最新数学读书笔记
数学的读书笔记(通用25篇)
数学的读书笔记(通用25篇)数学的读书笔记 1最近,一看到《小学数学教师》中“应用题教学研究”这篇报告感触良多。
1、在小学教学应用题时采用目前流行的“分类型、给结语、给解题模式”的教法所产生的弊端和给学生造成的损害。
这种损害在小学阶段虽然不十分明显,但是已经看到一些,到了中学就更清楚地显示出来。
因而问题也就更为严重。
这说明采用目前流行的教法,在小学没有真正给中学学习打好数学基础,相反地给进一步学习造成了障碍。
学生没有掌握数学基础知识,靠死记硬套公式,是无法进一步学好数学的。
这一点很值得我们深思,并加以改进。
2、紧密联系乘法的意义,加强用方程解应用题,不仅有利于掌握乘除法应用题的解题方法,提高解题能力,而且有利于中小学的衔接。
从而也进一步说明,按照现行教材中对应用题教学的处理方法进行教学,基本上是可行的,不需要另外补充什么结语和解题公式。
关键在于紧密联系分数乘法的意义,加强应用题之间的联系,指导学生具体分析题里的数量关系,根据已知未知的不同确定解法。
实际上有不少教师是按教材的精神教的,收到较好的效果。
当然现行教材也还有值得改进的地方,进一步加强应用题之间的'联系,加强方程解法。
3、引人深思的是,在肯定十几年来小学数学教学质量有很大提高的同时,也要看到确实还存在不少教法死板的问题,乘除法应用题只是其中之一。
值得注意的是,应用题教法死板的问题很早就提出来了,《小学数学教师》连续几年讨论了数学教学要灵活的问题。
但是应用题教学中的教法死板的问题依然存在。
这正说明小学数学教学改革还需要深入开展。
万里同志指出如果不彻底改变教育思想和教学方法,就不能提高民族素质,培养出大量的适应新时代需要的新型人才。
要提高民族素质,一方面是提高思想道德素质,另一方面是提高科学文化素质。
而提高科学文化素质,不仅是使学生具有一定的科学文化知识,还应使学生的能力得到发展,具有勇于思考、勇于探索、勇于创新的精神。
就是适应社会主义现代化要求,针对小学数学教学中存在的问题而提出的。
数学书籍精美笔记摘抄(3篇)
第1篇一、引言《数学之美》是数学家陈景润先生所著的一部数学科普读物,以深入浅出的方式介绍了数学的基本概念、发展历程以及数学在各个领域的应用。
以下是对本书的一些精美笔记摘抄。
二、第一章:数学的起源与发展1. 数学起源于人类对自然现象的观察和总结,最初是经验的积累。
2. 古埃及人和巴比伦人是最早的数学家,他们发展了算术和几何。
3. 希腊数学家欧几里得提出了几何学的公理化体系,为数学的发展奠定了基础。
4. 欧洲中世纪的数学家们在天文学和建筑学等领域取得了重要进展。
5. 17世纪的牛顿和莱布尼茨发明微积分,标志着数学进入了新的时代。
三、第二章:数学的基本概念1. 数:数学的基本研究对象,包括自然数、整数、有理数、实数和复数。
2. 逻辑:数学的基石,包括命题、推理、证明等概念。
3. 概率论:研究随机现象的数学分支,是现代数学的重要分支之一。
4. 几何:研究空间形状和位置的数学分支,包括平面几何和立体几何。
5. 代数:研究数和方程的数学分支,包括线性代数、多项式代数等。
四、第三章:数学在各个领域的应用1. 天文学:数学在天文学中的应用极为广泛,如开普勒定律、牛顿万有引力定律等。
2. 物理学:数学是物理学的基础,如麦克斯韦方程组、相对论等。
3. 生物学:数学在生物学中的应用包括种群遗传学、生态学等。
4. 计算机科学:数学是计算机科学的基础,如算法、数据结构等。
5. 经济学:数学在经济学中的应用包括优化理论、博弈论等。
五、第四章:数学的美与魅力1. 数学之美在于其简洁、和谐和统一,如欧几里得的《几何原本》。
2. 数学之美在于其无穷性,如康托尔的集合论。
3. 数学之美在于其逻辑性,如哥德尔不完备定理。
4. 数学之美在于其应用性,如数学在各个领域的广泛应用。
六、第五章:数学家与数学故事1. 欧几里得:古希腊数学家,被誉为“几何之父”。
2. 拉格朗日:法国数学家,被誉为“现代数学之父”。
3. 高斯:德国数学家,被誉为“数学王子”。
数学读书笔记
数学读书笔记数学读书笔记(通用16篇)当阅读完一本名著后,想必你一定有很多值得分享的心得,需要好好地就所收获的东西写一篇读书笔记了。
那么我们如何去写读书笔记呢?下面是店铺帮大家整理的数学读书笔记,仅供参考,希望能够帮助到大家。
数学读书笔记篇1做一名理想的数学老师总感觉工作比较繁忙,对一些教育类的书籍置若罔闻,根本没有列入自己的阅读计划之内,时间也就这么浪费了。
近日,认真阅读了朱永新教授的《我的教育理想》一书,深有感触。
作为一名教师,我想能从这本书学习点经验,所以比较关心书中对于理想教师的描述。
朱教授在书中描述:理想的教师,应该是一个胸怀理想,充满激情和诗意的教师;是一个自信、自强、不断挑战自我的教师;是一个善于合作,具有人格魅力的教师;是一个充满爱心,受学生尊敬的教师;是一个追求卓越,富有创新精神的教师;是一个勤于学习,不断充实自我的教师;应该是一个关注人类命运,具有社会责任感的教师;应该是一个坚韧、刚强、不向挫折弯腰的教师。
读完之后,我不由得按着书中理想教师的“标准”去问自己:我是不是一个理想的教师?我是不是一个勤于学习、不断充实自我的教师?我是不是一个追求卓越、富有创新精神的教师?显然,我离理想的教师还有一大截,我还不是一个用心去教学的老师。
要想做一名理想的教师,首位要做的便是要有丰富的学识,这是古往今来不变的真理。
以前说教师要有一桶水,现在随着各种新的课程标准的推行,恐怕一缸水、一池水都是不行的了,而应该是一条河流,而且是一条奔腾不息的河流!因为现在的孩子读得书甚至比我们有些老师都多。
否则,拿什么来教给孩子呢?其次,用今天的自己与昨天的自己比——我今天备课是不是比昨天更认真?我今天上课是不是比昨天更精彩?我今天找学生谈心是不是比昨天更诚恳?我今天处理突发事件是不是比昨天更机智?今天我组织班集体活动是不是比昨天更有趣?我今天帮助“后进生”是不是比昨天更细心?我今天所积累的教育智慧是不是比昨天更丰富?我今天所进行的教育反思是不是比昨天更深刻?今天我面对学生的教育教学建议或意见是不是比昨天更虚心?我今天所听到各种“不理解”后是不是比昨天更冷静?……每日三问,自省吾身。
数学读书笔记与心得体会(优秀10篇)
