初三数学周周练
最新人教版初中九年级上册数学《周周练(21.2.3~21.3)》同步练习
周周练(21.2.3~21.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x2=9,则x=3;(2)方程mx2+m2x=0(m≠0),则x=-m;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有()A.0个B.1个C.2个D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是() A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为() A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是()A.直接求解B.配方法C.因式分解法D.公式法5.多项式a2+4a-10的值等于11,则a的值为()A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是() A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为()A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x2-2x-3=0;(2)(x +2)2=2x +4;(3)(3x +1)2-4=0;(4)4x 2-12x +5=0;(5)4(x -1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=314. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x -2)互为相反数. 17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%.18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
九年级上数学周周练(4.1~4.3)含答案
周周练(4.1~4.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共28分)1.在比例尺为1∶5 000的地图上,量得甲、乙两地的距离为25 cm ,则甲、乙两地的实际距离是( ) A .1 250千米 B .125千米 C .12.5千米 D .1.25千米2.a ,b ,c ,d 是四条线段,下列各组中这四条线段成比例的是( ) A .a =2 cm ,b =5 cm ,c =5 cm ,d =10 cm B .a =5 cm ,b =3 cm ,c =10 cm ,d =6 cm C .a =30 cm ,b =2 cm ,c =0.8 cm ,d =2 cm D .a =5 cm ,b =0.02 cm ,c =7 cm ,d =0.3 cm 3.已知b a =513,则a -ba +b 的值是( )A.23 B.32 C.94 D.494.下列结论不正确的是( ) A .所有的矩形都相似 B .所有的正方形都相似C .所有的等腰直角三角形都相似D .所有的正八边形都相似5.一个多边形的边长分别为2,3,4,5,6,另一个和它相似的多边形的最长边长为24,则这个多边形的最短边长为( )A .6B .8C .12D .106.(上海中考)如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB 等于( ) A .5∶8 B .3∶8 C .3∶5 D .2∶57.如图,已知DE ∥BC ,EF ∥AB ,现得到下列结论: ①AEEC =BFFC ;②AD BF =AB BC ;③EF AB =DE BC ;④CE CF =EA BF . 其中正确比例式的个数有( )A .4个B .3个C .2个D .1个二、填空题(每小题4分,共20分)8.若两个相似多边形的对应边分别为4 cm 和8 cm ,则它们的相似比为________. 9.若a b =c d =ef=2,且b +d +f =4,则a +c +e =________.10.(漳州中考)如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,ABBC =23,DE =6,则EF =________. 11.已知三个数:1,2,3,请你添上一个数,使它们能构成一个比例式,则这个数是____________(只填一个).12.北京紫禁城是中国古代汉族宫廷建筑之精华.经测算发现,太和殿,中和殿,保和殿这三大殿的矩形宫院ABCD(北至保和殿,南至太和门,西至弘义阁,东至体仁阁)与三大殿下的工字形大台基所在的矩形区域EFGH 为相似形.若比较宫院与台基之间的比例关系,可以发现接近于9∶5,取“九五至尊”之意.根据测量数据,三大殿台基的宽为40丈,请你估算三大殿宫院的宽为________丈. 三、解答题(共52分)13.(8分)如图,已知点C 是线段AB 上的点,D 是AB 延长线上的点,且AD ∶BD =3∶2,AB ∶AC =5∶3,AC =3.6,求AD 的长.14.(12分)(1)已知a b =2,求a +bb ;(2)已知a b =52,求a -ba +b .15.(10分)小华的父亲计划修建一个矩形草坪,按1∶100的比例尺画出了草坪图(如图),他准备在草坪内栽种面积为0.02平方米的小矩形草皮,在草坪四周每隔50厘米种一株小杜鹃,你能帮助小华的父亲算算他需购买多少块小矩形草皮与多少株杜鹃吗?16.(10分)如图,在△ABC 中,EF ∥CD ,DE ∥BC. 求证:AF ·BD =AD ·FD.17.(12分)如图,矩形ABCD的长AB=30,宽BC=20.(1)如图1,若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由;(2)如图2,当x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?参考答案1.D 2.B 3.D 4.A 5.B 6.A 7.B 8.1∶2 9.8 10.9 11.答案不唯一,如23 12.72 13.∵AB ∶AC =5∶3,AC =3.6,∴AB =53×3.6=6.∵AD ∶BD =3∶2,∴AB ∶AD =1∶3.∴AD =3×6=18. 14.(1)a +bb =3.(2)a -b a +b =37. 15.由于比例尺为1∶100,根据图纸,长为5×100=500(cm)=5(m),宽为3×100=300(cm)=3(m),5×3÷0.02=750(块),(3+5)×2÷0.5=32(株).答:需购买750块小矩形草皮,32株杜鹃. 16.证明:∵EF ∥CD ,∴AFFD =AEEC .∵DE ∥BC ,∴AD BD =AE EC .∴AF FD =ADBD .∴AF ·BD =AD ·FD. 17.(1)不相似,理由如下:AB =30,A ′B ′=28,BC =20,B ′C ′=18,而2830≠1820,故矩形ABCD 与矩形A ′B ′C ′D ′不相似.(2)若矩形ABCD 与A ′B ′C ′D ′相似,则A ′B ′AB =B ′C ′BC 或A ′B ′BC =B ′C ′AB .则30-2x 30=20-220或30-2x 20=20-230.解得x =1.5或9.故当x =1.5或9时,矩形ABCD 与矩形A ′B ′C ′D ′相似.。
