2021届高考数学一轮复习第八章平面解析几何第五节椭圆教师文档教案文北师大版.doc

合集下载

高考数学大一轮总复习 第八章 平面解析几何 8.5 椭圆

高考数学大一轮总复习 第八章 平面解析几何 8.5 椭圆

(3)椭圆的离心率e越大,椭圆就越“圆”。( × ) 解析 错误。根据椭圆离心率的意义可知,椭圆的离心率e越大,椭圆 就越“扁”而非“圆”。 (4)椭圆既是轴对称图形,又是中心对称图形。( √ ) 解析 正确。根据椭圆的性质可知,椭圆既是轴对称图形,又是中心 对称图形。
[练一练]
1.设 P 是椭圆x42+y92=1 上的点,若 F1,F2 是椭圆的两个焦点,则|PF1|
解得-3<m<5 且 m≠1。 答案 C
3.已知中心在原点的椭圆 C 的右焦点为 F(1,0),离心率等于12,则 C
的方程是( ) A.x32+y42=1 C.x42+y22=1
B.x42+
y2 =1 3
D.x42+y32=1
解析 由中心在原点的椭圆 C 的右焦点 F(1,0)知,c=1。 则ca=12,得 a=2。所以 b2=a2-c2=3, 故椭圆 C 的方程为x42+y32=1。 答案 D
知识梳理
1.椭圆的定义 (1)我们把平面内到两个定点F1、F2的距离之 和 等于常数(大于|F1F2|) 的点的集合叫作椭圆。这两个定点F1,F2叫作椭圆的焦点,两个焦点F1, F2间的距离叫作椭圆的 焦距 。 (2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a, c为常数: ①若 a>c ,则集合P为椭圆; ②若 a=c ,则集合P为线段; ③若 a<c ,则集合P为空集。
【解析】 由题意知|PF1|+|PF2|=2a,P→F1⊥P→F2, ∴|PF1|2+|PF2|2=|F1F2|2=4c2。 ∴(|PF1|+|PF2|)2-2|PF1|·|PF2|=4c2。 ∴2|PF1|·|PF2|=4a2-4c2=4b2。 ∴|PF1|·|PF2|=2b2, ∴S△PF1F2=12|PF1|·|PF2|=12×2b2=b2=9。 ∴b=3。

2021届高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角斜率与直线的方程创新教学案含解析

2021届高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角斜率与直线的方程创新教学案含解析

第八章平面解析几何第1讲直线的倾斜角、斜率与直线的方程[考纲解读] 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,并能根据两条直线的斜率判断这两条直线的平行或垂直关系.(重点)2.掌握直线方程的几种形式(点斜式、两点式及一般式等),并了解斜截式与一次函数的关系.(难点)[考向预测] 从近三年高考情况来看,本讲是命题的热点,但很少独立命题.预测2021年高考对本讲内容将考查:①直线倾斜角与斜率的关系、斜率公式;②直线平行与垂直的判定或应用,求直线的方程.试题常以客观题形式考查,难度不大。

1。

直线的斜率(1)当α≠90°时,tanα表示直线l的斜率,用k表示,即错误!k =tanα。

当α=90°时,直线l的斜率k不存在.(2)斜率公式给定两点P1(x1,y1),P2(x2,y2)(x1≠x2),经过P1,P2两点的直线的斜率公式为错误!k=错误!.2.直线方程的五种形式名称已知条件方程适用范围点斜式斜率k与点(x1,y1)错误!y-y1=k(x-x1)直线不垂直于x轴斜截式斜率k与直线在y轴上的截距b错误!y=kx+b直线不垂直于x轴两点式两点(x1,y1),(x2,y2)错误!错误!=错误!(x1≠x2,y1≠y2)直线不垂直于x轴和y轴截距式直线在x轴、y轴上的截距分别为a,b错误!错误!+错误!=1(a≠0,b≠0)直线不垂直于x轴和y轴,且不过原点一般式—错误!Ax+By+C=0(A2+B2≠0)任何情况1.概念辨析(1)直线的斜率为tanα,则其倾斜角为α。