数学读书笔记与心得体会(优秀10篇)数学读书笔记与心得体会篇1我是一名自认为数学学习成绩优秀的学生,在学校里无论大小考试我都能考95分以上,同学们都说我在数学学习方面有天份,数学老师也很喜欢我,经常让我帮她做些事情。
那我是不是整天埋头苦学,到处培优呢?不是!我的学习任务是自选的,我想要去培优,也想要多做数学作业。
因为做所有的事情我都能快乐地去面对,反正是要做,干嘛不快乐地去做呢?比如说期末考试的前一天晚上,同学们都在干什么?当然,都在家认认真真地复习了!我呢?刚刚从妹妹家里玩了一趟回来,现正在看着电视呢,妈妈要阻止我?没门!小考小玩,大考大玩,不考不玩!我只复习了一些平时爱粗心的问题,考试成绩果然不错!我自认为除了白罗兰,我就是全班数学第一!白罗兰现在是我的竞争对手,她比我强!重要的是她比我踏实,学习比我认真,也因为我太爱偷懒了!一道加法原理我却用了乘法原理做,结果错了,但我相信自己的能力,在我心中,我就是第一!我拥有了好的习惯和好的学习方法,我什么也做得了!我不喜欢那种太过谦虚的人,因为在这里,为什么要谦虚?一定要相信自己,没有任何困难能难住我,因为我有一套好的学习方法:小考小玩,大考大玩。
不考不玩,注重平时。
事情尽量,一遍做好。
解答难题,公式运用。
学习主动,不要被动。
复杂难题,多做为妙。
快乐面对,任何事情。
相信自己,就是第一。
数学读书笔记与心得体会篇23月16日,我校全体数学教师到育才学校去听课学习。
我听了两节数学课,真的是感受颇深,受益匪浅,让我充分领略了课堂教学的无穷艺术魅力。
现就这次学习谈一谈自我的点滴体会。
一、收获1、出去听课比在学校闭门造车受益要快要多,要来得直接。
2、真实——课堂教学就应追求的境界在我们的观摩课教学中我总是觉得雕琢,事先准备的痕迹太过浓重,我自我的体会就比较深刻,当然我所说的并不是不备课一点准备都没有,而是不就应把每一句话每一个答案都要事先给学生灌输,害怕再作课中出现纰漏,我以前确实就有过这样的顾虑,因此当一节课在我不停的灌输给学生,然后在作课时,就觉得我的每一句话,学生的每一个答案都是准备好预设好的,而不是适时生成的,虽然按部就班成功的完成了一节看似完整的课堂教学,其实却缺少了真实性,多了几分虚假。
数学读书笔记范文(精选6篇)
数学读书笔记范文(精选6篇)数学读书笔记范文(精选6篇)读完某一作品后,大家心中一定有不少感悟,这时就有必须要写一篇读书笔记了!你想知道读书笔记怎么写吗?下面是小编收集整理的数学读书笔记范文(精选6篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
数学读书笔记1最近读《数学思维与小学数学》(郑毓信著),感触颇深。
书中讲到:小学数学,特别是低年级数学教学的一个特殊之处:我们应以数学为素材,也即通过具体数学知识的教学帮助学生学会抽象、类比等一般的思维方法,同时又应当帮助学生超越一般思维走向数学思维,也即初步的领悟到数学思维的特殊性,从而就能在“学会数学的思维”这一方向上迈出坚实的第一步。
只有通过深入的揭示隐藏在数学知识内容背后的思维方法,我们才能真正的做到将数学课“讲活”、“讲懂”、“讲深”。
这就是指,教师应通过自己的教学活动向学生展现“活生生的”数学研究工作,而不是死的数学知识;教师并应帮助学生真正理解有关的教学内容,而不是囫囵吞枣,死记硬背;教师在教学中又不仅使学生掌握具体的数学知识,而且也应帮助学生深入领会并逐渐掌握内在的思维方法。
小学生学习数学,是在基本知识的掌握过程中,不断形成数学能力、数学素养,获取多角度思考和看待问题的方法,从而“数学的”思考和解决问题。
基本知识的掌握是途径,多角度的思维方式的获取才是最终目的。
法国教育家第斯多惠说:“一个不好的教师奉送真理,一个好的教师则教人发现真理。
”学生学习数学是一种活动,一种经历,一个过程,活动和过程是不能告诉的,只能参与和体验。
因此,教师要改变以书本知识、教学为中心,以教师传递、学生接受的学习方式,把学习的主动权教给学生使学生在操作体验中获得对知识的真实感受,这是学生形成正确认识,并转化为能力的原动力。
正如华盛顿儿童博物馆墙上醒目的格言:“做过的,浃髓沦肌。
”平日的教学中,面对教师的提问,若是简单的问题,回应的学生比较多,一旦遇上思考性强、有深度的问题就只有个别同学试探性地举起自己的手,多数同学选择沉默,更有甚者,有时教室里鸦雀无声,真的,学生连大气都不敢出……这是我教四年级上课提问时的情景,每到这时,我的心就开始颤动,课间时还满脸兴奋的孩子怎么到课堂提问时就这幅摸样,我开始寻找答案,原因是他们缺乏思考,日复一日,年复一年,他们的思考能力几乎丧失了。
数学读书笔记大全
数学读书笔记大全数学读书笔记大全(原创5篇)你是不是也在找数学读书笔记大全的资料,那就对了,作者精心整理这篇数学读书笔记大全文章,应该可以解答你的疑惑,更多数学读书笔记大全相关的资料,可以右上角搜索。
数学读书笔记大全篇1数学读书笔记一、前言数学是一门研究数量、结构、变化和空间等概念的学科,它广泛应用于各个领域,包括科学、工程、经济等。
通过阅读数学书籍,我们可以深入了解数学的理论基础、算法和应用,拓展我们的思维方式和解决问题的方法。
二、阅读经历在阅读《高等数学》时,我深深被其中的概念、公式和推理所吸引。
这本书深入探讨了微积分、线性代数、概率论等高等数学的核心内容,使我对数学的理解更加深入。
同时,我也意识到高等数学在现代科技中的重要性,它为我们解决许多复杂问题提供了有力的工具。
在阅读《算法导论》时,我被书中简洁而严谨的算法描述所吸引。
这本书详细介绍了各种算法的设计和实现,使我深入了解了算法的本质和其在计算机科学中的地位。
通过阅读这本书,我更加明确了算法在解决实际问题中的关键作用。
三、心得体会通过阅读数学书籍,我深刻理解了数学的重要性和实用性。
数学不仅是科学的基础,也是解决问题的关键工具。
在解决实际问题时,我们需要运用数学的概念、方法和工具来分析和解决。
同时,我也意识到数学的学习需要不断积累和练习。
只有通过不断的实践和学习,我们才能掌握数学的精髓,并将其应用到实际生活中。
四、总结通过阅读数学书籍,我不仅拓展了数学知识,也提高了解决问题的能力。
我相信,在未来的学习和工作中,这些数学知识将对我产生深远的影响。
我将继续努力学习,提高自己的数学水平,以更好地服务于社会。
数学读书笔记大全篇2以下是一个示例,关于“微积分”主题的读书笔记:一、背景"微积分"是数学的一个分支,专注于研究函数的变化率,也被称为导数。