九年级数学上册 3.1-3.3周周练 (新版)湘教版
周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.已知线段AB =1 cm ,CD =5 cm ,则AB∶CD=( )A .1∶5B .5∶1C .2∶1D .1∶22.下列各组线段(单位:cm)中,成比例线段的是( )A .3、4、5、6B .1、3、3、9C .3、5、8、10D .1、2、2、63.(徐汇区一模)在比例尺为1∶2 000的地图上测得A 、B 两地间的图上距离为5 cm ,则A 、B 两地间的实际距离为( )A .10 mB .25 mC .100 mD .10 000 m4.(嘉定区一模)已知x y =32,那么各式中,不一定正确的是( ) A .x +y =5 B .2x =3yC.x +y y =52D.x x +y =355.(邯郸一模)如图,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC =OA ,以A 为圆心,AC 为半径画弧交AB 于点P ,则线段AP 与AB 的比是( )A.3∶2B .1∶ 3C.2∶3 D.2∶26.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个等边三角形C .任意两个等腰三角形D .任意两个矩形7.如图,已知在△ABC 中,DE ∥AC ,DF ∥AB ,那么下面各等式中,错误的有( )A .B D ∶DC =BE∶EAB .BD ∶BC =AF∶ACC .BE ∶EA =AF∶FCD .DF ∶BA =DE∶CA8.(通辽中考)美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160 cm ,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为( )A .6 cmB .10 cmC .4 cmD .8 cm二、填空题(每小题4分,共32分)9.(郴州中考)若a b =12,则a +b b=________. 10.已知a ,b ,c ,d 是成比例线段,其中a =3 cm ,b =2 cm ,c =6 cm ,则d =________cm.11.若△ABC∽△A′B′C′,且∠A=45°,∠B =30°,则∠C′=________°.12.(金山区一模)已知在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,AD AB =35,那么AE CE的值等于________.13.(黄浦区一模)如图,AB ∥CD ∥EF ,如果AC∶CE=2∶3,BF =10,那么线段DF 的长为________.14.已知:线段MN 的长为20厘米,点P 是线段MN 的黄金分割点,则较长线段MP 的长是________厘米.15.若a∶b=3∶2,b ∶c =5∶4,则a∶b∶c=________________.16.如图,在△ABC 中,AB >AC ,AD 是BC 边上的高,F 是BC 的中点,EF ⊥BC 交AB 于E ,若BD∶DC=3∶2,则BE∶AB=________.三、解答题(共44分)17.(10分)若a +23=b 4=c +56,且2a -b +3c =21.试求a∶b∶c.18.(10分)如图,已知矩形ABCD 与矩形DEFC 相似,且AB =2 cm ,BC =5 cm ,求AE 的长.19.(12分)如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,AD∶DB=2∶3,BC =20 cm,求BF的长.20.(12分)已知:在□ABCD中,E是BA边延长线上一点,CE交对角线BD于点G,交AD边于点F.求证:CG2=GF·GE.参考答案1.A 2.B 3.C 4.A 5.D 6.B 7.D 8.D 9.32 10.4 11.105 12.32 13.6 14.(105-10) 15.15∶10∶8 16.5∶6 提示:F 是BC 的中点,∴FB =12BC ,∵BD ∶DC =3∶2,∴BD =33+2BC =35BC ,∴FD =BD -FB =35BC -12BC =110BC ,∴BF ∶FD =12∶110=5∶1,∵EF ⊥BC ,AD ⊥BC ,∴AD ∥EF ,∴BE ∶EA =BF∶FD=5∶1即BE∶AB=5∶6.17.设a +23=b 4=c +56=k ,则a =3k -2,b =4k ,c =6k -5, ∵2a -b +3c =21,∴2(3k -2)-4k +3(6k -5)=21.解得k =2.∴a=6-2=4,b =8,c =7.∴a∶b∶c=4∶8∶7.18.∵矩形ABCD 与矩形DEFC 相似,∴AB DE =BC EF ,即2DE =52.∴DE =45. ∴AE =AD -DE =5-45=215. 19.∵DE∥BC,∴AD DB =AE EC .∵EF ∥AB ,∴AE EC =BF FC .∴AD DB =BF FC =23. 又∵BC=BF +FC =20 cm ,∴BF =8 cm.故BF 的长为8 cm.20.∵四边形ABCD 是平行四边形,∴DC ∥AB ,AD ∥BC ,∴CG GE =DG GB ,GF CG =DG GB .∴CG GE =GF CG,即CG 2=GF·GE.。
九年级数学周周练
九年级数学周周练一、选择题(每题3分,共24分)1.从正方形的铁片上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是()A.96cm2 B.64cm2 C.54cm2 D.52cm22.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B. C.7 D.3.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25 B.36 C.25或36 D.﹣25或﹣364. 一元二次方程(x-2)2 = 9的两个根分别是( )A. x1 = 1, x2 =-5B. x1 = -1, x2 =-5C. x1 = 1, x2 =5D. x1 = -1, x2 =55. 用配方法解一元二次方程x2 -6x+5 = 0,其中配方准确的是( )A. (x-3)2 = 5 ,B. (x-3)2 = -4 ,C. (x-3)2 = 4 ,D. (x-3)2 = 9 .6.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1757. 某种药品经过两次降价由原来的每盒12.5元降到每盒8元,如果2次降价的百分率相同, 设每次降价的百分率为x,可列出的方程为( )A. 12.5(1+x)2 = 8B. 12.5(1-x)2 = 8C. 12.5(1-2x) = 8D. 8(1+x)2 = 12.58. 对于一元二次方程ax2 +bx+c = 0 (a≠0),下列说法中错误的是( )A. 当a>0, c<0时,方程一定有实数根,B. 当c=0时,方程至少有一个根为0,C. 当a>0, b=0, c<0时,方程的两根一定互为相反数,D. 当abc<0时,方程的两个根同号, 当abc>0时,方程的两个根异号.二、填空题(每题2分,共20分)9. 若x = 2是方程x2 +3x-2m=0的一个根,则m的值为________ .10. 