( )(2)斜率相等的两直线的倾斜角不一定相等.( )(3)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.()答案(1)×(2)×(3)×(4)√2.小题热身(1)直线l经过原点和点(-1,-1),则直线l的倾斜角是( )A.45° B.135°C.135°或225° D.60°答案A解析由已知,得直线l的斜率k=错误!=1,所以直线l的倾斜角是45°.(2)在平面直角坐标系中,直线错误!x+y-3=0的倾斜角是()A.错误!B。

高考数学一轮复习第八章平面解析几何第五节椭圆课件理北师大版

高考数学一轮复习第八章平面解析几何第五节椭圆课件理北师大版

3.椭圆10x-2 m+my-2 2=1 的焦距为 4,则 m=_________. 解析:当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,所以 m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,所以 m=8.所以m=4或8. 答案:4或8
3.椭圆10x-2 m+my-2 2=1 的焦距为 4,则 m=_________. 解析:当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,所以 m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,所以 m=8.所以m=4或8. 答案:4或8
题型一 椭圆的定义与标准方程 1.已知△ABC 的顶点 B,C 在椭圆x32+y2=1 上,顶点 A 是椭圆的一个焦
点,且椭圆的另外一个焦点在 BC 边上,则△ABC 的周长是( C )
A.2 3
B.6
C.4 3
D.12
解析:由椭圆的方程得 a= 3.设椭圆的另一个焦点为 F,则由椭圆的定 义得|BA|+|BF|=|CA|+|CF|=2a,所以△ABC 的周长为|BA|+|BC|+|CA| = |BA|+ |BF|+ |CF|+ |CA|= (|BA|+ |BF|)+ (|CF|+ |CA|)= 2a+ 2a= 4a= 4 3.
第八章 平面解析几何 第五节 椭圆
命题义、标准方程、本节主要考查考生的
几何性质以及直线与椭圆的位置关系一直是高考的 数学运算、直观想象
命题热点,直线与椭圆的位置关系常与向量、圆、 核心素养及考生对数
三角形等知识综合考查,多以解答题的形式出现, 形结合思想、转化与
1.设椭圆的两个焦点分别为 F1,F2,过 F2 作椭圆长轴的垂线交椭圆于
点 P,若△F1PF2 为等腰直角三角形,则椭圆的离心率是( D )