它是物理学、工程学和经济学等领域的基础,因为这些领域中的许多问题都可以转化为导数的问题。
数学新课标读书笔记
数学新课标读书笔记最近读了数学新课标的相关内容,颇有一些感悟和思考。
新课标强调了数学教育要面向全体学生,实现“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
这一理念让我深刻认识到,数学教育不再是只针对少数优等生的精英教育,而是要关注到每一个学生的成长和发展。
每个学生都有自己独特的学习方式和节奏,我们作为教育者,应当努力创造适合每个学生的数学学习环境,激发他们的学习兴趣和潜力。
在课程目标方面,新课标提出了“四基”和“四能”。
“四基”包括基础知识、基本技能、基本思想和基本活动经验。
这意味着我们不能仅仅满足于让学生掌握数学的基本知识和技能,还要注重培养他们的数学思维和实践能力。
例如,在教授数学定理和公式时,不仅要让学生知道如何运用,还要引导他们理解背后的数学思想,如函数思想、分类讨论思想等。
同时,通过组织数学活动,让学生积累丰富的活动经验,提高他们解决实际问题的能力。
“四能”则是指发现问题、提出问题、分析问题和解决问题的能力。
这要求我们在教学中,要鼓励学生敢于质疑、善于思考,培养他们的创新意识和创新能力。
例如,在课堂上可以设置一些开放性的问题,让学生自主探索和讨论,从而培养他们发现问题和提出问题的能力。
而在解决问题的过程中,引导学生分析问题的关键所在,选择合适的方法和策略,提高他们分析问题和解决问题的能力。
新课标还突出了数学课程内容的整体性和一致性。
数学知识不是孤立存在的,各个知识点之间有着密切的联系。
我们在教学中要注重知识的系统性和连贯性,帮助学生构建完整的数学知识体系。
比如,在教授代数知识时,可以与几何知识相结合,让学生体会到数学的统一性和综合性。
在教学方式上,新课标倡导启发式、探究式、参与式、合作式等教学方式。
传统的“满堂灌”教学方式已经不能满足学生的学习需求,我们要引导学生主动参与到数学学习中来,让他们在探究和合作中获取知识。
例如,在进行数学实验或小组项目时,学生可以通过亲自动手操作和与同伴交流,深入理解数学概念和原理。
数学新课标读书笔记
数学新课标读书笔记最近研读了数学新课标的相关内容,感触颇深。
数学作为一门基础学科,对于培养学生的逻辑思维、创新能力和解决问题的能力起着至关重要的作用。
而新课标则为数学教学指明了新的方向,提出了更高的要求。
新课标强调了数学课程的基础性、普及性和发展性。
它旨在使数学教育面向全体学生,实现人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
这就要求教师在教学过程中,要充分关注学生的个体差异,因材施教,激发每个学生的学习兴趣和潜能。
在课程目标方面,新课标提出了“四基”和“四能”。
“四基”包括基础知识、基本技能、基本思想和基本活动经验。
基础知识和基本技能是学生数学学习的基石,而基本思想和基本活动经验则是学生数学素养提升的关键。
例如,在教授数学概念时,不仅要让学生掌握概念的定义和运算方法,还要引导学生理解其中蕴含的数学思想,如分类讨论、数形结合等。
同时,通过数学活动,让学生积累活动经验,提高解决实际问题的能力。
“四能”则是指发现问题、提出问题、分析问题和解决问题的能力。
这就需要教师在教学中创设真实的问题情境,鼓励学生自主探索、合作交流,培养学生的创新意识和实践能力。
课程内容的组织上,新课标更加注重整体性和连贯性。
它将数学知识按照主题进行整合,打破了传统的章节界限,使知识之间的联系更加紧密。
例如,在“数与代数”领域,将整数、小数、分数的认识和运算有机地结合起来,让学生在不同的数域中感受数学的统一性和规律性。
同时,新课标还增加了综合与实践的内容,强调数学知识与实际生活的联系,培养学生运用数学知识解决实际问题的能力。
教学活动方面,新课标倡导启发式、探究式、参与式、合作式等教学方式。
教师不再是知识的传授者,而是学生学习的组织者、引导者和合作者。
例如,在探究三角形内角和的教学中,教师可以让学生通过剪拼、测量等方法自主探究,然后引导学生进行归纳总结,得出结论。
这样的教学方式能够激发学生的学习积极性,提高课堂教学的效率。
六年级数学读书笔记10篇
六年级数学读书笔记10篇
1.《数学的魅力》读书笔记:这本书介绍了数学在各个领域的应用,如金融、科学、工程等,让我深刻感受到了数学的重要性和魅力。
2.《数学之美》读书笔记:这本书用通俗易懂的语言介绍了数学中的各种美妙之处,如数学的对称美、简洁美等,让我对数学有了更深入的了解。
3.《数学的奥秘》读书笔记:这本书介绍了数学中的各种难题和未解之谜,如费马大定理、哥德巴赫猜想等,让我对数学的奥秘充满了好奇。
4.《数学的故事》读书笔记:这本书通过讲述数学的发展历史和数学家的故事,让我了解到了数学的起源和发展,以及数学家们的创新和奋斗精神。
5.《数学游戏》读书笔记:这本书介绍了各种有趣的数学游戏,如数独、华容道等,让我在游戏中感受到了数学的乐趣。
6.《数学的应用》读书笔记:这本书介绍了数学在实际生活中的应用,如在金融、工程、医学等领域的应用,让我深刻感受到了数学的实用性。
7.《数学的思考方式》读书笔记:这本书介绍了数学的思考方式和方法,如归纳法、演绎法等,让我学会了如何用数学的方法解决问题。
8.《数学的乐趣》读书笔记:这本书通过各种有趣的数学问题和故事,让我感受到了数学的乐趣和美妙。
9.《数学的奥秘》读书笔记:这本书介绍了数学中的各种奥秘和未解之谜,如费马大定理、哥德巴赫猜想等,让我对数学的奥秘充满了好奇。
10.《数学的应用》读书笔记:这本书介绍了数学在各个领域
的应用,如金融、科学、工程等,让我深刻感受到了数学的重要性和实用性。
数学阅读笔记10篇
数学专著读书笔记1数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得异常简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。
作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。
《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。
