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122x d x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎫2x -1x 2d x . 【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121xd x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝⎛⎭⎫1x ′=-1x 2,所以⎠⎛13⎝⎛⎭⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝⎛⎭⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -x d x +⎠⎛01e x d x=-e -x ⎪⎪⎪⎪1-1+e x ⎪⎪⎪⎪1=[-e 0-(-e)]+(e -e 0) =-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =________. 解析:⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .(4)S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x =0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛1(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝⎛⎭⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42 =10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t-5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝⎛⎭⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x )d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x )d x =⎝⎛⎭⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e. 2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x |1=13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13 B .310C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A.6.定积分⎠⎛-11(x 2+sin x )d x =________.解析:⎠⎛-11(x 2+sin x )d x=⎠⎛-11x 2d x +⎠⎛-11sin x d x=2⎠⎛1x 2d x =2·x 33⎪⎪⎪10=23.答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________.解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2.答案:28.一物体受到与它运动方向相反的力:F (x )=110e x +x 的作用,则它从x =0运动到x=1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝⎛⎭⎫110e x +x d x=-⎝⎛⎭⎫110e x +12x 2⎪⎪⎪10=-e 10-25. 答案:-e 10-259.求下列定积分: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .解:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x=sin x ⎪⎪⎪0-π+e x ⎪⎪⎪-π=1-1e π.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329B .4-ln 3C .4+ln 3D .2-ln 3解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍) 由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3.故阴影部分的面积为⎠⎛13⎝⎛⎭⎫x -1x d x = ⎝⎛⎭⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:33 3.⎠⎛-11(1-x 2+e x -1)d x =________. 解析:⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 所以⎠⎛-111-x 2d x =π2. 而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e-2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝⎛⎭⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝⎛⎭⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1. S 2=⎠⎛t 1(x 2-t 2)d x =⎝⎛⎭⎫13x 3-t 2x ⎪⎪⎪1t=⎝⎛⎭⎫13-t 2-⎝⎛⎭⎫13t 3-t 3=23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。
第四节 定积分与微积分基本定理
第四节 定积分与微积分基本定理高考概览:1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;2.了解微积分基本定理的含义.[知识梳理]1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f(x)d x ,即⎠⎛a b f (x )d x =lim n →∞∑i =1nb -an f (ξi ).在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质3.微积分基本定理4.定积分的几何和物理应用[辨识巧记]1.两个结论(1)当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.(2)加速度对时间的积分为速度,速度对时间的积分是路程.2.两个性质函数f(x)在闭区间[-a,a]上连续,则有[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )d x =⎠⎛ab f (t )d t .( )(2)若⎠⎛ab f (x )d x <0,则由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )[答案] (1)√ (2)× (3)× (4)√[解析] ⎠⎛-11|x |d x =⎠⎛-1(-x )d x +⎠⎛1x d x =⎝⎛⎭⎪⎫-12x 2⎪⎪⎪⎪⎪⎪ 0-1+12x 210=12+12=1.[答案] A3.(选修2-2P 65A 组T 5改编)曲线y =x 2+2x 与直线y =x 所围成的封闭图形的面积为( )A.16B.13C.56D.23[解析] 如图,两函数图象交点为(-1,-1)和(0,0),所求面积S=⎠⎛-1 0[x -(x 2+2x )]d x=⎠⎛-10(-x 2-x )d x=⎝ ⎛⎭⎪⎫-13x 3-12x 2⎪⎪⎪-1=16. [答案] A4.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f (x )d x 等于( )A.34B.45C.56 D .不存在 [解析] 如图,[答案] C5.定积分⎠⎛0416-x 2d x =________.[解析] 令y =16-x 2,则x 2+y 2=16(y ≥0),点(x ,y )的轨迹为半圆,⎠⎛416-x 2d x 表示以原点为圆心,4为半径的圆面积的14,所以⎠⎛0416-x 2d x =14×π×42=4π.[答案] 4π考点一 定积分的计算【例1】 计算下列定积分: (1)⎠⎛01(2x +e x )d x ;(2)⎠⎛02(x -1)d x ; (3)⎠⎛01(-x 2+2x )d x ;[思路引导] 定理法→数形结合法→性质 [解]微积分基本定理求定积分的注意点:(1)对被积函数要先化简,再求积分.(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和.(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.(4)若被积函数具有明确的几何意义或奇偶性,可利用定积分的几何意义和性质求解.[对点训练]计算下列定积分: (1)⎠⎛122x d x ;(2)⎠⎛13⎝⎛⎭⎪⎫2x -1x 2d x ;[解]考点二 利用定积分求图形的面积【例2】 (1)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A.2 2 B .4 2 C .2 D .4(2)曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为________. (3)曲线f (x )=sin x ,x ∈⎣⎢⎡⎦⎥⎤0,54π与x 轴围成的图形的面积为________.[思路引导] 作出图形→求交点→转化为定积分 [解析][答案] (1)D (2)136 (3)3-22利用定积分求平面图形面积的4个步骤[对点训练]1.(2018·河北张家口质检)如图,由曲线y=x2-4,直线x=0,x=4和x轴围成的封闭图形的面积是()[解析][答案] C2.曲线y =sin x 在[0,2π]上与x 轴围成的封闭图形的面积为________.[解析] S =⎠⎛0πsin x d x -∫2ππsin x d x =2⎠⎛0πsin x d x =4.[答案] 4考点三 定积分在物理中的应用【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25 ln5B .8+25 ln 113 C .4+25 ln5D .4+50 ln2(2)一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时F (x )做的功为( )A. 3 JB.233 JC.433 JD .2 3 J[解析] (1)令v (t )=0,即7-3t +251+t =0,化简为3t 2-4t -32=0.又∵t >0, 解得t =4或t =-83(舍去), 所以s =⎠⎛4v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t=⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪4=7×4-32×42+25ln5=4+25 ln5,故选C. (2)W =⎠⎛12F (x )cos30°d x =⎠⎛1232(5-x 2)d x=32⎝ ⎛⎭⎪⎫5x -x 33| 21=433(J).[答案] (1)C (2)C定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[对点训练]1.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1的方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ,力的单位:N).[解析] 由题意知变力F (x )对质点M 所做的功为[答案]3422.一物体做变速直线运动,其v-t曲线如图所示,则该物体在1 2s~6 s间的运动路程为________.[解析]由图可知,[答案]494m课后跟踪训练(十九)基础巩固练一、选择题[解析][答案] C[解析]a =-1.故选A. [答案] A3.设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0ef (x )d x 的值为( )A.43B.54C.65D.76[解析] ⎠⎛0e f (x )d x =⎠⎛01f (x )d x +⎠⎛1e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1x d x =13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+1=43.故选A. [答案] A4.(2018·武汉武昌区调研)物体A 以速度v =3t 2+1(t 的单位:s ,v 的单位:m/s)在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t (t 的单位:s ,v 的单位:m/s)的速度与A 同向运动,当两物体相遇时,相遇地与物体A 的出发地的距离是( )A .120 mB .130 mC .140 mD .150 m[解析] 设t 秒后两物体相遇,则⎠⎛0t (3t 2+1)d t -⎠⎛0t 10t d t =5,即t 3+t -5t 2=5,(t 2+1)(t -5)=0,t =5(s),此时物体A 离出发地的距离为⎠⎛05(3t 2+1)d t =(t 3+t )| 50=53+5=130 (m).[答案] B5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163 D .6[解析] 作出曲线y =x ,直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.由⎩⎪⎨⎪⎧y =x ,y =x -2得交点A (4,2). 因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x | 4=23×8-12×16+2×4=163. [答案] C 二、填空题6.(2019·湖南省长沙市高三统一模拟)⎠⎛0π(cos x +1)d x =________.[解析][答案] π[解析][答案]π-2 4[解析][答案]4 3三、解答题9.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),求原始的最大流量与当前最大流量的比值.[解]建立如图所示的直角坐标系.设抛物线的方程为x2=2py(p>0),由图易知(5,2)在抛物线上,可得p=254,抛物线方程为x2=252y,所以当前最大流量对应的截面面积为2⎠⎛5⎝⎛⎭⎪⎫2-225x2d x=403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2.10.在区间[0,1]上给定曲线y=x2.试在此区间内确定t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.[解]S1面积等于边长分别为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-⎠⎛t x2d x=23t3.S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形边长分别为t2,1-t面积,即S2=⎠⎛t1x2d x-t2(1-t)=23t3-t2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12. t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23. 所以当t =12时,S (t )最小,且最小值为14.能力提升练[解析][答案] D12.(2019·宁夏银川质检)如图,阴影部分的面积是( )A .2 3B .-2 3 C.353 D.323 [解析][答案] D13.(2019·福建师大附中期中)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x=________.[解析] 设⎠⎛01f (x )d x =c ,则f (x )=x 2+2c ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2c )d x =⎝ ⎛⎭⎪⎫13x 3+2cx ⎪⎪⎪10=13+2c =c ,解得c =-13,所以⎠⎛1f (x )d x =-13.[答案] -1314.学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽AB 为2米,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为O ,对称轴与地面垂直,沟深2米,沟中水深1米.(1)求水面宽;(2)如图①所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图②所示),问改挖后的沟底宽为多少米时,所挖的土最少?[解] (1)建立如图所示的平面直角坐标系,设抛物线方程为y =ax 2(-1≤x ≤1).则由抛物线过点B (1,2),可得a =2.于是抛物线方程为y =2x 2,-1≤x ≤1.当y =1时,x =±22,由此知水面宽为2米.(3)为使挖的土最少,等腰梯形的两腰必须与抛物线相切.设切点P (t,2t 2)(0<t ≤1)是抛物线弧OB 上的一点,过点P 作抛物线的切线得到如图所示的直角梯形OCDE ,则切线CD 的方程为y -2t 2=4t (x -t ),于是C ⎝ ⎛⎭⎪⎫12t ,0,D ⎝ ⎛⎭⎪⎫12t +12t ,2. 记梯形OCDE 的面积为S ,则S =⎝ ⎛⎭⎪⎫t 2+t 2+12t ≥2,当且仅当t =12t ,即t =22时等号成立,所以改挖后的沟底宽为22米时,所挖的土最少.拓展延伸练15.(2019·安徽淮北质检)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623[解析] 由题意知,抛物线的焦点坐标为(0,1),故直线l 的方程为y =1,该直线与抛物线在第一象限的交点坐标为(2,1).根据图形的对称性和定积分的几何意义可得,所求图形的面积是2⎠⎛02⎝⎛⎭⎪⎫1-x 24d x =2⎝ ⎛⎭⎪⎫x -x 312⎪⎪⎪20=83. [答案] C16.(2018·四川绵阳期中)如图,直线y =kx 将抛物线y =x -x 2与x 轴所围图形分成面积相等的两部分,则k =________.[解析] 因为⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪10=16,所以∫1-k 0[(x -x 2)-kx ]d x =⎝ ⎛⎭⎪⎫1-k 2x 2-13x 3⎪⎪⎪1-k 0=(1-k )36=112,所以(1-k )3=12,解得k =1-312=1-342.[答案] 1-342。
定积分微积分基本定理
定积分、微积分基本定理
【定积分】
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积.即由y=0,x=a,x=b,y=f(X)所围成图形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个
面积,是一个数.