若方程(x+3)2 +a = 0有解,则a的取值范围是__________.11. 当x =__________时,代数式(3x - 4)2与(4x - 3)2的值相等. 12. 方程x (x + 2) = x + 2的根为_________ .13. 写出一个以2和3为两根且二项系数为1的一元二次方程, 你写的是____________. 14. 若一元二次方程mx 2+ 4x + 5 = 0有两个不相等实数根,则m 的取值范围__________. 15.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有____________.人.16.足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场.共举行比赛210场,则参加比赛的球队共有____________.支.17.用一根长24cm 的铁丝围成一个斜边长是10cm 的直角三角形,则两直角边长分别为____________.18.李娜在一幅长90cm 宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm ,根据题意,所列方程为:____________.三、解答题19. 解下列一元二次方程(每题4分,共24分)(1) 0152=+-x x (2) ()()2232-=-x x x(3)052222=--x x (4) ()()22132-=+y y(5) (x + 2)(x - 3) = 0(6) (2x -1)2-2x + 1 = 020.己知a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,求这个直角三角形的斜边长.(本题5分)21.不解方程,求作一个新的一元二次方程,使它的两个根分别是方程272=-x x 的两根的2倍。
最新人教版初中九年级上册数学《周周练(21.1~21.2.2)》同步练习
周周练(21.1~21.2.2)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.用公式法解方程x 2-2=-3x 时,a ,b ,c 的值依次是( )A .0,-2,-3B .1,3,-2C .1,-3,-2D .1,-2,-3 2.下列各式为完全平方式的是( )A .x 2+x +1B .x 2+x +14C .x 2+2x -1D .x 2-2x -1 3.一元二次方程x 2-12=0的根是( )A .2 3B .-2 3C .±4 3D .±2 34.已知3是关于x 的方程43x 2-2a +1=0的一个根,则2a 的值为( )A .11B .12C .13D .145.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=06.一元二次方程x 2-8x -1=0配方后可变形为( )A .(x +7)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=15 7.下面以-2为根的一元二次方程是( )A .x 2+2x -2=0B .x 2-x -2=0C .x 2+x +2=0D .x 2+x -2=08.某经济开发区今年一月份工业产值达到80亿元,第一季度总产值为275亿元,问二、三月平均每月的增长率是多少?设平均每月的增长率为x ,根据题意所列方程是( )A .80(1+x)2=275B .80+80(1+x)+80(1+x)2=275C .80(1+x)3=275D.80(1+x)+80(1+x)2=275二、填空题(每小题4分,共24分)9.若关于x的方程(m+2)x|m|+2x-1=0是一元二次方程,则m=________.10.用适当的数填空:x2-3x+______=(x-______)2;x2+27x+______=(x+______)2.11.填表并判断方程x2-5x+6=0的根是________________.x -1 0 1 2 3x2-5x+6 12 6 2 0 012.已知方程x2-3x+k=0有两个相等的实数根,则k=________.13.我们在解方程x2=5时,方法是对它的两边开平方,请你思考一下,方程3-x=2应该怎样解,它的根是________.14.(南宁一模)如图,在一块长为22米、宽为17米的矩形地面上,要修建一条长方形道路LMPQ 及一条平行四边形道路RSTK,剩余部分种上草坪,使草坪面积为300平方米.若LM=RS=x米,则根据题意可列出方程为______________________.三、解答题(共44分)15.(16分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.方程一般形式二次项系数一次项系数常数项x2-4x-3=02x2=012=72x(2y-3)2=y(y+2)16.(12分)解下列方程:(1)x2+4x-5=0;(2)y2-7y+6=0;(3)2x2-4x-3=0;(4)-2y2-11y+21=0.17.(6分)已知一元二次方程ax2+4x+2=0,且该方程有两个相等的实数根.求:(1)a的值;(2)该方程的根.18.(10分)某林场准备修一条长1 000米,断面为等腰梯形的渠道,断面面积为1.4平方米,上口宽比渠道深多2.3米,渠底宽比渠道深多0.3米.(1)渠道的上口与渠底宽各是多少?(2)如果计划每天挖土70立方米,需要多少天才能把这条渠道的土挖完?参考答案1.B2.B3.D4.C5.D6.C7.D8.B9.210.94327711.x1=2,x2=312.9413.x=-114.(22-x)(17-x)=30015.x2-4x-3=01-4-32x2=020012x2-7=0120-73y2-14y+9=03-14916.(1)x1=-5,x2=1.(2)y1=1,y2=6.(3)x1=1+102,x2=1-102.(4)y1=-7,y2=32.17.(1)因为方程有两个相等的实数根,所以b2-4ac=0,即42-4×a×2=0.解得a=2.(2)将a=2代入原方程,得2x2+4x+2=0.解得x1=x2=-1.18.(1)设渠道深x 米,则上口的宽度是(x +2.3)米,渠底宽(x +0.3)米,根据题意得:12[(x +2.3)+(x+0.3)]×x =1.4,解得x 1=-2(舍去),x 2=0.7.则渠道的上口宽是:0.7+2.3=3(米),渠底宽是0.7+0.3=1(米).答:渠道的上口与渠底宽分别是3米和1米.(2)∵渠道的长为1 000米,∴渠道的体积为1 000×1.4=1 400(立方米).∵每天挖土70立方米,∴需要的天数是:1 400÷70=20(天).答:需要20天才能把这条渠道的土挖完.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
九年级数学周周练140920答案
参考答案: 1、 D 2、 B 3、 C 4、 C 5、 A 6、 C 7、 A 8、 C 9、 D 10、 C 11、 5 12、 x1 0, x2 3
13、m≠-2
14、 x1 1, x2 17、 3
2 3
ห้องสมุดไป่ตู้
15、∠C=___36°___,∠AOC=___54_°__. 19、略 20、-2≤k<2
解方程得 x 2 2 x 2 0 得,
1 1 3 1 1 3 3 . 3
x1 1 3 0 , x2 1 3 0 .