2018高考数学第8章平面解析几何第5节椭圆教师用书文北师大版

2018高考数学第8章平面解析几何第5节椭圆教师用书文北师大版

第五节椭圆[考纲传真] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质.3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义(1)我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( ) (4)椭圆既是轴对称图形,又是中心对称图形.( ) [答案] (1)× (2)√ (3)× (4)√2.(教材改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B .x 24+y 23=1C.x 24+y 22=1 D .x 24+y 23=1 D [椭圆的焦点在x 轴上,c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.]3.(2015·广东高考)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9B [由左焦点为F 1(-4,0)知c =4.又a =5,∴25-m 2=16,解得m =3或-3.又m >0,故m =3.]4.(2016·全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B .12 C.23D .34B [如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b2,所以e =c a =12.]5.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当△FAB 的周长最大时,△FAB 的面积是__________.3 [直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,即a =2,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.](1)如图8­5­1所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆图8­5­1(2)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________.【导学号:66482393】(1)A (2)x 2+32y 2=1 [(1)由条件知|PM |=|PF |.∴|PO |+|PF |=|PO |+|PM |=|OM |=R >|OF |. ∴P 点的轨迹是以O ,F 为焦点的椭圆. (2)不妨设点A 在第一象限,设半焦距为c , 则F 1(-c,0),F 2(c,0).∵AF 2⊥x 轴,则A (c ,b 2)(其中c 2=1-b 2,0<b <1).又|AF 1|=3|F 1B |,得AF 1→=3F 1B →,设B (x 0,y 0),则(-2c ,-b 2)=3(x 0+c ,y 0), ∴x 0=-5c 3且y 0=-b23,代入椭圆x 2+y 2b2=1,得25c 2+b 2=9,①又c 2=1-b 2,② 联立①②,得b 2=23.故椭圆E 的方程为x 2+32y 2=1.][规律方法] 1.(1)利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件. (2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意|PF 1|+|PF 2|与|PF 1|·|PF 2|的整体代换.2.求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a ,b 的方程组,若焦点位置不确定,可把椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B )的形式.[变式训练1] (1)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =__________.(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为__________.【导学号:66482394】(1)3 (2)x 24+y 23=1 [(1)由定义,|PF 1|+|PF 2|=2a ,且PF 1→⊥PF 2→,∴|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,∴2|PF 1||PF 2|=4a 2-4c 2=4b 2,∴|PF 1||PF 2|=2b 2. ∴S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=9,因此b =3.(2)依题意,设椭圆C :x 2a 2+y 2b2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3,∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上, ∴1a 2+94b2=1.① 又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1.](2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :a 2+b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C .23D .34A [法一:设点M (-c ,y 0),OE 的中点为N ,则直线AM 的斜率k =y 0a -c,从而直线AM的方程为y =y 0a -c(x +a ),令x =0,得点E 的纵坐标y E =ay 0a -c. 同理,OE 的中点N 的纵坐标y N =ay 0a +c. ∵2y N =y E ,∴2a +c =1a -c,即2a -2c =a +c , ∴e =c a =13.法二:如图,设OE 的中点为N ,由题意知|AF |=a -c ,|BF |=a +c ,|OF |=c ,|OA |=|OB |=a .∵PF ∥y 轴, ∴|MF ||OE |=|AF ||AO |=a -c a ,|MF ||ON |=|BF ||OB |=a +ca . 又|MF ||OE |=|MF |2|ON |,即a -c a =a +c2a, ∴a =3c ,故e =c a =13.][规律方法] 1.与椭圆几何性质有关的问题要结合图形进行分析.2.求椭圆离心率的主要方法有:(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.[变式训练2] (2015·福建高考)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B .⎝ ⎛⎦⎥⎤0,34C.⎣⎢⎡⎭⎪⎫32,1 D .⎣⎢⎡⎭⎪⎫34,1A [根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+-2≥45,所以1≤b <2,所以e =ca =1-b 2a2=1-b 24.因为1≤b <2,所以0<e ≤32,故选A.]☞角度已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为c2.图8­5­2(1)求椭圆E 的离心率;(2)如图8­5­2,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.[解] (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bca,3分 由d =12c ,得a =2b =2 a 2-c 2,解得离心率c a =32. 5分(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1, 代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 8分 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k k +1+4k2,x 1x 2=k +2-4b21+4k2.由x 1+x 2=-4,得-8kk +1+4k 2=-4,解得k =12.从而x 1x 2=8-2b 2. 10分 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52x 1+x 22-4x 1x 2=b 2-.由|AB |=10,得b 2-=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1. 12分☞角度2 由位置关系研究直线的性质(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 3分 所以C 的方程为x 28+y 24=1. 5分 (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 7分 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 9分 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值. 12分[规律方法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=+k 2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2](k 为直线斜率).[思想与方法]1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为x 2m +y 2n=1(m >0,n >0,且m ≠n )可以避免讨论和烦琐的计算,也可以设为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这种形式在解题中更简便.3.讨论椭圆的几何性质时,离心率问题是重点,常用方法: (1)求得a ,c 的值,直接代入公式e =c a求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解.[易错与防范]1.判断两种标准方程的方法是比较标准形式中x 2与y 2的分母大小.2.注意椭圆的范围,在设椭圆x 2a 2+y 2b2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因.3.椭圆上任意一点M 到焦点F 的最大距离为a +c ,最小距离为a -c .。

数学一轮复习第八章解析几何第五讲椭圆学案含解析

数学一轮复习第八章解析几何第五讲椭圆学案含解析

第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误![解析](1)椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误![解析](1)由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。