定积分的求法:
求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.
【微积分基本定理】
在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.
其中,微积分的核心(基本)定理是,其中F′(x)=f (x),而f(x)必须在区间(a,b)内连续.
例1:定积分=
解:
∫12|3﹣2x|dx
=+
=(3x﹣x2)|+(x2﹣3x)|
=
通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有dx;第二,每一段
对应的被积分函数的表达式要与定义域相对应;第三,求出原函数代入求解.
例2:用定积分的几何意义,则.
解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,
故==.
这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.
【考查】
定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.。
(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)
(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)一、【知识精讲】1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i=1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f (x )d x =在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义f (x ) ⎠⎛abf (x )d x 的几何意义f (x )≥0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积f (x )<0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ]上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积2.(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪b a ,即⎠⎛a b f (x )d x =F (x )⎪⎪⎪ba)=F (b )-F (a ). [微点提醒]函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、【典例精练】 考点一 定积分的计算【例1】 (1)⎠⎛0π(cos x +1)d x =________.(2) (2012【答案】 (1)π 【解析】(1)⎠⎛0π(cos x +1)d x =(sin x +x )⎪⎪⎪π0=π.(2) 【解法小结】 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分. 考点二 定积分的几何意义角度1 利用定积分的几何意义计算定积分【例2-1】 (1)计算:⎠⎛01(2x +1-x 2)d x =________.(2) (2013请根据以下材料所蕴含的数学思想方法,计算:.【答案】 (1)π4+1 【解析】 (1)由定积分的几何意义知,⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,所以⎠⎛11-x 2d x =π4,又⎠⎛012x d x =x 2⎪⎪⎪10=1,所以⎠⎛01(2x +1-x 2)d x =π4+1.(2)从而得到如下等式:答案角度2 利用定积分计算平面图形的面积【例2-2】 (2014 )A .2 D .4 【答案】D【解法小结】 1.运用定积分的几何意义求定积分,当被积函数的原函数不易找到时常用此方法求定积分. 2.利用定积分求曲边梯形面积的基本步骤:画草图、解方程得积分上、下限,把面积表示为已知函数的定积分(注意:两曲线的上、下位置关系,分段表示的面积之间的关系). 考点三 定积分在物理中的应用【例3】 (1)物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( ) A.3B.4C.5D.6(2)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ,力的单位:N).【答案】 (1)C (2)342【解析】(1)因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t .所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t -5t 2=5.整理得(t -5)(t 2+1)=0,解得t =5.(2)变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).【解法小结】 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的位移s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【思维升华】1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关.2.⎠⎛a b f (x )d x 、⎠⎛a b |f (x )|d x 与|⎠⎛ab f (x )d x |在几何意义上有不同的含义,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方、也可以在x 轴下方、还可以在x 轴的上下两侧,所以⎠⎛ab f (x )d x表示由x 轴、函数f (x )的曲线及直线x =a ,x =b (a ≠b )之间各部分面积的代数和;而|f (x )|是非负的,所以⎠⎛a b |f (x )|d x 表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|⎠⎛a b f (x )d x |则是⎠⎛ab f (x )d x的绝对值,三者的值一般情况下是不相同的. 【易错注意点】1.若定积分的被积函数是分段函数,应分段积分然后求和.2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 三、【名校新题】1.(2019·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1【答案】C【解析】 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.2.(2019·郑州模拟)汽车以v =(3t +2) m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( ) A.132m B.6 mC.152m D.7 m【答案】A【解析】 s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m). 3.(2018·青岛月考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积S ,正确的是( ) A.S =⎠⎛02(4x -x 3)d xB.S =⎠⎛02(x 3-4x )d xC.S =⎠⎛02⎝⎛⎭⎪⎫3y -y 4d yD.S =⎠⎛02⎝ ⎛⎭⎪⎫y 4-3y d y【答案】A【解析】 两函数图象的交点坐标是(0,0),(2,8),故对x 积分时,积分上限是2、下限是0,由于在[0,2]上,4x ≥x 3,故直线y =4x 与曲线y =x 3所围成的封闭图形的面积S =⎠⎛02(4x -x 3)d x ⎝⎛⎭⎪⎫同理对y 积分时S =⎠⎛08⎝ ⎛⎭⎪⎫3y -y 4d y .4.(2019·安阳模拟)若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.c <b <aD.c <a <b【答案】D【解析】 由微积分基本定理a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3⎪⎪⎪20=83,b =⎠⎛02x 3d x =⎝ ⎛⎭⎪⎫14x 4⎪⎪⎪20=4,c =⎠⎛02sin x d x =(-cos x )⎪⎪⎪20=1-cos 2<2,则c <a <b .5.(2019届江西九江高三第一次十校联考)M=dx,T=sin 2xdx,则T 的值为( )A. B.- C.-1 D.1【答案】 A【解析】先求出M=6.(2019届山东日照一中第二次质量达标检测)在函数y=cos x,x∈的图象上有一点P(t,cos t),若该函数的图象与x轴、直线x=t,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是( )【答案】 B【解析】因为g(t)==,所以图像是B.7.(2019届吉林长春实验中学上学期期中,6)设f(x)=则f(x)dx等于( )A. B. C. D.0【答案】 A【解析】原式=8.(2018山东菏泽第一次模拟)若(n∈N*)的展开式中含有常数项,且n的最小值为a,则dx=( )A.36πB.C.D.25π【答案】 C【解析】可求出a=5,由定积分的几何意义知:所求定积分为半径为5的半圆的面积,为.9.(荆州市2019届高三联考)已知函数234567()1234567x x x x x xf x x=+-+-+-+,若函数()(3)h x f x=-的零点都在区间(,)(,,)a b a b a b Z <∈内,当b a -取最小值时,(21)bax dx -⎰等于( )A .3B .4C .5D .6【答案】:B 【解析】234562326326()1(1)(1)(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=-+--++=--++,可知当1x ≤时,()0f x '>成立,又2345624232()11(1)(1)1(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=--++-+=+--+,可知当1x >时,()0f x '>成立,所以对任意R x ∈,()0f x '>,()f x 单调递增,所以函数()f x 只有一个零点,(0)10f =>,111111(1)0234567f -=------<,所以()f x 的零点位于区间(1,0)-,所以函数 ()(3)h x f x =-的零点位于区间(2,3),即2,3a b ==,所以32(21)(21)bax dx x dx -=-⎰⎰322()624x x =-=-=10.(2019·昆明诊断)若⎠⎛a0x 2d x =9,则常数a 的值为________.【答案】-3【解析】 ⎠⎛a0x 2d x =13x 3⎪⎪⎪0a =-13a 3=9,∴a 3=-27,a =-3.11.(2019·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 【答案】49【解析】封闭图形如图所示,则⎠⎛0a x d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49.12.(2019·广州调研)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为________.【答案】π2+43。