所以原式=
=
=
2 x ( x 5)( x 5) x 5 2x
= x 5 解不等组得:-5≤x<6
选取的数字不为 5,-5,0 即可(答案不唯一) 解:原式=
x ( x 1)( x 1) x 2 2 x 1 x 1 1 = = . x ( x 1) 2 x 1 x( x 1) x
16、 k 1且k 0
18、2
x1 21、 (1)
25 15 4 2 26 4 2 26 6 6 , x 2 (2) (3) x1 , x2 x1 1 , x2 1 4 4 5 5 3 3
(5) y1 6, y2 2 22、 k 2且k 1 26、同意 (6) x1
y 个月, 2
y ≤1500, 2
28、(1) 原式=(
x-1 x-2 2x2-x (x-1)( x+1)- x( x-2) 2x2-x - )÷ = ÷ = x x+1 x2+2x+1 x( x+1) x2+2x+1
2x-1 (x+1)2 x+1 2 2 × = 当 x -x-1=0 时,x =x+1,原式=1. x(x+1) 2x-1 x2 (2) 解:原式=
2023年中考数学周周练-中考模拟卷3(含答案)
中考模拟卷(三)一.选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.在310,2,(1),2---这四个数中,则其中最小的数是()A.12-B.3(1)- C.0D.2-2.下列计算正确的是()A.235a b ab +=B.22321x y x y -= C.3255x x x÷= D.()325a a =3.函数2xy x =-中,则字母x 的取值范围是()A.2x > B.2x ≠ C.2x < D.2x ≠且0x ≠4.估计62+的值在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.如图,已知OA,OB 是⊙O 的两条半径,且OA OB ⊥,点C 在⊙O 上,则ACB ∠=()A.45︒B.35︒C.25︒D.20︒6.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,则所得抛物线的函数表达式是()A.2(2)2y x =++ B.2(2)2y x =+- C.2(2)2y x =-+ D.2(2)2y x =--7.如图,在△ABC 中,AD、BE 分别是BC、AC 边上的中线,则:EDC ABC S S =()A.1:2 B.2:3B. C.1:3D.1:48.已知一元二次方程2360x x --=的两个实数根为,a b ,直线m 经过点A(,0a b +),B (0,ab ),则直线m 的函数表达式是()A.26y x =-- B.26y x =-+ C.26y x =- D.26y x =+9.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()10.如图,在四边形ABCD 中,AD//BC,点E 在BC 上,AE=BE,点F 是CD 的中点,且AF⊥AB,若AD=3,AF=4,AB=6,则CE 的长为()A.2C.52D.3二.填空题(本题有6小题,每题4分,共24分)11.因式分解:2312x -=。
初三周周练数学试卷
1. 下列各数中,有理数是()A. √2B. πC. -3/5D. 无理数2. 已知 a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. 2a > 2bD. a/2 > b/23. 在直角坐标系中,点P的坐标为(2,-3),则点P关于x轴的对称点坐标为()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)4. 已知一元二次方程 x^2 - 5x + 6 = 0,则其两个根之和为()A. 5B. 6C. 7D. 85. 下列函数中,y是x的二次函数的是()A. y = 2x + 3B. y = x^2 - 4x + 5C. y = 3/xD. y = √x6. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°7. 若 a > b,且 a^2 > b^2,则下列不等式中正确的是()A. a > bB. a < bC. a^2 > b^2D. a^2 < b^28. 下列图形中,不是平行四边形的是()A. 矩形B. 菱形C. 等腰梯形D. 长方形9. 已知函数 y = kx + b,其中k ≠ 0,若直线 y = kx + b 经过点(2,3),则下列说法正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 010. 下列命题中,正确的是()A. 所有奇数都是正数B. 所有正数都是偶数C. 所有正数都是无理数D. 所有有理数都是整数11. 若 a > b,则 a - b 的符号为______。
12. 已知 a = 3,b = -2,则 |a| + |b| 的值为______。
初三数学周测试题及答案
初三数学周测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.1010010001…(每两个1之间0的个数逐次增加)D. -52. 一次函数y=2x+1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 一个正数的倒数是1/2,那么这个数是:A. 1/2B. 2C. 1/3D. 34. 一个三角形的两边长分别是3和4,第三边长x满足的不等式是:A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 计算(-2)^3的结果是:B. 8C. -2D. 26. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对7. 一个圆的直径是10cm,那么这个圆的周长是:A. 31.4cmB. 15.7cmC. 10cmD. 5cm8. 一个等腰三角形的顶角是90度,那么它的底角是:A. 45度B. 60度C. 30度D. 90度9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对10. 计算(-3)^2的结果是:A. -9C. -3D. 3二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身,这个数是_________。
2. 一个数的相反数是-2,那么这个数是_________。
3. 一个数的平方是36,那么这个数是_________。
4. 一个三角形的两边长分别是5和12,第三边长x满足的不等式是_________。
5. 一个圆的半径是7cm,那么这个圆的面积是_________。
6. 一个等腰三角形的顶角是30度,那么它的底角是_________。
7. 一个数的立方是-27,那么这个数是_________。
8. 一个数的绝对值是它相反数的2倍,那么这个数是_________。
人教版九年级上数学周周练(24.1)(含答案)
周周练(24.1)(时间:45分钟 满分:100分)一、选择题(每小题4分,共40分) 1.下列说法正确的是(B)A .平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .相等的弦所对的圆心角相等2.如图,在⊙O 中,AB ︵=AC ︵,∠ADC =20°,则∠AOB 的度数是(A)A .40°B .30°C .20°D .15°3.如图,在⊙O 中,弦的条数是(C)A .2B .3C .4D .以上均不正确4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且点C 、D 在AB 的异侧,连接AD 、OD 、OC.若∠AOC =70°,且AD ∥OC ,则∠AOD 的度数为(D)A .70°B .60°C .50°D .40°5.如图,在Rt △ABC 中,∠ACB =90°,∠A =56°.以BC 为直径的⊙O 交AB 于点D.E 是⊙O 上一点,且CE ︵=CD ︵,连接OE.过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为(C)A .92°B .108°C .112°D .124°6.在⊙O 中,∠AOB =84°,则弦AB 所对的圆周角的度数为(D)A .42°B .138°C .69°D .42°或138°7.