数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“**在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的情况下,可能就需要思考一下了。
想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子**,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。
有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?数学家的.眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。
在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。
数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。
数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。
初中数学老师读书笔记(原创5篇)
初中数学老师读书笔记(原创5篇)初中数学老师读书笔记篇1题目:《解析几何学:概念、方法和应用》读书笔记作者:张华在阅读《解析几何学:概念、方法和应用》这本书的过程中,我深感其概念深入浅出,推导逻辑严谨,应用广泛。
此书是对解析几何学的一次全面解析,让我对这个领域有了更深入的理解。
解析几何学是一种将代数方法和几何方法相结合的数学方法。
这本书以简洁明了的风格,解释了其基本概念、原理和工具,使我能够更好地理解并应用这些知识。
作者不仅解释了基本概念,还详细介绍了如何运用这些概念解决实际问题,使我更加深入地理解了解析几何学的方法和技巧。
阅读这本书的过程中,我对解析几何学的理解逐渐深入。
我发现,解析几何学不仅仅是解决几何问题的工具,它还可以应用于物理、计算机科学等多个领域。
例如,在解决物理问题时,我们可以运用解析几何学的代数方法来推导物理公式;在计算机科学中,我们可以运用解析几何学的几何方法来设计算法和数据结构。
总的来说,阅读《解析几何学:概念、方法和应用》是一次非常有价值的经历。
这本书不仅让我深入了解了解析几何学的基本概念和方法,还让我看到了它在解决实际问题中的应用。
我建议其他数学教育者也阅读这本书,以提高他们对解析几何学的理解和应用能力。
初中数学老师读书笔记篇2《刻意练习》作者:约瑟夫·派恩、布莱恩·塞斯【内容概要】这本书主要讲述了如何通过“刻意练习”来提高个人的技能和能力。
作者通过大量实例,告诉我们只有不断地练习和尝试,才能不断进步。
书中还介绍了如何克服困难,以及如何从失败中学习。
【个人观点】我认为这本书非常有用,因为它告诉我们,只有不断地练习才能提高自己的能力。
在我看来,学习数学需要不断地练习,只有这样才能掌握好知识。
同时,我也认为在学习的过程中,我们不应该害怕失败,因为失败是成功之母,只有从失败中吸取教训,才能更好地进步。
【推荐理由】这本书的优点在于它告诉我们,只有不断地练习才能提高自己的能力。
数学专业书籍读书笔记
数学专业书本念书笔录【篇一:数学念书笔录】数学念书笔录暑期读了黄先明的《高中数学学习方法》。
第一,他告诉我们高中数学学习要注意以下三点。
一)、课内重视听讲,课后实时复习。
重视课内的学习效率,要在做各样习题以前将老师所讲的知识点回想一遍,正确掌握各种公式的推理过程,在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交叉成知识网络,归入自己的知识系统。
二)、适合多做题,养成优秀的解题习惯。
从基础题下手,以课本上的习题为准,频频练习打好基础,再找一些课外的习题,以帮助开辟思路,提高自己的剖析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集。
三)、调整心态,正确对待考试。
第一,应把主要精力放在基础知识、基本技术、基本方法这三个方面上,在考试前要做好准备,练练惯例题,把自己的思路睁开。
其次,他将初中数学与高中数学进行了比较。
1、知识差别。
高中数学知识宽泛,将对初中的数学知识推行和引伸,也是对初中数学知识的完美。
2、学习方法的差别。
此刻高考数学观察,旨在观察学生能力,防止学生高分低能,防止定势思想,倡导创新思想和培育学生的创建能力培育。
3、学生自学能力的差别。
高中的知识面广,知识所有要教师训练完高考取的习题种类是不行能的,只有经过较少的、较典型的一两道例题解说去举一反三这一种类习题,假如不自学、不靠大批的阅读理解,将会使学生失掉一种类习题的解法。
最重要的,是告诉了我们如何成立好的学习数学兴趣。
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师授课,知足感官的喜悦性。
听课中要点解决预习中疑问,把老师讲堂的发问、停留、教具和模型的演示都视为赏识音乐,实时回答老师讲堂发问,培育思虑与老师同步性,提高精神,把老师对你的发问的评论,变为鼓励学习的动力。
(3)思虑问题注意归纳,发掘学习的潜力。
(4)听课中注意老师解说时的数学思想,多问为何要这样思虑,这样的方法如何是产生的?(5)把观点回归自然。
数学读书笔记(精选5篇)
数学读书笔记(精选5篇)第一篇:数学读书笔记读《在生活和游戏中帮助幼儿建构数学经验》的感悟今天在看学前教育时我发现一篇不错的文章,对我们园所的数学领域研究工作有一定的意义。
这是一篇刊登在06年学前教育上的文章,文中列举了多个现实生活中的鲜活案例,让我们深刻的认识到以往我们在教育教学中的观念以及方式上的不足。
以往我们只是为了完成目标而去设计相关的教育活动,忽视数学在我们生活中的重要作用,并在仔细阅读后,使我认识到孩子们在接触了解数学知识的时候是一定不能脱离开实际生活。
在01年颁布的《幼儿园教育指导纲要(试行)》中指出“从生活,游戏中感受事物的数量关系,体验数学的重要和有趣”“引导幼儿对周围环境中的数、量、形,时间和空间等现象产生兴趣,建构初步的的数概念,并学会用简单的数学方法解决生活和游戏中的某些简单问题。
”要理解纲要精神,达到教改既定的目标首先我们要改变的首先是什么呢?是我们的观念,以往脱离生活实际的教育内容虽然看似完成了预期的教育目标,但是孩子在实际生活中却不知如何运用所学解决实际的问题。
如何做到在生活实际当中感受数量关系等数学知识,那就对我们提出了更高的要求。