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念在⎠⎛ab f (x )dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式. 2.定积分的几何意义设函数y =f (x )在区间[a ,b ]上连续且恒有f (x )≥0,则定积分⎠⎛ab f (x )dx表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积. 3.定积分的性质(1)⎠⎛a b kf (x )dx =k ⎠⎛ab f (x )dx (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]dx =⎠⎛ab f 1(x )dx ±⎠⎛ab f 2(x )dx ;(3)⎠⎛ab f (x )dx =⎠⎛ac f (x )dx +⎠⎛cb f (x )dx (其中a <c <b ).4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )dx =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪ba ,即⎠⎛abf (x )dx =F (x )⎪⎪⎪ba =F (b )-F (a ).判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )dx =⎠⎛ab f (t )dt .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )dx =2⎠⎛0a f (x )dx .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )dx =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )dx .( )答案:(1)√ (2)√ (3)√ (4)×⎠⎛01e x dx 的值等于( )A .eB .1-eC .e -1 D.12(e -1)解析:选C.⎠⎛01e x dx =e x |10=e 1-e 0=e -1.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是()A .1 B.43 C. 3 D .2解析:选B .由⎩⎨⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)dx =⎠⎛02(-x 2+2x )dx =⎝ ⎛⎭⎪⎫-x 33+x 2|20=-83+4=43.若∫π20(sin x -a cos x )dx =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )|π20=1-a =2,a =-1. 答案:-1设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e ](e 为自然对数的底数),则⎠⎛0e f (x )dx 的值为________.解析:因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e ],所以⎠⎛0e f (x )dx =⎠⎛01x 2dx +⎠⎛1e 1x dx=13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+ln e =43.答案:43定积分的计算[典例引领]利用微积分基本定理求下列定积分: (1)⎠⎛12(x 2+2x +1)dx ;(2)⎠⎛0π(sin x -cos x )dx ; (3)⎠⎛02|1-x |dx ;(4)⎠⎛12⎝ ⎛⎭⎪⎫e 2x +1x dx . 【解】 (1)⎠⎛12(x 2+2x +1)dx=⎠⎛12x 2dx +⎠⎛122xdx +⎠⎛121dx=x 33⎪⎪⎪21+x 2⎪⎪⎪21+x ⎪⎪⎪21=193. (2)⎠⎜⎛π(sin x -cos x )dx=⎠⎜⎛0πsin xdx -⎠⎜⎛0πcos xdx =(-cos x )⎪⎪⎪⎪π0-sin x ⎪⎪⎪⎪π0=2. (3)⎠⎛02|1-x |dx =⎠⎛01(1-x )dx +⎠⎛12(x -1)dx=⎝ ⎛⎭⎪⎫x -12x 2|10+⎝ ⎛⎭⎪⎫12x 2-x |21 =⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1. (4)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x dx =⎠⎛12e 2x dx +⎠⎛121x dx=12e 2x ⎪⎪⎪21+ln x ⎪⎪⎪21=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.若本例(3)变为“⎠⎛03|x 2-1|dx ”,试求之.解:⎠⎛03|x 2-1|dx=⎠⎛01(1-x 2)dx +⎠⎛13(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪31 =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫6+23=223.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[通关练习]1.⎠⎛-11e |x |dx 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎜⎛-11e |x |dx =⎠⎜⎛-1e -x dx +⎠⎛01e x dx =-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C .2.若⎠⎛01(x +mx )dx =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B.由题意知⎠⎛01(x 2+mx )dx =⎝ ⎛⎭⎪⎫x 33+m x 22|10=13+m2=0,得m =-23.3.(优质试题·泉州模拟)⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =________.解析:⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =⎠⎛011-x 2dx +⎠⎛0112xdx ,⎠⎛0112xdx =14,⎠⎛011-x 2dx 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分计算平面图形的面积(高频考点)利用定积分计算平面图形的面积是近几年高考考查定积分的一个重要考向;主要以选择题、填空题的形式出现,一般难度较小.高考对定积分求平面图形的面积的考查有以下两个命题角度: (1)根据条件求平面图形的面积;(2)利用平面图形的面积求参数.[典例引领]角度一 根据条件求平面图形的面积(优质试题·新疆第二次适应性检测)由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎨⎧y =x 2+1y =-x +3,解得⎩⎨⎧x =-2y =5(舍去)或⎩⎨⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎠⎛01(x 2+1)dx +12×22=⎝ ⎛⎭⎪⎫13x 3+x |10+2=103,选B .【答案】B角度二 利用平面图形的面积求参数已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.【解析】 f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)dx =112a 4=112,所以a =-1. 【答案】 -1用定积分求平面图形面积的四个步骤(优质试题·山西大学附中第二次模拟)曲线y =2sinx (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 解析:令2sin x =1,得sin x =12, 当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =⎠⎜⎛π65π6 (2sin x -1)dx =(-2cos x -x ) ⎪⎪⎪5π6π6=23-2π3.答案:23-2π3定积分在物理中的应用[典例引领]设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J (x 的单位:m ;力的单位:N ).【解析】 变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )dx =⎠⎛110(x 2+1)dx=⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J ). 【答案】342定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )dt .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )dx .以初速40 m /s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 mD.203 m解析:选A.由v =40-10t 2=0, 得t 2=4,t =2.所以h =⎠⎛02(40-10t 2)dt =⎝ ⎛⎭⎪⎫40t -103t 3⎪⎪⎪20=80-803=1603(m).求定积分的方法(1)利用微积分基本定理求定积分步骤如下: ①求被积函数f (x )的一个原函数F (x ); ②计算F (b )-F (a ).(2)利用定积分的几何意义求定积分.求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.易错防范(1)若积分式子中有几个不同的参数,则必须先分清谁是积分变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积为正,而定积分的结果可以为负.1.定积分⎠⎛01(3x +e x )dx 的值为( )A .e +1B .eC .e -12D .e +12。
课件8:§3.3 定积分与微积分基本定理
=9kb2t4.当
x=0
时,t=0;当
x=a
时,t=t1=
(
a b
1
)3
,又
dx=vdt,故阻
力所做的功为 W 阻=aF 阻 dx=
t1 0
kv
2
vdt
=k
t1 0
v3dt
=k
t1 (3bt 2 )3 dt
0
0
=277kb3t17=277k3 a7b2. 答案:277k3 a7b2
[解题师说] 1.求曲边图形的面积的 4 步骤 (1)根据题意画出图形; (2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)把曲边梯形的面积表示成若干个定积分的和; (4)计算定积分,写出答案. 求解时,注意要把定积分与利用定积分计算图形面积区别开:定积 分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的 面积在一般意义上总为正.
t0=t2-2t=8,
解得 t=4 或 t=-2(舍去).
答案:D
4.如图,函数 y=-x2+2x+1 与 y=1 相交形成
一个闭合图形(图中的阴影部分),则该闭合图形
的面积是 ( )
A.1
4 B.3
C. 3
D.2
解析:由yy==-1,x2+2x+1, 得 x1=0,x2=2.