数学课上,老师让测量三角形纸板中∠ACB 的度数,小周把三角形纸板按如图所示的方式放置在一个破损的量角器上,使点C 落在半圆上,点A ,B 处的读数分别为65°,20°,则∠ACB 的度数为(C)A .45°B .32.5°C .22.5°D .20°8.如图,在⊙O 中,AB ︵=BC ︵,直径CD ⊥AB 于点N ,P 是AC ︵上一点,则∠BPD 的度数是(A)A .30°B .45°C .60°D .15°9.如图,点A ,B ,C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF ⊥AB 交⊙O 于点F ,则∠BAF 等于(B)A .12.5°B .15°C .20°D .22.5°︵10.(山西期末)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为(B)A.4 B.5 C.6 D.7二、填空题(每小题4分,共20分)11.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O12.如图,AB是⊙O的直径,AB垂直弦CD于点E,在不添加辅助线的情况下,图中与∠CDB相等的角是∠DAB或∠BCD或∠BAC(写出一个即可).13.如图,AB是⊙O的直径,点C是⊙O上的一点.若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.14.(山西一模改编)如图,四边形ABCD为圆O的内接四边形,E是BC延长线上的一点,已知∠BOD=100°,则∠DCE的度数为50°.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为10厘米.三、解答题(共40分)16.(8分)如图,AB 是⊙O 的直径,点C ,D 是⊙O 上的两点,且AC =CD.求证:OC ∥BD.证明:∵AC =CD , ∴AC ︵=DC ︵. ∴∠ABC =∠DBC. ∵OC =OB , ∴∠OCB =∠OBC. ∴∠OCB =∠DBC. ∴OC ∥BD.17.(10分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D ,E ,量出半径OC =5 cm ,弦DE =8 cm ,求直尺的宽.解:过点O 作OM ⊥DE 于点M ,连接OD. ∴DM =12DE.∵DE =8 cm ,∴DM =4 cm.在Rt △ODM 中,∵OD =OC =5 cm , ∴OM =OD 2-DM 2=52-42=3(cm).∴直尺的宽度为3 cm.18.(10分)如图,圆内接四边形ABDC 中,AB 是⊙O 的直径,BE =CE. (1)请写出四个不同类型的正确结论; (2)若BE =4,AC =6,求DE 的长.解:(1)不同类型的正确结论为:BE =12BC ,BD ︵=CD ︵,∠BED =90°,BD =CD ,OD ⊥BC ,△BOD 是等腰三角形,△BDE ≌△CDE ,OB 2=OE 2+BE 2等等. (2)∵AB 是⊙O 的直径,∴OA =OB.∵BE =CE ,∴OD ⊥BC ,OE 为△ABC 的中位线. ∴OE =12AC =12×6=3.在Rt △OBE 中,由勾股定理,得OB =OE 2+BE 2=32+42=5. ∵OD =OB =5.∴DE =OD -OE =5-3=2.19.(12分)如图所示,正方形ABCD 内接于⊙O ,在劣弧AB ︵上取一点E ,连接DE ,BE ,过点D 作DF ∥BE 交⊙O 于点F ,连接BF ,AF ,且AF 与DE 相交于点G ,求证: (1)四边形EBFD 是矩形; (2)DG =BE.证明:(1)∵正方形ABCD 内接于⊙O , ∴∠BED =∠BAD =90°,∠BFD =∠BCD =90°.∵DF∥BE,∴∠EDF+∠BED=180°.∴∠EDF=90°. ∴四边形EBFD是矩形.(2)连接AC.∵四边形ABCD是正方形,∴∠ACD=45°.∴∠AFD=∠ACD=45°.又∵∠GDF=90°,∴∠DGF=∠DFG=45°.∴DG=DF.又∵在矩形EBFD中,BE=DF,∴DG=BE.。
九年级上数学周周练(1.1~1.2.1)含答案
周周练(1.1~1.2.1)(时间:45分钟 满分:100分)一、选择题(每小题5分,共40分)1.下列是矩形与菱形都具有的性质的是( )A .各角都相等B .各边都相等C .对角线相等D .有两条对称轴2.(青岛中考)如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E 、F 分别是AB 、BC 边的中点,连接EF.若EF =3,BD =4,则菱形ABCD 的周长为( )A .4 B.12C .47D .283.如图是一张矩形纸片ABCD ,AD =10 cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6 cm ,则CD =( )A .4 cmB .6 cmC .8 cmD .10 cm4.下列说法中正确的是( )A .四边相等的四边形是菱形B .一组对边相等,另一组对边平行的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相平分的四边形是菱形5.如图,矩形ABCD 中,AB =8,AD =6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A ′BC ′D ′.若边A ′B 交线段CD 于H ,且BH =DH ,则DH 的值是( )A.74 B .8-2 3 C.254D .6 26.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .对角线相等的四边形C .矩形D .对角线互相垂直的四边形7.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合)且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( )A .2 B.52 C .3 D.538.如图,在Rt △ABC 中,∠A =90°,P 为边BC 上一动点,PE ⊥AB 于E ,P F ⊥AC 于F ,动点P 从点B 出发,沿着BC 匀速向终点C 运动,则线段EF 的值大小变化情况是( )A .一直增大B .一直减小C.先减小后增大 D.先增大后减少二、填空题(每小题5分,共20分)9.(铜仁中考)已知一个菱形的对角线长分别为6 cm和8 cm,则这个菱形的面积是________cm2.10.(三明中考)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是____________(写出一个即可).11.(毕节中考)将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为________度.12.如图,矩形ABCD的两条对角线交于点O,过点O作AC的垂线EF,分别交AD,BC于点E,F,连接CE,已知△CDE的周长为24 cm,则矩形ABCD的周长是________cm.三、解答题(共40分)13.(10分)在菱形ABCD中,E、F分别是BC、CD的中点,连接AE、AF.求证:AE=AF.14.(14分)(雅安中考)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE. (1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.15.(16分)如图,在矩形ABC D 中,点E 为CD 上一点,将△BCE 沿BE 翻折后点C 恰好落在AD 边上的点F 处,将线段EF 绕点F 旋转,使点E 落在BE 上的点G 处,连接CG.(1)证明:四边形CEFG 是菱形;(2)若AB =8,BC =10,求四边形CEFG 的面积;(3)试探究当线段AB 与BC 满足什么数量关系时,BG =CG ,请写出你的探究过程.参考答案 1.D 2.C 3.A 4.A 5.C 6.B 7.B 8.C 9.24 10.AB =AD(答案不唯一) 11.3012.4813.证明:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D.∴12BC =12CD.