需要我们抓住生活实际当中隐藏的教育契机,来帮助幼儿尝试运用数学知识解决实际问题。
在我担任小班教学工作中,我发现游戏和生活环节当中蕴含着很多的教育契机,例如在游戏活动《抢椅子》中,我在活动中提示孩子观察椅子和幼儿的人数的差异时,孩子发现每次椅子的数量和人数是一样多的时候,就没有小朋友站着;而在椅子少时,总会有一名小朋友没有椅子坐。
也在游戏中生动的感知了一样多,多和少。
在分发午点时孩子们会发现,有的组人数多,水果就多,人数少水果就少,但是每人的水果数量是一样多的。
在数学区角活动时,孩子们在操作中感受着颜色匹配,大小粗细的匹配,对抽象的数学概念有了生动的认识。
而且在实际的教学活动设计中,我也充分的认识到游戏环境的创设和幼儿操作的重要,教师的主导作用还应该体现在怎样让幼儿主动的感知理解和运用数概念,掌握数学方法上,了解孩子的实际水平,从而做到心中有数,有效的帮助幼儿理解数概念,学会解决生活实际的方法,将所学与生活相联系。
数学的读书笔记范文精选5篇
数学的读书笔记范文精选5篇最近读《数学思维与小学数学》(郑毓信著),感触颇深。
书中讲到:小学数学,特别是低年级数学教学的一个特殊之处:我们应以数学为素材,也即通过具体数学知识的教学帮助学生学会抽象、类比等一般的思维方法,同时又应当帮助学生超越一般思维走向数学思维,也即初步的领悟到数学思维的特殊性,从而就能在“学会数学的思维”这一方向上迈出坚实的第一步。
只有通过深入的揭示隐藏在数学知识内容背后的思维方法,我们才能真正的做到将数学课“讲活”、“讲懂”、“讲深”。
这就是指,教师应通过自己的教学活动向学生展现“活生生的”数学研究工作,而不是死的数学知识;教师并应帮助学生真正理解有关的教学内容,而不是囫囵吞枣,死记硬背;教师在教学中又不仅使学生掌握具体的数学知识,而且也应帮助学生深入领会并逐渐掌握内在的思维方法。
小学生学习数学,是在基本知识的掌握过程中,不断形成数学能力、数学素养,获取多角度思考和看待问题的方法,从而“数学的”思考和解决问题。
基本知识的掌握是途径,多角度的思维方式的获取才是最终目的。
法国教育家第斯多惠说:“一个不好的教师奉送真理,一个好的教师则教人发现真理。
”学生学习数学是一种活动,一种经历,一个过程,活动和过程是不能告诉的,只能参与和体验。
因此,教师要改变以书本知识、教学为中心,以教师传递、学生接受的学习方式,把学习的主动权教给学生使学生在操作体验中获得对知识的真实感受,这是学生形成正确认识,并转化为能力的原动力。
正如华盛顿儿童博物馆墙上醒目的格言:“做过的,浃髓沦肌。
”平日的教学中,面对教师的提问,若是简单的问题,回应的学生比较多,一旦遇上思考性强、有深度的问题就只有个别同学试探性地举起自己的手,多数同学选择沉默,更有甚者,有时教室里鸦雀无声,真的,学生连大气都不敢出……这是我教四年级上课提问时的情景,每到这时,我的心就开始颤动,课间时还满脸兴奋的孩子怎么到课堂提问时就这幅摸样,我开始寻找答案,原因是他们缺乏思考,日复一日,年复一年,他们的思考能力几乎丧失了。
四年级数学读书笔记10篇
四年级数学读书笔记10篇1.《数学的奥秘》读书笔记✓书籍简介:介绍了数学的基本概念和原理,以及数学在生活中的应用。
✓读书心得:数学不仅仅是一门学科,更是一种思维方式和解决问题的工具。
通过阅读这本书,我对数学有了更深入的理解,也发现了数学的趣味性。
2.《数学故事集》读书笔记✓书籍简介:通过一系列有趣的故事,讲解了数学中的各种概念和问题。
✓读书心得:这本书用生动的故事让数学变得更加有趣和易懂。
我学会了用不同的角度看待数学问题,并提高了解决问题的能力。
3.《趣味数学》读书笔记✓书籍简介:包含了许多有趣的数学游戏、谜题和智力挑战。
✓读书心得:我发现数学可以是一门非常有趣的学科。
通过参与书中的数学游戏和谜题,我锻炼了自己的逻辑思维和数学能力。
4.《数学简史》读书笔记✓书籍简介:讲述了数学的发展历程,从古代数学到现代数学的演变。
✓读书心得:了解数学的历史可以帮助我们更好地理解数学的本质。
我对数学家们的努力和贡献感到敬佩,并认识到数学是不断发展和进步的。
5.《数学的奇妙世界》读书笔记✓书籍简介:展示了数学在各个领域的应用,包括自然科学、艺术、金融等。
✓读书心得:数学在我们生活的各个方面都发挥着重要作用。
这本书让我看到了数学的广泛应用和无限可能性。
6.《小学数学奥数》读书笔记✓书籍简介:讲解了一些小学奥数的题目和解题方法。
✓读书心得:通过学习奥数,我提高了自己的数学解题能力和思维能力。
奥数题目虽然有挑战性,但也让我更加深入地理解了数学的奥妙。
7.《数学的乐趣》读书笔记✓书籍简介:介绍了一些有趣的数学现象和数学游戏。
✓读书心得:数学不只是枯燥的计算和公式,它也可以很有趣。
这本书让我体验到了数学带来的乐趣和惊喜。
8.《数学家的故事》读书笔记✓书籍简介:讲述了一些著名数学家的生平事迹和他们的贡献。
✓读书心得:数学家们的故事激励我要努力学习和探索数学。
他们的坚持和创新精神值得我学习。
9.《数学的挑战》读书笔记✓书籍简介:提供了一些数学谜题和逻辑推理题,需要读者运用数学知识来解决。
数学读书笔记范文4篇
数学读书笔记范文4篇尽管原来教授过学前儿童数学教育这门课程,不过很久了,去年曾经给毕业班的学生带过数学教育的校内实训课,但还是感觉了了。
其实去幼儿园,也经常和老师们探讨幼儿园的数学活动设计和实施,但很惭愧。
这几天又重新开始学习有关数学教育的材料,既包括网上很多相关文章,也包括黄谨编著的《学前儿童数学教育》、张俊主编的《给幼儿教师的101条建议:数学教育》、金浩主编的《学前儿童数学教育概论》等书籍。
阅读的收获还是有的,也就明白为什么幼儿园老师们会把数学活动简单化(小学化),为什么很多老师会感觉为难。
如果我们自己的学科知识以及相关的教育学知识欠缺的话,确实很难把幼儿园数学教育做到位。
单纯照着教材上两节课,任何一位老师都能做到,可是如何确定每个数学活动的关键经验、如何很好地把数学融入主题又不破坏数学本身的系统性、如何结合孩子的思维发展特点设计活动、如何把孩子引入逻辑思考而不仅仅是数学知识的学习……这些问题对老师们真的都是难题。
数学教育的核心是发展幼儿的抽象逻辑思维能力,而运用语言教育的方法是永远达不到这个目的的。
而我们的老师太习惯语言教育的方法了。
学科的特点还是不能忽视。