所以所求面积 S=2 (-x2+2x+1-1)dx=2 (-x2+2x)dx
a
[冲关演练]
1.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第
二秒末物体落地,已知自由落体的运动速度为 v=gt(g 为常数),则
电视塔高为( )
1 A.2g
B.g
3 C.2g
D.2g
高中数学高考总复习定积分与微积分基本定理习题及详解
年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x )与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰badx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号.在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和.注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于⎰badx x f )(.3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)⎰⎰⎰±=±bab aba dx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=baba dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a ,b ]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f (x )是偶函数,则⎰⎰=-aaadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4. 微积分基本定理:一般地,若)()()(],[)(),()('a Fb F dx x f b a x f x f x F ba-==⎰上可积,则在且注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据导数定义知:F (x )+C 也是f (x )的原函数,求定积分⎰badx x f )(的关键是求f (x )的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F (x ).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据⎰=π200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积下列结论正确的是( )A .面积为0B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积题意分析:本题考查定积分的几何意义,注意dx x ⎰π20sin 与y=sinx 及直线x=a ,x=b 和x轴围成的面积的区别.思路分析:作出函数y=sinx 在区间[0,π2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A ):由于直线x=0,x=π2,y=0和正弦曲线y=sinx 所围成的曲边梯形面积为正可判断A 错.对于(B ),(C )根据y=sinx 在[0,π2]内关于()0,π对称知两个答案都是错误的. 根据函数y=sinx 的图象及定积分的几何意义可知:答案(D )是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx 与x 轴、直线x=0,x=π2围成的面积等于⎰π20)(dx x f .例2.利用定积分的几何意义,说明下列等式的合理性 (1)121=⎰xdx(2)⎰=-1241πdx x .题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x ,及y=21x -恒为正时,定积分⎰102xdx 表示函数y=2x 图象与x=0,x=1围成的图形的面积,dx x ⎰-121表示函数y=21x -图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x 及y=21x -的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x 的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积∆S =11221=⨯⨯.由于在区间[0,1]内f (x )恒为正,故1210=⎰xdx .(2)由]1,0[,11222∈=+⇒-=x y x x y ,故函数y 21x -=(]1,0[∈x 的图象如图所示,所以函数y 21x -=与直线x=0,x=1围成的图形面积是圆122=+y x 面积的四分之一,又y 21x -=在区间[0,1]上恒为正.⎰=-1241πdx x解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x 及函数y=21x -在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.题意分析:本题考查定积分的几何意义,⎰-+-4|)3||1(|dx x x 的值是函数|3||1|-+-=x x y 的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x -1,x -3的符号,把函数|3||1|-+-=x x y 化为分段函数,再根据定积分的几何意义求⎰-+-4|)3||1(|dx x x 的值.解:函数|3||1|-+-=x x y 化为⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y由于函数⎪⎩⎪⎨⎧∈-∈∈+-=]4,3[(,42]3,1[(,2]1,0[(,42x x x x x y 在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S 1 函数y=2的图象与直线x=1,x=3围成的面积是S 2 函数y=2x -4的图象与直线x=3,x=4围成的面积是S 3 由图知:S 1=S 3=,31)24(21=⨯+S 2=422=⨯ 由定积分的几何意义知:⎰-+-4|)3||1(|dx x x =10231=++S S S解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分⎰-+-4|)3||1(|dx x x 的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x -1|+|x -3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a ,b ]上f (x )恒为正时,f (x )在区间[a ,b]上定积分值才等于函数图象与直线x=a ,x=b 围成的面积.在画函数图象时注意x 的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.高中数学高考总复习定积分与微积分基本定理习题及详解一、选择题1.(2010·山东日照模考)a =⎠⎛02x d x ,b =⎠⎛02e xd x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.(2010·山东理,7)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112B.14C.13D.712(2010·湖南师大附中)设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝ ⎛⎭⎪⎫43,169B.⎝ ⎛⎭⎪⎫45,169C.⎝ ⎛⎭⎪⎫43,157D.⎝ ⎛⎭⎪⎫45,137 3.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64.(2010·湖南省考试院调研)⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3πC.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎪⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)8.(2010·福建厦门一中)如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y=sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.(2010·吉林质检)函数f (x )=⎩⎪⎨⎪⎧x +2-2≤x <02cos x 0≤x ≤π2的图象与x 轴所围成的图形面积S 为( )A.32B .1C .4D.1210.(2010·沈阳二十中)设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.(2010·江苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.(2010·吉林省调研)已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12 B.14 C.13D.25二、填空题13.(2010·芜湖十二中)已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.(2010·安徽合肥质检)抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.(2010·福建福州市)已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S1+S2最小.。
高中数学考点13 定积分与微积分基本定理
考点13 定积分与微积分基本定理高考对此部分的考查比较少,但定积分的基本计算以及几何意义也会单独考查,复习过程中也不能遗漏,具体要求为:(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.一、定积分 1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x 所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②);②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②);③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s . 3.定积分的定义和相关概念(1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i −1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i −1,x i ]上任取一点ξi (i =1,2, …,n ),作和式11()()nni i i i b af x f nξξ==-∆=∑∑;当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作()d baf x x ⎰,即()d baf x x ⎰=1lim ()ni n i b af nξ→∞=-∑. (2)在()d baf x x ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d bba akf x x k f x x =⎰⎰(k 为常数);(2)[()()]d ()d ()d bb ba aaf xg x x f x x g x x ±=±⎰⎰⎰;(3)()d =()d +()d bc baacf x x f x x f x x ⎰⎰⎰(其中a <c <b ).【注】定积分的性质(3)称为定积分对积分区间的可加性,其几何意义是曲边梯形ABCD 的面积等于曲边梯形AEFD 与曲边梯形EBCF 的面积的和.5.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分ba ⎰ f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图①中阴影部分).(2)一般情况下,定积分ba ⎰ f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(图②中阴影部分所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.6.定积分与曲边梯形的面积的关系(常用结论)定积分的概念是从曲边梯形面积引入的,但是定积分并不一定就是曲边梯形的面积.这要结合具体图形来确定:设阴影部分面积为S ,则 (1)()d ba S f x x =⎰; (2)()d baS f x x =-⎰;(3)()()d d cbacS f x x f x x =-⎰⎰; (4)()()()()d d []d bbbaaaS f x x g x x f x g x x =-=-⎰⎰⎰.7.定积分的物理意义 (1)变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即()d bas v t t =⎰.(2)变力做功一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s m ,则力F 所做的功为W =Fs .如果物体在变力F (x )的作用下沿着与F (x )相同的方向从x =a 移动到x =b ,则变力F (x )做的功()d baW F x x =⎰.二、微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么()d baf x x ⎰=F (b )−F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式,其中F (x )叫做f (x )的一个原函数.为了方便,我们常把F (b )−F (a )记作()|ba F x ,即()d baf x x ⎰=()|b a F x =F (b )−F (a ).【注】常见的原函数与被积函数的关系 (1)d |(bb a a C x Cx C =⎰为常数); (2)11d |(1)1bn n ba ax x x n n +=≠-+⎰; (3)sin d cos |bb a a x x x =-⎰; (4)cos d sin |bb a a x x x =⎰; (5)1d ln |(0)bb a ax x b a x=>>⎰; (6)e d e |bx x b a a x =⎰;(7)d |(0,1)ln x bxba a a a x a a a=>≠⎰;(8)322|(0)3b a ax x b a =>≥⎰.考向一 定积分的计算1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分x ⎰的几何意义是求单位圆面积的14,所以0π=4x ⎰.2.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 3.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加. 4.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aa f x x -=⎰; (2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则0()d 2()d aaag x x g x x -=⎰⎰.典例1 A .12B .1C .2D .3【答案】A故选A .【解题技巧】求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.1.已知函数()e3211(1)2f x x dx x f x x'=⋅--⎰,则()()11f f '+=( ) A .-1 B .1 C .-2D .2考向二 利用定积分求平面图形的面积利用定积分求平面图形面积问题的常见类型及解题策略(1)利用定积分求平面图形面积的步骤①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示成若干个定积分的和;④计算定积分,写出答案.