∵E 、F 分别是BC 、CD 的中点,∴BE =12BC ,DF =12CD.∴BE =DF.在△ABE 和△ADF 中,⎩⎪⎨⎪⎧AB =AD,∠B =∠D ,BE =DF ,∴△ABE ≌△ADF(SAS).∴AE =AF.14.(1)证明:∵△BAD 是由△BEC 绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°.又∵AB ⊥BC.∴∠ABC =90°.∴∠ABD =90°-60°=30°.∴∠DBE =∠CBE =30°.在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE.(2)四边形ABED 是菱形.由(1)得△BDE ≌△BCE.∴ED =EC.又∵△BAD 是由△BEC 旋转得到,∴△BAD ≌△BEC.∴BA =BE ,AD =EC.∴AD =ED =EC.又∵BE =CE ,∴AB =DA.∴AB =BE =ED =DA.∴四边形ABED 是菱形.15.(1)证明:根据翻折的方法可得EF =EC ,∠FEG =∠CEG. 又∵GE =GE ,∴△EFG ≌△ECG.∴FG =GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF =FG.∴EF =EC =FG =GC.∴四边形FGCE 是菱形.(2)连接FC 交GE 于O 点.根据折叠可得BF =BC =10.∵AB =8,∴在Rt △ABF 中,根据勾股定理得AF =BF 2-AB 2=6.∴FD =AD -AF =10-6=4.设EC =x ,则DE =8-x ,EF =x ,在Rt △FDE 中,FD 2+DE 2=EF 2,即42+(8-x)2=x 2.解得x =5.即CE =5.S 菱形CEFG =CE ·FD =5×4=20.(3)当AB BC =32时,BG =CG , 理由:由折叠可得BF =BC ,∠FBE =∠CBE ,∵在Rt △ABF 中,AB BF =32, ∴BF =2AF.∴∠ABF =30°.又∵∠ABC =90°,∴∠FBE =∠CBE =30°,EC =12BE. ∵∠BCE =90°,∴∠BEC =60°.又∵GC =CE ,∴△GCE 为等边三角形.∴GE =CG =CE =12BE. ∴G 为BE 的中点.∴CG =BG =12BE.。
九年级数学(全一册)周周练
1第一周测评试题【上册第1.1—1.2节,重点考查内容:有关三角形的性质、判定及其证明,满分100分】 班级_______姓名_________学号________ 一、选择题(每题3分,共24分)1、等腰直角三角形的一个底角的度数是( ) A .30°B .45°C .60°D .90°2、以下列各组数据为边的三角形中,是直角三角形的是( )A . 2、3、7B .5、4、8C .5、2、1D .2、3、53、已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对 4、如图, 在△ABC 中,AB=AC ,AD ⊥BC 于点D ,则下列结论不一定...成立的是( ) A .AD = BD B .BD = CD C .∠1 =∠2 D .∠B =∠C5、等边三角形的两条中线所成锐角的度数是( ) A 、30° B 、50° C 、60° D 、45°6、下列说法中,正确的是( ) A 、每个命题都有逆命题; B 、每个定理都有逆定理 C 、真命题的逆命题不是真命题; D 、真命题的逆命题也是真命题;7、如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以 点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( ) A .2 B .3 C .4 D .58、在等腰ABC △中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( ) A .7B .11C .7或11D .7或10二、填空题(每题3分,共24分)9、”全等三角形的三边对应相等”的逆命题是:__________________________________ 10、直角三角形中,30°所对的直角边为1cm ,则三角形的周长为________cm.11、△ABC 中,若∠A =80o , ∠B =50o ,AC =5,则AB =12、如图,BD 是ABC △的角平分线,3672ABD C ∠=∠=°,°,则图中的等腰三角形有_______个. 13、如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是________cm 14、如图,P 是等边△ABC 内的 一点,若将△P AB 绕点A 逆时针 旋转到△P ′AC ,则∠P AP ′的度数 为________.15、如图,∠C=∠BED=90º, 且CD=DE ,AD=BD , 则∠B=_________度16、如图,小明从A 地沿北偏东30方向走到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .ADCB2三、解答题(共28分) 17、(6分)如图所示,在Rt 9030ABC C A ∠=︒∠=︒△中,,,BD 是ABC ∠的平分线,5CD =cm ,求AB 的长.18、(6分).等腰△ABC 中,8AB AC ==, AD 是∠BAC 的平分线,交BC 于D ,若∠BAC =120°,求BD 的长度。
初中数学周周练试卷答案
一、选择题1. 答案:D解析:因为a² - b² = (a + b)(a - b),所以a² - b² = 25,可得a + b = 5,a - b = 5,解得a = 5,b = 0。
2. 答案:A解析:因为x² + 2x + 1 = (x + 1)²,所以x + 1 = 0,解得x = -1。
3. 答案:C解析:因为a² + b² = c²,所以a² = c² - b²,代入a = 3,b = 4,c = 5,得a² = 9。
4. 答案:B解析:因为sin²θ + cos²θ = 1,所以sin²θ = 1 - cos²θ,代入sinθ =1/2,得cos²θ = 3/4。
5. 答案:D解析:因为|a| = a,当a ≥ 0时;|a| = -a,当a < 0时。
所以当a = -3时,|a| = 3。
二、填空题6. 答案:2x + 3y = 7解析:由方程组2x + 3y = 7和x - y = 2,解得x = 3,y = 1。
7. 答案:9解析:因为3² + 4² = 5²,所以斜边长为5。
8. 答案:π解析:圆的周长公式为C = 2πr,所以C = 2π × 1= 2π。
9. 答案:1/2解析:因为sin²θ + cos²θ = 1,所以sin²θ = 1 - cos²θ,代入sinθ =1/2,得cos²θ = 3/4,所以cosθ = ±√(3/4)。
10. 答案:4解析:因为a² + b² = c²,所以a² = c² - b²,代入a = 3,b = 4,c = 5,得a² = 9。
江苏省泰兴市济川中学2022-2023学年九年级下学期数学周周练(2)
济川中学初三数学周周练(2)一、选择题(本大题共6小题,每小题3分,共18分.)1.比﹣1大的无理数是()A.3.14 B.C. D.2.下列各式计算正确的是()A.a6÷a3=a2B.(a3)2=a5 C. =±2 D. =﹣23.某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了100名小区内老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况4.用一张半径为20的扇形纸片制成一个圆锥(接缝忽略不计),如果圆锥底面的半径为10,那么扇形的圆心角为()A.60° B.90°C.135°D.180°5.某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是()A.10% B.15% C.20% D.30%5.6.若a、b、c为△ABC的三边长,且满足足|a-4|+(b-2)2=0 ,则c的值可以()A .5 B.6 C.7 D.8二、填空题(本大题共10小题,每小题3分,共30分)7.16的平方根是.8.2019年3月,鼓楼区的二手房均价约为35000元/平方米,若以均价购买一套100平方米的二手房,该套房屋的总价用科学记数法表示为元.9.