阅读还发现教材的东西太多,有关儿童数学教育的书籍最多的一是师范专业的教材,二是幼儿园孩子的教材,当然给孩子的教材最多,亦喜亦忧。
幼儿园的孩子可以依靠教材学到的数学不足10%,请大家都不要迷信教材。
还是需要继续学习。
读完《中学数学解题研究》这本书,让我全面的了解了数学解题的一些知识,自己也对中学数学解题有了一些新的想法。
那么,首先,何为解题?而在中学数学中涉及的数学题,主要是标准性题目和训练性题目,这类数学题,大多是已经解决的数学题目为背景,根据数学的内在联系和教学的实际需要,在现有成题的基础上人工设计的。
怎么设计数学题目呢?设计数学题的方法是多种多样的,有的是对已有的经验观察、实验、计算、推理的结果,进行归纳整理,用合情推理方法设计的,也有的是对现有成题进行适当的因果变形,用逻辑推理方法设计的。
小学数学读书笔记5篇
小学数学读书笔记5篇小学数学读书笔记1一打开《小学数学》这本书,我就被它的内容深深地吸引了。
它把小学数学的教学内容分成几个专题,在每一个专题中,通过“案例呈现”使困惑、迷惘、问题、难点逐一浮出水面,引导读者深入地思考,然后专家又亮出自己的观点,深入浅出娓娓道来,让读者心中的谜团渐渐释然。
“核心词”、“教育价值”、“内涵”等词在每个专题开始都会映入眼帘,迫使读者进行一阵强烈地头脑风暴。
渐渐地,我也认识到无论教学什么内容我们都要考虑它的价值,考虑我们究竟要教给学生什么?是能力?是方法?是习惯?亦或是意识?而这一点我在平时的教学中考虑的还很不够。
比如:关于平均数教学。
他的核心词是什么呢?在阅读这本书之前我从没认真思考过这个问题,只是简单的认为重点就是教给学生求平均数的方法,而把意识的培养放到了次要位置。
在学习了书中的观点分享,尤其是看了吴正宪老师的教学实录以后,我的感受尤为深刻:作为平均数教学应该把理解平均数的概念,了解平均数的特点和作用放在重要位置,在此基础上掌握求简单平均数的方法。
首先,选择合适的情景,让学生产生对平均数的需求。
任何事物的产生都有它的必然性。
数学也是这样,需要用到平均数才会产生平均数。
我们需要让学生在具体的情境中经历平均数的产生,加深对平均数的理解。
如果只是简单地出示一组踢毽子的数据,让学生来评判哪个小组的同学踢的好?学生想到的只是方法。
如何感受平均数产生的需求?吴正宪老师让学生进行拍球比赛,在一次次矛盾中对平均数产生了需求,从而自己提出了平均数。
其次,联系实际,进一步来感受、理解平均数。
记得以前在教学平均数时,当学完方法之后,多数是机械练习,虽然有时也让学生分析数据,谈感受,但是都只是粗略地带过。
而吴老师竟然选了五个不同的例子进行分析,有先估算再谈想法的;有结合实际比赛(去掉最高分和最低分)求平均数的;有通过对比进行思想品德教育的;有结合辩论,灵活解决实际问题的;还有在游戏中学会分析问题要全面的,可以说囊括了平均数的方方面面,使我清晰地认识到——理解和感受平均数的意义、特点和作用才是我们教学的重点。
数学课外书籍读书笔记
数学课外书籍读书笔记【篇一:数学读书笔记】数学读书笔记暑假读了黄先明的《高中数学学习方法》。
首先,他告诉我们高中数学学习要注意以下三点。
一)、课内重视听讲,课后及时复习。
重视课内的学习效率,要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)、适当多做题,养成良好的解题习惯。
从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集。
三)、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,在考试前要做好准备,练练常规题,把自己的思路展开。
其次,他将初中数学与高中数学进行了比较。
1、知识差异。
高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。
2、学习方法的差异。
现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。
3、学生自学能力的差异。
高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。
最重要的,是告诉了我们如何建立好的学习数学兴趣。
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
三年级数学读书笔记(通用5篇)
三年级数学读书笔记(通用5篇)三年级数学读书笔记篇1数学:思维的乐趣日期:2023年6月10日书名:三年级数学作者:__X读书地点:家中我是一名三年级学生,最近我读了一本名为《三年级数学》的书,这本书让我对数学有了更深入的理解,也让我感受到了数学的乐趣。
在这本书中,作者通过生动的例子和趣味性的问题,让我逐渐了解了数学的基本概念和原理。
例如,在学习乘法时,我原本认为乘法只是简单的加法运算,但通过这本书,我了解到了乘法的本质是两个数相乘,每个数都表示被乘数和乘数的倍数。
这让我对乘法有了更深的理解。
除了基础知识,这本书还涉及了一些更高级的问题,如代数、几何等。
通过这些问题的解答,我不仅锻炼了自己的思维能力,还学会了如何运用数学知识解决实际问题。
例如,在解决一个关于测量房间面积的问题时,我学会了如何运用几何知识计算房间的面积,这让我对数学的应用价值有了更深刻的认识。
在这本书中,我还学到了如何用数学语言来表达自己的想法。
这让我意识到数学不仅是一种工具,也是一种表达方式。
通过数学语言,我们可以更清晰地表达自己的思想和观点,也可以更准确地描述和解决问题。
总的来说,《三年级数学》这本书让我对数学有了更深入的了解和认识,也让我感受到了数学的乐趣。
我相信,只要我们用心去学,数学不仅是一门科学,也是一种思维方式和生活态度。
三年级数学读书笔记篇2三年级数学读书笔记我刚刚读完了三年级数学的教学指南,这本书深入浅出地阐述了数学教学的理念和方法。
下面是我对这本书的几点理解和感悟。
首先,我深刻理解了数学在教育中的重要性。
三年级数学的教学目标不仅是让学生掌握基本的数学知识,更重要的是培养学生的逻辑思维和解决问题的能力。
作者通过生动的案例和实例,展示了如何将这些理念和方法融入到日常教学中,让学生在轻松愉快的氛围中掌握数学知识,提高数学素养。
其次,我对书中提到的数学教学原则有了更深刻的认识。
书中强调了以学生为中心的教学理念,让学生成为学习的主人翁,教师则扮演引导者和启发者的角色。