(2)知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值.(3)与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.典例2 设抛物线C:y=x2与直线l:y=1围成的封闭图形为P,则图形P的面积S等于A.1 B.1 3C.23D.43【答案】D【解析】由21y xy⎧=⎨=⎩,得1x=±.如图,由对称性可知,123114 2(11d)2(11)33 S x x x=⨯-=⨯-=⎰.故选D.2.如图,已知10,4A ⎛⎫⎪⎝⎭,点()()000,0P x y x >在曲线2y x 上,若阴影部分面积与OAP △面积相等,则0x =________.考向三 定积分的物理意义利用定积分解决变速直线运动与变力做功问题利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.典例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t +t=-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2【答案】C【解析】令v (t )=0得,3t 2−4t −32=0,解得t =4(83t =-舍去). 汽车的刹车距离是42400253(73)d [725ln(1)]|425ln 5.12t +t t t t t -=-++=++⎰故选C.3.一个物体做变速直线运动,在时刻t 的速度为()32v t t =-+(t 的单位:h ,v 的单位:km/h ),那么它在01t ≤≤这段时间内行驶的路程s (单位:km )的值为( ) A .23B .74C .53D .21.121(3sin )x x dx --⎰等于( )A .0B .2sin1C .2cos1D .22.11xe dx -⎰的值为( )A .2B .2eC .22e -D .22e +3.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为( )A .16 B 3C .13D .234.已知622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项系数为20,则由曲线13y x =和a y x =围成的封闭图形的面积为( )A .512B .53 C .1D .13125.已知()()ln xxf x e e -=+,201sin 2a xdx π=⎰, 1.112b ⎛⎫= ⎪⎝⎭,23log c =则下列选项中正确的是( ) A .()()()f a f b f c >> B .()()()f a f c f b >> C .()()()f c f f a b >>D .()()()f c f b f a >>6.一物体在力F (x )=4x ﹣1(单位:N )的作用下,沿着与力F 相同的方向,从x =1m 处运动到x =3m 处,则力F (x )所作的功为( ) A .16J B .14J C .12JD .10J7.函数()()04xf x t t dt =-⎰在[]1,5-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值8.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N -B .MM N -C .M N N-D .M N9.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是:( ) A .①④ B .②③ C .①③④ D .①②④10.()102xex dx +⎰= ______ .11.抛物线22x y =和直线4y x =+所围成的封闭图形的面积是________. 12.已知数列{}n a 是公比120=⎰q x dx 的等比数列,且312a a a =⋅,则10a =________.13.在平面直角坐标系xOy 中,已知点()0,0O ,()2,0A ,()2,1B ,()0,1C ,现在矩形OABC 中随机选取一点(),P x y ,则事件:点(),P x y 的坐标满足22y x x ≤-+的概率为____________.1.(2015年高考湖南卷理科)2(1)d x x -=⎰.2.(2015年高考天津卷理科)曲线2y x =与直线y x =所围成的封闭图形的面积为 . 3.(2015年高考山东卷理科)执行如图所示的程序框图,输出的T 的值为 .4.(2015年高考福建卷理科)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .5.(2015年高考陕西卷理科)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.1.【答案】A【解析】【分析】先由微积分基本定理求出函数式中的积分值,然后求导,令1x=可求得(1)f',再计算(1)f可得结论.【详解】因为e111ln|1edx xx==⎰,所以()()3212f x x x f x'=--,所以()()232'12f x x xf'=--,令1x=,得()()13212f f''=--,解得1(1)3f'=,所以321()23f x x x x=--,14(1)1233f=--=-,()()1411133f f⎛⎫'+=+-=-⎪⎝⎭,故选:A.【点睛】本题考查微积分基本定理,考查导数的运算,解题时计算出积分值,由求导公式求导,令1x=,赋值后就可化未知为已知.2.【解析】【分析】利用定积分求出阴影部分的面积,再建立面积等量关系,即可得答案;【详解】因为点()()000,0P x y x>在曲线2y x上,所以200y x=,则OAP△的面积00011112248S OA x x x==⨯=‖,阴影部分的面积为00233001133x xx dx x x==⎰∣,因为阴影部分面积与OAP△的面积相等,所以31138x x=,即238x=.所以x=【点睛】本题考查定积分求面积,考查数形结合思想,考查逻辑推理能力、运算求解能力. 3.【答案】B 【解析】 【分析】由速度在给定的时间范围内的定积分可得到答案. 【详解】这辆汽车在01t ≤≤这段时间内汽车行驶的路程()113401172d 22444s t t t t ⎛⎫=-+=-+=-+= ⎪⎝⎭⎰,所以这辆汽车在01t ≤≤这段时间内汽车行驶的路程s 为74. 故选:B. 【点睛】本题考查了定积分在物理中的应用,速度在时间范围内的积分是路程,属于基础题.1.【答案】D 【解析】()()()()()21cos 11cos 1|cos sin 3111132=-+--+=+=-⎰--x x dx x x,故答案为D. 2.【答案】C 【解析】 【分析】根据微积分基本定理结合积分的性质计算. 【详解】1111222(1)xx x e dx e dx e e -===-⎰⎰.故选:C . 【点睛】本题考查微积分基本定理,属于基础题. 3.【答案】C 【解析】 【分析】先计算图像交点,再利用定积分计算面积. 【详解】 如图所示:由2y y x ⎧=⎪⎨=⎪⎩0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩,根据图形的对称性,可得每片叶子的面积为)13023210211d 333x x x x ⎛⎫⎰=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力 4.【答案】A 【解析】 【分析】先利用二项展开式的通项公式求出a ,再利用牛顿-莱布尼兹公式可求图形的面积. 【详解】622a x x ⎛⎫+ ⎪⎝⎭展开式的中间项为第4项且第4项为()3332462a T C x x ⎛⎫= ⎪⎝⎭, 因为系数为20,所以336C 202a ⎛⎫⋅= ⎪⎝⎭,解得2a =,由213x x =的0x =或1x =,所以封闭图形的面积为1412333010314135|2x x dx x x ⎛⎫= ⎪⎝⎭⎛⎫-=- ⎪⎝⎭⎰,故选:A . 【分析】本题考查二项展开式的指定项以及平面封闭图形的面积的计算,后者注意积分区间的确定,本题属于中档题. 5.【答案】C 【解析】 【分析】先判断()f x 为R 上的偶函数,再利用导数判断出()f x 在[)0,x ∈+∞上单调递增,在(],0x ∈-∞上单调递减,化简,,a b c ,利用函数的单调性比较大小即可. 【详解】()()ln x x f x e e -=+,x ∈R ,则()()()ln x x f x e e f x --=+=,所以()f x 为R 上的偶函数,并且()x xx xe ef x e e ---'=+,则[)0,x ∈+∞时,()0f x '≥,当且仅当0x =时,“=”成立, 所以()f x 在[)0,x ∈+∞上单调递增,在(],0x ∈-∞上单调递减,()22111sin cos 222a xdx x ππ==-=⎰,1.111110222b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,221log log 32c ==-, 又()22111log 3log 3222f c f f f ⎛⎫⎛⎫⎛⎫=-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f a f b >>.故选:C 【点睛】本题主要考查了函数导数的应用,函数的奇偶性,函数单调性的应用,考查了学生的逻辑推理与运算求解能力.6.【答案】B 【解析】 【分析】由定积分的物理意义,变力F (x )所作的功等于力在位移上的定积分,进而计算可得答案. 【详解】根据定积分的物理意义,力F (x )所作的功为()3141x dx -=⎰(2x 2-x )31|=14. 故选B 【点睛】本题主要考查了定积分在物理中的应用,同时考查了定积分的计算,属于基础题 7.【答案】B 【解析】 【分析】由定积分的运算,求得()32123f x x x =-,再利用导数求得函数()f x 的单调性与极值,结合端点的函数值,得到函数的最值,得到答案. 【详解】由题意,函数()()323200114(2)|233xxf x t t dt t t x x =-=-=-⎰, 则()24(4)f x x x x x '=-=-,当[1,0)x ∈-时,()0f x '>,()f x 单调递增; 当(0,4)x ∈时,()0f x '<,()f x 单调递减; 当(4,5]x ∈时,()0f x '>,()f x 单调递增;又由()713f -=-,()00f =,()3243f =-,()2553f =-, 所以函数()f x 的最大值为0,最小值为323-. 故选:B. 【点睛】本题主要考查了定积分的运算,以及利用导数研究函数的最值问题,其中解答中熟记函数的导数与原函数的关系是解答的关键,着重考查推理与运算能力. 8.【答案】D【解析】 【分析】利用定积分计算出矩形OABC 中位于曲线xy e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()111xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,Me N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题. 9.【答案】A 【解析】 【分析】Gini 越小,不平等区域越小,可知①正确,结合劳伦茨曲线的特点,可知(0,1)x ∀∈,均有()f x x <,可知②错误,结合定积分公式,可求出a 的值,即可判断出③④是否正确,从而可选出答案. 【详解】对于①,根据基尼系数公式Gini a S=,可得基尼系数越小,不平等区域的面积a 越小,国民分配越公平,所以①正确;对于②,根据劳伦茨曲线为一条凹向横轴的曲线,可知(0,1)x ∀∈,均有()f x x <,可得()1f x x<,所以②错误;对于③,因为1223100111()d ()|236a x x x x x =-=-=⎰,所以116Gini 132a S ===,所以③错误;对于④,因为1324100111()d ()|244a x x x x x =-=-=⎰,所以114Gini 122a S ===,所以④正确.故选:A. 【点睛】本题考查不等式恒成立,考查定积分的应用,考查学生的推理能力与计算求解能力,属于中档题. 10.【答案】e【解析】 【分析】 利用积分运算得()121002()|xx ex dx e x +=+⎰,计算可得答案.【详解】 因为()12102()|xx ex dx e x +=+⎰(1)1e e =+-=. 故答案为:e . 【点睛】本题考查积分的运算,考查基本运算求解能力,属于基础题. 11.【答案】18【解析】 【分析】根据定积分的几何意义可求得结果. 【详解】联立224x yy x ⎧=⎨=+⎩,消去y 得2280x x --=,解得2x =-或4x =,所以所求面积是242(4)2x x dx -+-⎰2342(4)26x x x -=+-2344484482626⎛⎫⎛⎫=+⨯---+ ⎪ ⎪⎝⎭⎝⎭18=.故答案为:18. 【点睛】本题考查了定积分的几何意义,属于基础题. 12.【答案】1013【解析】 【分析】先由微积分基本定理求出13q =,再由312a a a =⋅求出首项,进而可求出结果. 【详解】因为等比数列{}n a 的公比123101133q x dx x ===⎰,且2231211a a a a q a q ===, ∴113a =,∴101013a =. 故答案为1013【点睛】本题主要考查等比数列的基本量运算,熟记微积分基本定理,以及等比数列的通项公式即可,属于基础题型. 13.【答案】23【解析】 【分析】求出矩形OABC 的面积S ,及22y x x =-+与x 轴围城的封闭图形的面积()22102d S x x x =-+⎰,结合几何概型的概率公式,可求出答案. 【详解】如图,由题意,矩形OABC 的面积212S =⨯=,22y x x =-+与x 轴围城的封闭图形面积为()223210212d 03S x x x x x ⎛⎫=-+=-+ ⎪⎝⎭⎰321422033=-⨯+-=,则123S P S ==. 所以在矩形OABC 中随机选取一点(),P x y ,事件:点(),P x y 的坐标满足22y x x ≤-+的概率为23. 故答案为:23.【点睛】本题考查几何概型概率的计算,弄清随机事件对应的平面区域是关键,本题属于中档题.1.【答案】0【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰. 2.【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 3.【答案】116116【解析】开始n =1,T =1,因为1<3,所以11212001131d 1|11222T x x x =+=+=+⨯=⎰,n =1+1=2; 因为2<3,所以13130023313111d |1223236T x x x =+=+=+⨯=⎰,n =2+1=3. 因为3<3不成立,所以输出T ,即输出的T 的值为116.4.【答案】512【解析】依题意知点D 的坐标为(1,4),所以矩形ABCD 的面积S =1×4=4, 阴影部分的面积S 阴影=3222111754d 44333| x x x =-=--=⎰,根据几何概型的概率计算公式得,所求的概率P =534S S ==阴影S =534=512.5.【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()53235355222240(2)d (2)(255)[255]257575753x x x x ---=-=⨯-⨯-⨯--⨯-=⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案为1.2. 1.列一元一次方程解应用题的一般步骤 (1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题: 增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息×100% 利息=本金×利率×期数本金实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
高考定积分与微积分基本定理
a
做微积分基本定理,又叫做牛顿一莱布尼兹公式.为了方
便,我们常常把 F(b)-F(a)记成 F(x)|ab,
即b
f(x)dx=F(x)|ba=
a
F(b)-F(a).