因式分解:3a3﹣12a= .10.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为条.11.关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是.12.计算不等式组的解集是☆13.已知y是x的二次函数,函数y与自变量x的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 4 k …观察表中数据,则k的值为.14.已知方程组与有相同的解,则2m﹣n=.15.已知方程组的解满足方程x+y=k,则k=.☆16.如图,在△ABC和△ABD中,∠ACB=∠ADB=90°,E、F、G分别为AB、AC、BC的中点,若DE=1,则FG=.三、解答题(本大题共10小题,共72分.)17.(3×4=12分)计算或解方程(1)2cos45°+(2﹣π)0﹣()﹣2;(2);(3)x2﹣4x﹣12=0;(4).18.(4+2)先化简,再求值:(+)÷,其中x=+1.19.( 4+4分)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.20.(2+6分)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.☆21.(2+4+4分) 金师傅近期准备换车,看中了价格相同的两款国产车.燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)☆22.(4+4分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?☆23.(4+4)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.☆24.(4+4分)万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).。
九年级数学上册周周练
九年级数学上册周周练(时间:45分钟满分:100分)一﹨选择题(每小题3分,共24分)1.下九年级数学上册周周练是( )2.经过旋转,下列说法中错误的是( )A.图形上的每一点到旋转中心的距离相等B.图形的形状与大小都没有发生变化C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图所示,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF 重合,则可以作为旋转中心的点有( )A.1个B.2个C.3个D.无数个4.下列各图中,可以看成由下面图形顺时针旋转90°而形成的图形的是( )5.将一图形绕着点O顺时针方向旋转70°后,再绕着点O逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度( )A.顺时针方向50°B.逆时针方向50°C.顺时针方向190°D.逆时针方向190°6.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°7.以左图的右边缘所在直线为轴,将该图形对折后,再以O点为旋转中心顺时针方向旋转180°,所得的图形是下图中的( )8.如图所示,正方形OABC的边长为2,则该正方形绕点O逆时针旋转45°后,点B的坐标为( )A.(2,2)B.(0,22)C.(22,0)D.(0,2)二﹨填空题(每小题4分,共16分)9.如图所示,线段MO绕点O顺时针旋转90°到达线段NO的位置,在这个旋转过程中,旋转中心是O,旋转角是____,它等于____度.10.平面直角坐标系中有一个点A(-2,6),则与点A关于原点对称的点的坐标是____,则经过这两点的直线的解析式为____.11.一条线段绕其上一点旋转90°后与原来的线段____.12.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD﹨BC 于E﹨F,那么阴影部分的面积是平行四边形ABCD面积的____.三﹨解答题(共60分)13.(10分)如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点.(1)指出旋转中心,并求出旋转角的度数;(2)求出∠BAE的度数和AE的长.14.(12分)如图所示,△DEF是由△ABC绕点O顺时针旋转180°后形成的图形;(1)请你指出图中所有相等的线段;(2)图中哪些三角形可以被看成是关于点O成中心对称关系?15.(12分)如图所示,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由;(4)若AB=5,AC=3,求线段AD的取值范围.16.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:(1)图中的格点△A′B′C′是由格点△ABC通过哪些方法变换得到的?(2)设每个小正方形的边长为1,如果建立平面直角坐标系后,点A的坐标为(-3,4),请写格点△DEF各顶点的坐标,并求出△DEF的面积.17.(14分)已知:如图,在△ABC中,AB=AC,若将△ABC顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系,说明理由;(2)若△ABC的面积为3 cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形,说明理由.参考答案1.D2.A3.A4.B5.A6.C7.A8.B9.90 10.(2,-6),y=-3x. 11.垂直. 12.41. 13.(1)旋转中心为点A ,旋转角∠BAD 的度数为150°;(2)∠BAE=60°,AE=2 cm.14(1)图中相等的线段有:AB=DE ,AC=DF ,BC=EF ,AO=DO ,BO=EO ,CO=FO ;(2)图中关于点O 成中心对称的三角形有:△ABC 与△DEF ,△ABO 与△DEO ,△ACO 与△DFO ,△BCO 与△EFO.15.(12分)如图所示,在△ABC 中,AD 是BC 边上的中线.(1)如图所示,△A ′BD 即为所求;(2)A ′B=AC ;(3)AB+AC >2AD ,理由:由于△A ′BD 与△ACD 关于点D 成中心对称,所以AD=A ′D ,AC=A ′B ,在△ABA ′中,有AB+A ′B >AA ′,即AB+AC >AD+A ′D ,因此AB+AC >2AD ;(4)由(3)可得,在△ABA ′中,有AB-A ′B <AA ′<AB+A ′B ,即AB-AC <2AD <AB+AC ,因此有2<2AD <8,所以1<AD <4.16.(1)方法不唯一,如:先把△ABC 向右平移5小格,使点C 移到点C ′,再以点C ′为旋转中心,顺时针方向旋转90°得到△A ′B ′C ′.(2)D(0,-2),E(-4,-4),F(2,-3),显然点G 在DE 上,且是DE 的中点,则S △DE F=S △DGF +S △GFE ==4.17.(1)由旋转可知:AC=CF ,BC=CE ,∠ACE=∠BCF ,∴△ACE ≌△BCF [SAS],∴AE=BF ,∠CAE=∠CFB ,∴AE ∥BF ,即AE 与BF 的关系为:AE ∥BF 且AE=BF.(2)∵△ACE ≌△BCF ,∴S △ACE =S △BCF ,又∵BC=CE ,∴S △ABC =S △ACE ,同理:S △CEF =S △BCF ,∴S △CE F=S △BCF =S △ACE =S △ABC =3,∴S 四边形ABFE =3×4=12(cm 2);(3)当∠ACB=60°时,四边形ABFE 为矩形.理由是:∵BC=CE ,AC=CF ,∴四边形ABFE 为平行四边形,当∠ACB=60°时,∵AB=AC ,∴△ABC 为等边三角形,∴BC=AC ,∴AF=BE ,∴四边形ABFE 为矩形,即:当∠ACB=60°时,四边形ABFE 为矩形.。
九年级数学上册3.4.23.6周周练新版湘教版