数学读书笔记范文4篇
数学是一门极具魅力的学科,拥有众多的理论和实践应用。
对于许多人来说,阅读数学经典是一项启发和挑战。
在学习过程中,记录笔记是非常重要的,因为这能够帮助我们更好地理解数学的概念和应用。
在本篇文章中,我将分享4篇数学读书笔记范文。
第一篇书名:《微积分学》作者:Michael Spivak阅读时间:2个月主要内容:该书介绍了微积分学的基本概念和应用,包括函数、极限、导数、积分等。
每章都提供了丰富的练习,以帮助读者巩固所学知识。
同时,该书还提供了大量的应用案例,帮助读者更好地理解微积分在实际生活中的应用。
读后感:阅读该书的过程非常有趣和挑战性。
它深入浅出地介绍了微积分学的基础知识和应用。
书中提供的实例也非常有帮助,让读者更好地理解数学概念在实际应用中的意义。
当我完成该书时,我感到自己获得了许多新的知识,同时也在智力上得到了挑战。
第二篇书名:《离散数学》作者:Kenneth Rosen阅读时间:1个月主要内容:该书主要介绍了离散数学的基础知识和应用,包括图论、逻辑、组合数学等。
它采用了一种交互式的方法,通过提供例子和练习来支持学习者的理解。
读者可以通过逐步构建、分解和重构问题来深入了解离散数学的核心知识。
读后感:这本书是一本非常全面和深入的离散数学教材。
作者通过一系列有趣的例子和练习来帮助读者了解离散数学的基础知识和应用。
我非常喜欢这种交互式学习方式,因为它不仅仅是理论知识,还包括实际应用。
这本书对我的学习和思考方式有很大的影响,同时也感谢作者为我们提供了如此优秀的学习资料。
第三篇书名:《线性代数》作者:Gilbert Strang阅读时间:3个月主要内容:该书介绍了线性代数的基本概念和应用,包括向量、矩阵、线性变换等。
每章都提供了许多例子和练习,涉及到线性代数在各个领域的实际应用。
读后感:这是一本非常好的线性代数教材,它讲解了许多复杂的线性代数概念。
作者通过解释和应用实例来帮助读者更好地掌握理论知识。
我尤其喜欢这本书中的例子,它们让我明白了线性代数在实际应用中的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学读书笔记————————读《数学思维教育论》摘要(郭思乐编著)1、数学教育是中小学的一门基础的学科教育,如同其他的学科一样,其教育意义并不局限于本学科的只是掌握,更反映在它有效地促进人的素质的发展,是人的文化修养的最深刻、最有效的部分之一。
2、经济发达国家的数学教育改革方向:学校数学的焦点从双重任务---对大多数人教最少的数学,而把高等数学教给少数人-----过渡到单一中心,把数学的最重要的公共核心教给所有的学生。
从基于传递权威性的模式过渡到以启发学习为特征的,以学生为中心的实践活动。
从强调为后续内容做准备过渡到着重强调学生当前及未来所需要的东西。
从原来强调一张纸、一支笔计算到全面使用计算器和计算机。
3、中小学数学中蕴藏着促进人未来发展的因素,这就是人的数学素质,其核心是人的思维品质。
4、数学教师教学经历3个层次:展现解法,展现思路,展现思路的寻找过程。
5、数学教育的意义在于用学科自身的品质陶冶人、启迪人、充实人,促使人的素质的全面发展。
6、数学教育是一种文化,使人得到数学方面的修养,更好的理解,领略现代社会的文明;它是一种方法论,使人善于处世和做事,能提高在现代化建设中的工作效率;它是一种精神和态度,使人实事求是,锲而不舍,坚持不懈的追求;它是“思维的体操”,使人思维敏锐,表达清楚。
7、数学的重要特性------抽象性、严密性、系统性。
8、数学思维教育的意义在于培养人的数感、数学观念和数学思想。
数学教育是为了扩展人们头脑中的数学空间。
9、数学相关能力------数学化、公理化、形式化。
10、努力使外界现象数学化,注意现象的数学方面,到处注意空间和数量关系以及函数依存关系。
11、数学,培养学习的意志,培养人的概括能力,培养人本质地看问题的意识,培养人的抽象意识,培养人的良好思维习惯,形成良好的思维策略,增强人的反应能力,改善人的思维器官。
12、数学教育目的:(1)、通过“数学常识”和“数学思维能力”的组合来培养数学智力;(2)、培养有数学素养的人。
“有数学素养”:懂得数学价值,对自己的数学能力有信心,有解决数学课题的能力,学会数学交流,学会数学的思想方法。
(3)、通过练习题学习数学技能--------适合于学习事实和技能。
通过解决具有某些特点的情况,学习解答问题的一般方法,而这些特点是用来定义一个实实在在的问题的----适合于学习如何发现和探究的技能,学习数学的再发现和学会如何学习。
13、数学学习的目的,从掌握“数学事实和技能”转变为掌握“解决问题的一般方法”即“数学式地思考”,是数学教育观念的重大更新。
14、理解数学的四个层面:(1)、形式层面的理解。
逻辑思维训练,应当是数学学习中的基本训练。
(2)、发现层面的理解;(3)、直观-具体层面的理解;(4)、直觉层面的理解。
15、一般认为数学是按严密的逻辑构成的科学,即使与逻辑不尽相同,却也大致一样。
但是实际上,数学与逻辑没有什么关系。
数学当然应该遵循逻辑,但逻辑在数学中的作用就像文法在文学中的作用那样,书写合乎文法的文章与照着文法去写小说完全是两码事;同样,进行正确的逻辑推理与堆砌逻辑去构成数学理论是性质完全不同的问题。
数学在本质上与逻辑不同。
16、在数学中绝不要把逻辑的车放到启发式的马前面。
17、我们只有了解结论是怎样得来的,才能真正弄懂结论。
重现或亲历发现过程,是数学家学习、研究数学的高招。
最好的学习方法是动手-----提问,解决问题。
最好的教学方法是让学生提问,解决问题,不要只传授知识------要鼓励行动。
18、数学是抽象的,理解数学的一个层面便是,赋予数学直观和具体的意义。
19、过份强调数学的形式结构是个错误。
20、抽象只有在坚实的经验基础上才有意义,此外,引进抽象观念后,应该用具体问题来显示她们的用处。
21、现代数学好的方向是它强调几个基本的概念,诸如,对称、连续和线性。
22、几何直观仍然是领悟数学的最有效的渠道。
几何直观就是对于抽象的东西,能够在头脑中像画画一样描绘出来并加以思考。
23、数学教学与人的素质发展相结合,是数学教育的最主要的宗旨。
24、几何图形是一种数学符合,是“直观空间的帮助记忆的符号”,是“图像化的公式”。
25、数学真正要办的事情是解决具体的问题。