其中 F(x)叫做 f(x)的一个原函数.
思想方法技巧
一、思想方法 (1)数形结合思想:求曲线围成图形的面积,要画出草 图,寻找积分上限和积分下限,以及被积函数的形式. (2)极限的思想:求曲边梯形的面积时,分割,近似代 替,求和,取极限,采用的是以直代曲,无限逼近的极限思 想. (3)公式法:套用公式求定积分,避免繁琐的运算,是求 定积分常用的方法. (4)定义法:用定义求定积分是最基本的求定积分方法.
D. 3
解析:如图为y=cosx在[-3π,π3]上的图象. 答案:D
[例4] 如图所示,已知曲线C1:y=x2与曲线C2:y=- x2+2ax(a>1)交于点O、A,直线x=t(0<t≤1)与曲线C1、C2 分别相交于点D、B,连结OD、DA、AB.
(1)写出线段OD、DA、AB和曲线 OB 所围成的曲.边.四.边. 形.ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
S=b[f(x)-g(x)]dx(如图). a
考点典例讲练
定积分的几何意义
[例 1] (2011·潍坊二模)曲线 y=sinx,y=cosx 与直线 x =0,x=2π所围成的平面区域的面积为( )
解析:当 x∈[0,2π]时,y=sinx 与 y=cosx 的图象的交点坐标为 π4, 22,作图可知曲线 y=sinx,y=cosx 与直线 x=0,x=π2所围成 的平面区域的面积可分为两部分:一部分是曲线 y=sinx,y=cosx 与直线 x=0,x=π4所围成的平面区域的面积;另一部分是曲线 y= sinx,y=cosx 与直线 x=π4,x=π2所围成的平面区域的面积.且这两 部分的面积相等,结合定积分定义可知选 D.
定积分与微积分基本定理
定积分与微积分基本定理定积分与微积分基本定理知识点一:定积分的概念如果函数在区间上连续,用分点将区间分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即,,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式.说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:?分割;?近似代替;?求和;?取极限.知识点二:定积分的几何意义设函数在区间上连续.在上,当时,定积分在几何上表示由曲线以及直线与轴围成的曲边梯形的面积;在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积的相反数;在上,当既取正值又取负值时,曲线的某些部分在轴的上方,而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予负号;在一般情形下,定积分的几何意义是曲线,两条直线与轴所围成的各部分面积的代数和.知识点三:定积分的性质(1)(为常数),(2),(3)(其中),(4)利用函数的奇偶性求积分:若函数在区间上是奇函数,则;若函数在区间上是偶函数,则.知识点四:微积分基本定理微积分基本定理(或牛顿,莱布尼兹公式):如果在上连续,且,则。
其中叫做的一个原函数.注意:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.由于也是的原函数,其中c为常数.知识点五:应用定积分求曲边梯形的面积1. 如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:2(如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:3(由三条直线轴及一条曲线(不妨设在区间上,在区间上)围成的图形的面积:,,.4. 如图,由曲线及直线,围成图形的面积: 知识点六:定积分在物理中的应用变速直线运动的路程作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即.变力作功物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到,那么变力所作的功.规律方法指导1(如何正确理解定积分的概念定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即(称为积分形式的不变性),另外定积分与积分区间[a,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如与的值就不同。
高考数学Ι轮精品教案及其练习精析《定积分与微积分的基本定理
高考数学Ι轮精品教案及其练习精析《定积分与微积分的基本定理》一、教学目标:1. 理解定积分与微积分的基本定理的概念。
2. 掌握定积分的性质和计算方法。
3. 学会应用基本定理解决实际问题。
二、教学内容:1. 定积分与微积分的基本定理的定义和性质。
2. 定积分的计算方法。
3. 基本定理的应用实例。
三、教学重点与难点:1. 重点:定积分与微积分的基本定理的概念和性质,定积分的计算方法。
2. 难点:基本定理的应用实例。
四、教学方法与手段:1. 采用讲授法,讲解定积分与微积分的基本定理的概念和性质,定积分的计算方法。
2. 使用示例法,展示基本定理的应用实例。
3. 利用多媒体教学,播放相关教学视频,帮助学生更好地理解和掌握知识。
五、教学过程:1. 导入:通过复习微积分的基本概念,引导学生进入本节课的主题——定积分与微积分的基本定理。
2. 讲解:讲解定积分与微积分的基本定理的概念和性质,定积分的计算方法。
3. 示例:展示基本定理的应用实例,让学生理解并掌握基本定理的应用方法。
4. 练习:布置相关的练习题,让学生巩固所学知识。
5. 总结:对本节课的主要内容进行总结,强调重点和难点。
6. 作业:布置课后作业,巩固所学知识。
教学评价:通过课堂讲解、练习和课后作业的完成情况,评价学生对定积分与微积分的基本定理的理解和应用能力。
六、教学资源:1. 教学PPT:包含定积分与微积分的基本定理的定义、性质、计算方法以及应用实例。
2. 练习题库:提供多样的练习题,用于巩固学生对定积分的理解和应用。
3. 教学视频:演示定积分的计算过程和应用实例,帮助学生更直观地理解知识点。
七、教学步骤:1. 回顾微积分基本概念,为新课的学习做好铺垫。
2. 讲解定积分与微积分的基本定理,通过PPT展示相关知识点。
3. 利用示例法,展示基本定理的应用实例,让学生理解并掌握基本定理的应用方法。
4. 分组讨论练习题,学生相互交流解题思路,教师巡回指导。
高中数学 定积分的概念与微积分基本定课件
一、积分的几何意义
2 2 【示例】► 已知 r>0,则 r-r r -x dx=________.
二、积分与概率 【示例】► (2010· 陕西)从如图所示的长方形区域内任取一个点 M(x,y),则点M取自阴影部分的概率为__________.
单击此处进入
活页限时训练
1 2 3 2 4 2 S= (t -4t+3)dt+| (t -4t+3)dt|+ (t -4t+3)dt
0 1 3
=
1 1 3 2 3 2 1 3 t -2t +3t0+| t -2t +3t1 |+ 3 3
1 4 4 4 3 2 4 t -2t +3t3 =3+3+3=4 3
=(e+1)-1=e. 答案 C
π π 2.(2011· 湖南)由直线 x=-3,x=3,y=0 与曲线 y=cos x 所 围成的封闭图形的面积为( 1 A.2 B.1 ). 3 C. 2 D. 3
答案 D
3.(2011· 山东)由曲线 y=x2,y=x3 围成的封闭图形面积为 ( 1 A.12 解析 1 B.4
第4讲 定积分的概念与微积分基本 定理
第4讲 定积分的概念与微积分基本定理
【2013年高考会这样考】 1.考查定积分的概念,定积分的几何意义,微积分基本定 理. 2.利用定积分求曲边形面积、变力做功、变速运动的质点的 运动路程. 【复习指导】 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念 和几何意义,使用微积分基本定理计算定积分,使用定积分求 曲边图形的面积和解决一些简单的物理问题等.
人教版高中数学选修2-2第5讲:定积分的概念与微积分基本定理(教师版)
性质 4
b
c
f ( x) d x
a
a
b
(f )x d x
c
( f ) x其d中(x
acb
(定积分对积分区间的可加性)
b
说明:①推广: a [ f1( x) f 2( x)
b
b
f m( x)] dx a f1( x)dx a f2 (x)dx
b
c1
c2
②推广 : f ( x)dx f ( x) dx f ( x)dx
b
f ( x) d x F( b) F( a)
a
若上式成立, 我们就找到了用 f ( x) 的原函数 (即满足 F (x)
f (x) )的数值差 F (b)
计算 f (x) 在 [ a,b] 上的定积分的方法。
注: 1:定理 如果函数 F ( x) 是 [a,b] 上的连续函数 f (x) 的任意一个原函数,则
a
a
c1
b
f ( x)dx
ck
③性质解释:
b
a fm(x)
y
性质 1
y=1
y A
性质 B4
C
Oa
b
x
M
O
a
N P bx
S曲边梯形 AMNB
S曲边梯形 AMPC
S曲边梯形 CPNB
2
二、微积分基本定理:
变速直线运动中位置函数与速度函数之间的联系
设一物体沿直线作变速运动,在时刻 t 时物体所在位置为 S(t),速度为 v(t) ( v(t) o ),
证明:因为
b
f ( x) dx F (b) F (a)
a
x
( x) = f (t )dt 与 F (x) 都是 f (x) 的原函数,故 a
定积分与微积分基本定理ppt课件
2
(4x +3x -x)dx
2
0
2
(3x )dx-
=x |20 +x |20 - x |20
4
3
2
2
4
3
1
2
=(2 -0)+(2 -0)- (2 -0)
2
=16+8-2
=22.