周周练~3.6)一、选择题 ( 每题 3分,共 24分)1.若△ ABC∽△ DEF,△ ABC与△ DEF 的相似比为 1∶ 2,则△ ABC 与△ DEF的对应角均分线的比为 ( )A .1∶4B. 1∶2C .2∶1D.1∶ 22. ( 南平中考 ) 如图,△ ABC中, AD、 BE是两条中线,则S∶S=()△ EDC△ABCA .1∶2B .2∶3C .1∶3D .1∶43.若两个相似三角形的面积之比为1∶4,则它们的周长之比为 ( )A .1∶2B. 1∶4C .1∶5D.1∶ 164.已知△ ABC∽△ A′B′ C′,AB∶ A′ B′=4∶5,△ A′ B′ C′中最短边上的高为 2 cm,则△ ABC中最短边上的高为 ( )84516cm B. 5 cm C.8 cm D. 5 cmA. 55.两相似三角形的相似比为2∶3,此中较小三角形的面积为12,则较大三角形的面积为( )A.8B.16C.24D.2716.如图,将△ ABC 的三边减小为本来的2,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,以下说法正确的个数是( )①△ ABC与△ DEF是位似图形;②△ ABC与△ DEF是相似图形;③△ ABC与△ DEF周长之比为2∶1;④△ ABC与△ DEF的面积之比为 4∶1.A .1个B.2个C.3个D.4个7. ( 宜昌中考 ) 如图, A, B 两地被池塘分开,小明经过以下方法测出了A、 B 间的距离:先在AB 外选一点C,此后测出 AC,BC的中点 M,N,并丈量出 MN的长为 12 m,由此他就知道了 A、 B 间的距离.有关他此次研究活动的描述错误的选项是 ( )A . AB= 24 m B.MN∥ ABC .△ CMN∽△ CAB D.CM∶MA=1∶28. ( 台湾中考 ) 如图,△ ABC中, D、 E 两点分别在BC、 AD上,且 AD 为∠ BAC 的角均分线.若∠ ABE=∠ C,AE∶ ED=2∶1,则△ BDE 与△ ABC的面积比为 ( )1B.1∶9C.2∶13D.2∶15二、填空题 ( 每题 4 分,共 32 分 )9.假如两个相似三角形对应高的比为5∶4,那么这两个相似三角形的相似比为________.10.位似图形上某一对对应点到位似中心的距离分别为 4 cm 和 8 cm ,则它们的位似比为 ________.11.已知△ ABC∽△ A′B′C′,若 AB=10, A′B′= 5,则△ ABC与△ A′B′C′的周长的比为 ________.12.已知△ ABC 与△ DEF相似且面积比为4∶25,△ ABC中最短边长为 6,则△ DEF 的最短边长为 ________.13.五边形 ABCDE和五边形 A′B′C′D′E′是位似图形(A 和 A′是对应点 ) ,它们的面积的比为 4∶9. 已知位似中心 O到 A 的距离为 6,则 O到 A′的距离是 ________.14.为了丈量校园内一棵不能够攀的树的高度,学校数学应用实践小组做了以下的研究:依据光的反射定律,利用一面镜子和皮尺,设计以以以下图的丈量方案:把镜子放在离树(AB)8.7 m 的点 E 处,此后察看者沿着直线BE 退后到点 D,这时恰幸好镜子里看到树梢极点A,再用皮尺量得DE= 2.7 m ,察看者目高 CD= 1.6 m ,则树高AB 约是________m. ( 精确到 0.1 m)15. ( 安徽中考 ) 如图, P 为□ ABCD边 AD上一点, E, F 分别是 PB, PC的中点,△ PEF,△ PDC,△ PAB的面积分别为 S, S1, S2,若 S= 2,则 S1+ S2= ____________.16.( 潍坊中考 ) 如图,某水平川面上建筑物的高度为AB,在点 D 和点 F 处罚别直立高是 2 米的标杆CD和 EF,两标杆相隔 52 米,而且建筑物 AB、标杆 CD和 EF 在同一竖直平面内,从标杆 CD退后 2 米到点 G处,在 G处测得建筑物顶端A 和标杆顶端 C 在同一条直线上;从标杆 FE 退后 4 米到点 H 处,在 H 处测得建筑物顶端 A 和标杆顶端 E 在同一条直线上,则建筑物的高是________米.三、解答题 ( 共 44 分)17. (10 分) 如图,△ ABC各极点的坐标分别为 (1 ,1) , (2 , 1) , (3 , 3) ,在平面直角坐标系中,以 A 为位似中心,将△ ABC放大为本来的 3 倍.并写出对应点的坐标.18. (10 分 ) 如图,在△ ABC 中, E、 F 分别是 AB、AC的中点.若△ ABC 的面积是 8,求四边形BCFE的面积.19.(12 分) 如图是小孔成像实验,火焰 AC经过小孔 O照耀到屏幕上,形成倒立的实例,像长 BD= 2 cm,OA= 60 cm,OB= 10 cm,求火焰 AC的长.20. (12 分 ) 如图,等边△ ABC 中, D 为 AB边中点, DE⊥ AC于 E,EF∥ AB 交 BC于 F 点,求△ EFC 与△ ABC的面积之比.参照答案提示:∵ AE ∶ED =2∶1,∴ AE ∶ AD =2∶3,∵∠ ABE =∠ C ,∠ BAE =9∠CAD ,∴△ ABE ∽△ ACD ,∴ S △ ABE ∶S △ ACD =4∶9,∴ S △ ACD = S △ ABE ,∵ AE ∶ ED =2∶1,∴ S △ABE ∶ S △ BED =2∶1,∴S △ABE = 49 9 9 152S △ BED ,∴ S △ACD = 4S △ABE = 2S △ BED ,∵ S △ABC = S △ABE + S △ ACD + S △ BED = 2S △ BED + 2S △BED +S △ BED = 2 S △ BED ,∴S △ BDE ∶ S △ ABC =2∶15,故选 D. 9.5 ∶410.1 ∶211.2 ∶117. 如图△ AB 1C 1 为所求,△ ABC 的对应点的坐标分别为 A(1 , 1) , B 1(4 , 1) ,C 1(7 , 7).18.∵E 、 F 分别是 AB 、 AC 的中点,∴ EF 是△ ABC 的中位线,∴EF ∥BC ,AE 1 = ,AB2△△1△四边形 BEFC∴△ AEF ∽△ ABC ,∴ S AEF ∶ S ABC = 4,∴ S AEF = 2,∴ S =8-2=6.19. ∵AC ∥BD ,∴△ OAC ∽△ OBD ,∴ BD OB 2 10= ,即 = ,∴ AC = 12 cm.AC OA AC 60答:火焰 AC 的长为 12 cm.20. 过 B 点作 AC 边上的高 BG ,交 AC 于 G ,∵ DE ⊥ AC 于 E ,∴ DE ∥ BG.又∵D 为 AB 边中点,∴ AE = GE.3∵△ ABC 为等边三角形,且 BG 为高,∴ AG =GC.∴4AE = AC ,即 CE =4AC.∵ EF ∥ AB ,∴△ EFC ∽△ ABC.3322又∵ CE = 4AC ,∴△ EFC 与△ ABC 的面积之比为( 4AC) ∶ AC =9∶16.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学周周练
1.如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD 于F,作CG∥AE,交BF于G. 求证:(1)FC2=BF·GF;(2)
2.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO 上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标.
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存有点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存有,请直接写出M点的坐标;若不存有,请说明理由
3.(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就能够解决问题(如图2).请回答:∠ADB=°,AB=.
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
4.问题背景:(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F。
请按图示数据填空:四边形DBFE的面积______,△EFC的面积______,△ADE的面积______。
探究发现:(2)在(1)中,若,,DE与BC间的距离为。
请证明。
拓展迁移:(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC 的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积。