理解一个理论的最好的办法是找到一个具体问题,然后研究该理论的一个样本实例,一个能说明一切的典型例子。
26、针对一个数学理论,举出典型实例、反例、特例(即特殊情形)等,都市具体地理解这种数学理论的方法。
27、逻辑用于证明,直觉用于发明。
28、在理解数学的过程中,领悟推理链中所隐含的整体性、次序性、和谐性,达到对推理链的整体把握,乃至能够预见证明,这种领悟叫做直觉。
29、记忆在数学中是重要的,但不必去记住数学事实。
30、数学直觉意味着不严格;意味着可见;意味着缺乏证明时的似真性和可信性;意味着不完全;意味着依赖物理模型或某些主要例子;意味着与详细或分析相对立的笼统或综合。
31、理解重于证明。
32、数学思维教育要求学生通过自己的思维来学习。
33、目前教育的缺陷:有的采取注入式和题海战术,把学习数学仅仅看成是感知和再认,削弱或取消了它的中心环节---思维。
有的吧数学思维活动仅仅看作形式逻辑思维,忽视了从整体看问题的辨证的、发展的思维活动。
34、如果问题给学生提供了合适的思维情境,就会极大地调动学生思维积极性。
35、在明白与不明白之间,还有广阔的、中间的、灰色的区域。
36、学生通过思维由不知到知的实际过程比我们设想的要负责得多。
学生的思维过程不是一次性完成的,而是充满运动、变化、相对等辨证性质的。
37、教师往往希望学生的认识一开始就定格在“正确”“合理”“严密”“简练”的格局上,忽略了他们有一个不知、少知到多知的辨证的心理过程。
38、数学教育中运用“动”来学习“静”,使静态的定理、公式、法则具有动的生命,能在学生的思维中活跃起来。
39、数学史发展的三个阶段:一、在产生算术和几何的第一阶段,物体的具体的质被舍掉了;二、在引向算术符号的第二阶段,具体的数与具体的量被舍去了;三、最后向现代数学的第三个阶段进行,不仅仅是对象的性格,而且它们之间的依存关系也被略去了。
40、整体性思维,是指注重对对象的整体把握的思维倾向---------几何型思维。
分列式思维,指注重把问题分解成条列状的一系列子问题,然后一步一步地加以解决的思维倾向------代数型思维。
41、在实际教学中往往忽视整体性的思维风格,一方面,人们意识不到整体性思维在人的数学思维中是不可缺少的;另一方面,成人往往很难追忆自己当年思维产生和发展的过程,于是认为儿童学习都是采取分列式思维的,这表现在成人为孩子写的教科书以及练习册,都是采取小步子、一步一步前进的西来思维方式。
42、在较高层次的形象思维中,我们对形式和逻辑,如用语的准确、符号的采用、推理的根据等等作出了一定的让步。
也可以说,它以“量的模糊”和“推理形式的模糊”去换取“质”的鲜明和生动。
43、数学形象思维的培养是数学教学改革的重要一环。
44、在实际思维中,当抽象思维不能用算法方式继续下去时,就必须借助于形象,找到抽象的方向,发现抽象思维的(解决问题的)新的契机。
抽象思维的结果也可以用形象的方式表现出来,这时便出现了所谓“深入浅出”的表达。
深入浅出,是由形象到抽象,又由抽象到形象的过程。
45、为了使学生富有创造精神,必须注重由求同思维转向求异思维的培养。
46、我们常常过份强调学生演绎思维,而忽视指导学生进行合情推理。
47、合情推理包括归纳推理和类比推理。
48、合情推理是一种可能性推理,是根据人们的经验、知识、直观与感觉得到一种可能性结论的推理。
49、实践表明,在大量毕业生中,学科的常识性和工具性功能,远没有发挥出来,其原因不在于知识无用,而在于缺少引领知识的数学观念。
把知识、形式训练和知识的社会意义两者统一起来,这就需要进行数学观念教育。
50、传统的学科教学由于受考试的影响,一般都逐步地向教学程序的末梢转移。
所谓“末梢”,是指以非基本的技巧和技法作为主干的那些题目。
因而,它对一个人形成数学观念的作用甚微,对激发人最积极的思维的影响是不大的。
51、创造性思维一经传授就失去了创造意义。
52、思维主要是靠启迪,而不是主要靠传授。
越是传授得越一清二楚,学习者越不需要思维。
即使传授的东西是范例,也仅增加了知识性的储存,而不一定能使人在新情境下索解。
53、教师启迪思维的工作面:(1)、激起学习兴趣,引发动机,创设成功教育的氛围;(2)、创设问题情境,增强解决问题的内驱力;(3)、转化新问题。
54、衡量数学教学好坏的标准之一,就是看教学能否有效地扩大人的现实数学空间。
数学空间不仅仅依靠一些即得的知识而构成,更重要的是借助于所学知识的生长点和开放面,以及数学思维过程,获得一种与数学相关的能力,从而使数学空间具有某种开放性,其中包括:数学化-----人们用数学方法观察现实世界,分析研究各种数学现象,并对现实世界加以整理组织的过程。
我们学习数学,最重要的是学习数学化。
同样地,我们学习公理的知识,还不如说是学习“公理化”,与其说是学习形式体系,还不如说是学习“形式化”。
55、“培养数学智力”的提法,指明了数学智力的构成与培养途径是“数学常识”和“数学思维能力”的组合。
56、学生在数学教学结束后,他学过的数学知识必定会越来越多地被遗忘。
但是,如果教学得法,学生在数学教学的过程中对所学内容的理解达到了应当达到的层面,那么,他就会几乎是地在所学过的全部内容中提炼出最基本、最本质、最重要、通常也是最简单的极少一部分,永远地记住它们,达到想忘都忘不掉的程度。
这极少一部分就是“数学常识“。
因此,学生所得数学知识要经历一个”少—多---少“的过程。
57、以应试为目的的教育,往往不可能使学生达到应当达到的理解层面,因而在所学的数学完成了应试的使命后,学生很快便将他们忘却了。
58、长期以来,由于应试教育的影响,数学教育仅侧重于学习现成的知识结论、技巧和技法,而忽视了学科的基本精神、数学的基本态度和基本方法的培养和训练,其中特别被忽视的一个方面,就是数学观念的教育。
数学观念,指的是人们对某一数学对象或数学过程的本原和本体的见解和意识,包括对该数学知识而言,人类为什么想、怎样想和想出了什么这样一些问题。
59、清人袁枚在《随园诗话》中指出:“学如弓弩,才如箭镞,识以领之,放能中鹄“。
才---智能,学---知识,识---见地、见识。
知识是解决问题的基础,才智是知识转化为解决问题的工具,而见识见地,则对知识和能力的应用方向、方法、方式作引领。
假如没有后者,知识和能力就找不到它的用处。
60、在数学教学中进行思维教育的主攻方向是:一、如何培养学生的创造性思维;二、如何把传授知识和培养思维能力统一起来。