2
0
xdx
1 1
2
(2)∵(ln x)'= , e2 '=e ,
2
∴1
2
e
1
1
+
2x
2
1
dx=
2x
e dx+
2
2
3
2
0
x|20 =1-cos 2.
因为 1<1-cos 2<2,所以 c<a<b.
1
4
x dx= x |20 =4,c=
3
4
2
0
sin xdx=-cos
3.(2012·湖北卷,3)已知二次函数 y=f(x)的图象如图所示,则它与 x轴所围图
形的面积为(
)
2π
5
4
3
A.
3
2
B.
C.
π
2
D.
【答案】B
2
1
f(-x)dx=
2
1
2
(x -x)dx=
1 3 1 2
-
3
2
5
6
|21 = .
1
4.(2012·江西卷,11)计算定积分 -1
2
[f1(x)±
f2 (x)]dx=
定积分与微积分基本定理
定积分与微积分基本定理1.定积分的概念 在⎰b af (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质 (1)⎰b akf (x )d x =k⎰b af (x )d x (k 为常数);(2)⎰b a[f 1(x )±f 2(x )]d x =⎰baf 1(x )d x ±⎰b af 2(x )d x ;(3⎰b af (x )d x =⎰b af (x )d x +⎰b af (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎰baf (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F (x )叫做f (x )的一个原函数. 为了方便,常把F (b )-F (a )记作F (x )|b a ,即f ⎰b a(x )d x =F (x ) |b a =F (b )-F (a ).基本积分公式表⑴C dx =⎰0 ⑵C x m dx x m m++=+⎰111 ⑶C x dx x+=⎰ln 1⑷C e dx e xx+=⎰⑸C aa dx a xx+=⎰ln ⑹⎰+=C x xdx sin cos ⑺⎰+-=C x x cos sin ⑻⎰+-=C x x x xdx ln ln 1.(2013·江西高考)若S 1=⎰21x 2d x ,S 2=⎰211xd x ,S 3=⎰21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3 .C .S 2<S 3<S 1D .S 3<S 2<S 12.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, 则l 与C 所围成的图形的面积等于( ) A.43B .2 C.83 . D. 16233.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.4.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取 一点P ,则点P 恰好取自阴影部分的概率为( ) A.14 B.15 C.16 D.175.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 . C.32 D.π26.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12B .1 C.32D.3. 7.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14C.13D.712 8.(2010湖南,5分)⎰421xd x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2.9.(2009·福建,5分)⎰-22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2.10.(2011陕西,5分)设f (x )=⎪⎩⎪⎨⎧≤+>⎰0,30,lg 2x dt t x x x a 若f (f (1))=1,则a =________. 11、(2008海南)由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A.415B. 417 C. 2ln 21 D. 2ln 2.12、(2010海南)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。
高考数学高中数学知识点第17讲定积分与微积分基本定理
第17讲 定积分与微积分基本定理1.定积分的定义及相关概念一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1n f (ξi )Δx =∑i =1nb -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x .在⎠⎛ab f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间__[a ,b ]__叫做积分区间,函数f (x )叫做被积函数,x 叫做__积分变量__,__f (x )d x __叫做被积式.2.定积分的几何意义3.微积分的性质(1)⎠⎛a b kf (x )d x =__k ⎠⎛ab f (x )d x __(k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =__⎠⎛a b f 1(x )d x ±⎠⎛abf 2(x )d x __;(3)__⎠⎛a b f (x )d x __=⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =__F (b )-F (a )__,这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.5.定积分与曲边梯形面积的关系设阴影部分的面积为S . (1)S =⎠⎛ab f (x )d x ;(2)S =__-⎠⎛ab f (x )d x __;(3)S =__⎠⎛a c f (x )d x -⎠⎛cb f (x )d x __;(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .6.定积分与变速直线运动的路程及变力做功间的关系 (1)s =__⎠⎛ab v (t )d t __;(2)W =__⎠⎛ab F (s )d s __.7.奇偶函数定积分的两个重要结论 设函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛a 0f (x )d x ;(2)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.1.思维辨析(在括号内打“√”或“×”).(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( √ )(2)定积分一定是曲边梯形的面积.( × )(3)若⎠⎛ab f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × )解析 (1)正确.定积分与被积函数、积分上限和积分下限有关,与积分变量用什么字母表示无关.(2)错误.不一定是,要结合具体图形来定.(3)错误.也有可能是在x 轴上方部分的面积小于在x 轴下方部分的面积. 2.若s 1=⎠⎛12x 2d x ,s 2=⎠⎛121x d x ,s 3=⎠⎛12e x d x ,则s 1,s 2,s 3的大小关系为( B )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 1解析 因为s 1=13x 3|21=13(23-13)=73<3,s 2=ln x |21=ln 2-ln 1=ln 2<1,s 3=e x |21=e 2-e>3, 所以s 2<s 1<s 3.3.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( D ) A .22 B .42 C .2D .4解析 由⎩⎪⎨⎪⎧y =4x ,y =x 3,得交点为(0,0),(2,8),(-2,-8), 所以S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 420=4,故选D .4.已知t >1,若⎠⎛1t (2x +1)d x =t 2,则t =__2__.,解析 ⎠⎛1t (2x +1)d x =(x 2+x )|t 1=t 2+t -2从而得方程t 2+t -2=t 2,解得t =2.5.汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以减速度a =2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是__25__m.,解析 t =0时,v 0=36 km/h =10 m/s ,刹车后,汽车减速行驶,速度为v (t )=v 0-at =10-2t ,由v (t )=0得t =5 s ,所以从刹车到停车,汽车所走过的路程为⎠⎛05v (t )d t =⎠⎛05(10-2t )d t=(10t -t 2)|50=25(m).,,一 定积分的计算,计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积或和或差. (2)把定积分用定积分性质变形为求被积函数为初等函数的定积分. (3)分别用求导公式找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值. (5)计算原始定积分的值. 【例1】 计算下列定积分.(1)⎠⎛01(-x 2+2x )d x ;(2)⎠⎛0π(sin x -cos x )d x ;(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x ;(4)∫π201-sin 2x d x . 解析 (1)⎠⎛01(-x 2+2x )d x =⎠⎛01(-x 2)d x +⎠⎛012x d x=⎝⎛⎭⎫-13x 3|10+(x 2)|10=-13+1=23. (2)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x ,=(-cos x )|π0-sin x |π0=2.(3)⎠⎛12⎝⎛⎭⎫e 2x +1x d x =⎠⎛12e 2x d x +⎠⎛121xd x =12e 2x 21+ln x |21,=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln2.(4) ⎠⎛0π21-sin 2x d x =⎠⎛0π2|sin x -cos x |d x ,=⎠⎛0π4 (cos x -sin x )d x +⎠⎜⎛π4π2 (sin x -cos x )d x ,=(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4,=2-1+(-1+2)=22-2.二 定积分几何意义的应用,(1)利用定积分求平面图形面积的步骤: ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(2)根据平面图形的面积求参数的方法:先利用定积分求出平面图形的面积,再根据条件构造方程(不等式)求解.【例2】 (1)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( C ) A .103B .4C .163D .6(2)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为__1.2__.解析 (1)作出曲线y =x 和直线y =x -2的草图(如图所示),所求面积为阴影部分的面积.,由⎩⎨⎧y =x ,y =x -2得交点A (4,2).因此y =x 与y =x -2及y 轴所围成的图形的面积为⎠⎛04[x -(x -2)]d x =⎠⎛04(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x 40=23×8-12×16+2×4=163.,(2)建立如图所示的平面直角坐标系由抛物线过点(0,-2),(-5,0),(5,0),得抛物线的函数表达式为y =225x 2-2,抛物线与x 轴围成的面积S 1=⎠⎛-55⎝⎛⎭⎫2-225x 2d x =403,梯形面积S 2=(6+10)×22=16,最大流量比为S 2∶S 1=6∶5.三 定积分在物理中的应用定积分在物理中的两个应用(1)求变速直线运动的路程:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【例3】 (1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是( C ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为__36__J.解析 (1)由v (t )=7-3t +251+t=0,可得t =4⎝⎛⎭⎫t =-83舍去,因此汽车从刹车到停止一共行驶了4 s ,此期间行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =⎣⎡⎦⎤7t -32t 2+25ln (1+t )|40,=4+25ln 5 (m).,(2)由题意知,力F (x )所做的功为,W =⎠⎛04F (x )d x =⎠⎛025 d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x 42,=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36 J.1.定积分⎠⎛01x (2-x ) d x 的值为( A )A .π4B .π2C .πD .2π解析 令y =x (2-x ),则(x -1)2+y 2=1(y ≥0),由定积分的几何意义知,⎠⎛01x (2-x )d x的值为区域⎩⎪⎨⎪⎧(x -1)2+y 2=1(y ≥0),0≤x ≤1的面积,即为π4.2.计算:⎠⎛-33 (x 3cos x )d x =__0__.解析 ∵y =x 3cos x 为奇函数,∴⎠⎛-33 (x 3cos x )d x =0.3.如图,由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的平面图形的面积为!!!43###. 解析 由⎩⎪⎨⎪⎧y =-x 2,y =-1,得交点A (-1,-1),B (1,-1).由⎩⎪⎨⎪⎧y =-14x 2,y =-1,得交点C (-2,-1),D (2,-1). 所以所求面积S =2⎣⎢⎡⎦⎥⎤⎠⎛01⎝⎛⎭⎫-14x 2+x 2d x +⎠⎛12⎝⎛⎭⎫-14x 2+1d x =43.4.如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机向圆O 内投一个点A ,则点A 落在区域M 内的概率为!!!4π3###.解析 阴影部分的面积为2⎠⎛0πsin x d x =2(-cos x )|π0=4,圆的面积为π3,所以点A 落在区域M 内的概率是4π3.易错点 定积分的几何意义不明确错因分析:⎠⎛ab f (x )d x 不一定表示面积,也可能是面积的相反数,它可正,可负,也可为零.【例1】 求曲线f (x )=sin x ,x ∈⎣⎡⎦⎤0,54π与x 轴围成的图形的面积. 解析 当x ∈[0,π]时,f (x )≥0,当x ∈⎝⎛⎦⎤π,54π时,f (x )<0. 则所求面积S =⎠⎛0πsin x d x +⎝⎛⎭⎫-∫54ππsin x d x =-cos x ||π0+cos x 54ππ=2+⎝⎛⎭⎫-22+1=3-22. 【跟踪训练1】 (2018·山东淄博一模)如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( A )A .⎠⎛02|x 2-1|d xB .⎪⎪⎪⎪⎠⎛02(x 2-1)d xC .⎠⎛02(x 2-1)d xD .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .课时达标 第17讲[解密考纲]本考点主要考查利用微积分基本定理以及积分的性质求定积分、曲边梯形的面积,常与导数、概率相结合命题,通常以选择题的形式呈现,题目难度中等.一、选择题1.⎠⎛01e x d x 的值等于( C )A .eB .1-eC .e -1D .12(e -1)解析 ⎠⎛01e x d x =e x |10=e 1-e 0=e -1,故选C .2.⎠⎛1e ⎝⎛⎭⎫2x +1x d x =( C ) A .e 2-2 B .e -1 C .e 2D .e +1解析 ⎠⎛1e ⎝⎛⎭⎫2x +1x d x =(x 2+ln x )|e 1=e 2.故选C . 3.求曲线y =x 2与直线y =x 所围成图形的面积,其中正确的是( A ) A .S =⎠⎛01(x -x 2)d xB .S =⎠⎛01(x 2-x )d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y解析 由图象可得S =⎠⎛01(x -x 2)d x .第3题图 第4题图4.曲线y =2x 与直线y =x -1及直线x =4所围成的封闭图形的面积为( D )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 2解析 由曲线y =2x 与直线y =x -1及x =4所围成的封闭图形,如图中阴影部分所示,故所求图形的面积为S =⎠⎛24⎝⎛⎭⎫x -1-2x d x =(12x 2-x -2ln x )|42=4-2ln 2. 5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为( A )A .43B .1πC .12D .π-2π解析 ⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13x 3|10+ln x |e1=13+1=43,故选A . 6.如图,设D 是图中所示的矩形区域,E 是D 内函数y =cos x 图象上方的点构成的区域(阴影部分),向D 中随机投一点,则该点落入E 中的概率为( D )A .2πB .1πC .12D .π-2π解析 因为⎠⎛0π2cos x d x =sin x ⎪⎪⎪π20=1 故所求概率为π-1×2π=π-2π.二、填空题7.⎠⎛0π2 (cos x -sin x )d x =__0__. 解析 ⎠⎛0π2 (cos x -sin x )d x =(sin x +cos x ) ⎪⎪⎪π20=0. 8.若函数f (x )=x +1x ,则⎠⎛1ef (x )d x =!!! e 2+12 ###.解析 ⎠⎛1e ⎝⎛⎭⎫x +1x d x =⎝⎛⎭⎫x 22+ln x |e 1=e 2+12.9.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形(图中的阴影部分)解析 由图可得阴影部分面积S =2⎠⎛0π4(cos x -sin x )d x =2(sin x +cos x ) ⎪⎪⎪π40=2(2-1).三、解答题10.求下列定积分.,(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2)⎠⎛0-π(cos x +e x )d x . 解析 (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x2221-x 3321+ln x |21=32-73+ln 2=ln 2-56.(2) ⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-πe x d x =sin x |0-π+e x |0-π=1-1e π. 11.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解析 ∵(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k 则k =f ′(1)=(3x 2-2x +1)|x =1=2∴在点(1,2)处的切线方程为y -2=2(x -1),即y =2x ,y =2x 与函数g (x )=x 2围成的图形如图.,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4).∴y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3|20=4-83=43.,12.已知二次函数f (x )=ax 2+bx +c ,直线l 1:x =2,直线l 2:y =-t 2+8t (其中0≤t ≤2,t 为常数),若直线l 1,l 2与函数f (x )的图象以及l 2,y 轴与函数f (x )的图象所围成的封闭图形(阴影部分)如图所示.,(1)求a ,b ,c 的值;,(2)求阴影面积S 关于t 的函数S (t )的解析式.,解析 (1)由图可知二次函数的图象过点(0,0),(8,0),并且f (x )的最大值为16,则⎩⎪⎨⎪⎧c =0,a ·82+b ·8+c =0,4ac -b 24a =16, 解得⎩⎪⎨⎪⎧a =-1,b =8,c =0. (2)由(1)知,函数f (x )的解析式为f (x )=-x 2+8x .由⎩⎪⎨⎪⎧y =-t 2+8t ,y =-x 2+8x ,得x 2-8x -t (t -8)=0,∴x 1=t ,x 2=8-t . ∵0≤t ≤2,∴直线l 2与f (x )的图象位于l 1左侧的交点坐标为(t ,-t 2+8t ),由定积分的几何意义知:S (t )=⎠⎛0t [(-t 2+8t )-(-x 2+8x )]d x +⎠⎛t2[(-x 2+8x )-(-t 2+8t )]d x =⎣⎡⎦⎤(-t 2+8t )x -⎝⎛⎭⎫-x 33+4x 2|t 0+⎣⎡⎦⎤⎝⎛⎭⎫-x 33+4x 2-(-t 2+8t )x |2t =-43t 3+10t 2-16t +403. 1、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学~~定积分和微积分基本原理
1、求曲线、直线、坐标轴围成的图形面积
•
[ 高三数学] • 题型:单选题
由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )
A. 310
B. 4
C. 3
16 D. 6 问题症结:大概知道解题方向了,但没有解出来,请老师分析
考查知识点:
•
定积分在几何中的应用 • 用微积分基本定理求定积分值
难度:难
解析过程:
联立方程组,2
⎩⎨⎧-==x y x y 得到两曲线的交点坐标为(4,2)
, 因此曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为:
3
16)]2([4
0=--⎰dx x x . 答案:C
规律方法:
首先求出曲线y=
和直线y=x-2的交点,确定出积分区间和被积函数,然后利用导数和积分的关
系求解.
利用定积分知识求解该区域面积是解题的关键.
高二数学问题
•
[ 高一数学] • 题型:简答题 曲线y=sinx (0≤x≤π)与直线y=½围成的封闭图形面积是?
问题症结:找不到突破口,请老师帮我理一下思路
考查知识点:
• 用定义求定积分值
难度:中
解析过程:
规律方法:
知识点:定积分和微积分基本原理
概述
所属知识点:
[导数及其应用]
包含次级知识点:
定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用
知识点总结
本节主要包括定积分的概念、定积分的性质、用定义求定积分值、用微积分基本定理求定积分值、用几何意义求定积分的值、定积分在几何中的应用、定积分在物理中的应用、微积分基本原理的含义、微积分基本原理的应用等知识点。
对于定积分和微积分基本原理的理解和掌握一定要通过数形结合理解,不能死记硬背。
只有理解了定积分的概念,才能理解定积分的几何意义。
常见考法
本节在段考中常以选择题、填空题和解答题的形式考查利用定积分的几何意义和微积分基本原理求面积,一般属于中档题。
在高考中一般以选择题、填空题的形式考查利用定积分的几何意义和微积分基本原理求面积,有时也不考查。
误区提醒。