高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新

高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新

解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

高考数学一轮复习 第8章 平面解析几何 第5讲 椭圆创新教学案(含解析)新人教版-新人教版高三全册数

高考数学一轮复习 第8章 平面解析几何 第5讲 椭圆创新教学案(含解析)新人教版-新人教版高三全册数

第5讲椭圆[考纲解读] 1.掌握两种求椭圆方程的方法:定义法、待定系数法,并能根据其标准方程及几何图形研究椭圆的几何性质(X围、对称性、顶点、离心率).(重点) 2.掌握直线与椭圆位置关系的判断,并能求解直线与椭圆相关的综合问题.(难点) [考向预测]从近三年高考情况来看,本讲为高考的必考内容.预测2021年将会考查:①椭圆标准方程的求解;②直线与椭圆位置关系的应用;③求解与椭圆性质相关的问题.试题以解答题的形式呈现,灵活多变、技巧性强,具有一定的区分度,试题中等偏难.1.椭圆的定义(1)定义:在平面内到两定点F1,F2的距离的□01和等于□02常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做□03焦距.(2)集合语言:P={M||MF1|+|MF2|=□042a,且2a□05>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数.注:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段F1F2;当2a<|F1F2|时,轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性X围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a直线与椭圆方程联立方程组,消掉y,得到Ax2+Bx+C=0的形式(这里的系数A一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆□01相交;(2)Δ=0⇔直线与椭圆□02相切;(3)Δ<0⇔直线与椭圆□03相离.4.弦长公式(1)假设直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),那么|AB|=□011+k2|x1-x2|=□021+1k2|y1-y2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长□032b2a,最长为□042a.5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),那么当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)过焦点F1的弦AB,那么△ABF2的周长为4a.1.概念辨析(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.小题热身(1)椭圆x29+y24=1的离心率是()A.133 B.53C.23 D.59答案 B解析由得a=3,b=2,所以c=a2-b2=32-22=5,离心率e=ca=5 3.(2)椭圆C:x2a2+y2b2=1(a>b>0),假设长轴的长为6,且两焦点恰好将长轴三等分,那么此椭圆的标准方程为()A.x236+y232=1 B.x29+y28=1C.x29+y25=1 D.x216+y212=1答案 B解析由题意,得2c2a=13,2a=6,解得a=3,c=1,那么b=32-12=8,所以椭圆C的方程为x29+y28=1.应选B.(3)假设方程x2m-2+y26-m=1表示椭圆,那么m的取值X围是________.答案2<m<6且m≠4解析方程x2m-2+y26-m=1表示椭圆⇔⎩⎪⎨⎪⎧m-2>0,6-m>0,m-2≠6-m,解得2<m<6且m≠4.(4)动点P(x,y)的坐标满足x2+(y+7)2+x2+(y-7)2=16,那么动点P的轨迹方程为________.答案x264+y215=1解析由得点P到点A(0,-7)和B(0,7)的距离之和为16,且16>|AB|,所以点P的轨迹是以A(0,-7),B(0,7)为焦点,长轴长为16的椭圆.显然a=8,c=7,故b2=a2-c2=15,所以动点P的轨迹方程为x264+y215=1.题型一椭圆的定义及应用1.过椭圆x24+y2=1的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,那么△ABF2的周长为()A.8 B.4 2 C.4 D.2 2 答案 A解析因为椭圆为x24+y2=1,所以椭圆的半长轴a=2,由椭圆的定义可得AF1+AF2=2a=4,且BF1+BF2=2a=4,所以△ABF2的周长为AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8.2.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),那么|P A|+|PB|的最大值为() A.5 B.4 C.3 D.2 答案 A解析如图,∵椭圆y24+x23=1,∴焦点坐标为B(0,-1)和B′(0,1),连接PB′,AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4-|PB′|,因此|P A|+|PB|=|P A|+(4-|PB′|)=4+(|P A|-|PB′|).∵|P A|-|PB′|≤|AB′|,∴|P A|+|PB|≤4+|AB′|=4+1=5.当且仅当点P 在AB ′的延长线上时,等号成立. 综上所述,可得|P A |+|PB |的最大值为5.3.(2019·某某模拟)F 1,F 2是椭圆x 29+y 27=1的左、右焦点,A 为椭圆上一点,且∠AF 1F 2=45°,那么△AF 1F 2的面积为( )A .7 B.74 C.72 D.752答案 C解析 由题意,得a =3,b =7,c =2,|AF 1|+|AF 2|=6.∴|AF 2|=6-|AF 1|.在△AF 1F 2中,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|·cos45°=|AF 1|2-4|AF 1|+8,∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8,解得|AF 1|=72,∴△AF 1F 2的面积S =12×72×22×22=72.利用定义解焦点三角形问题及求最值的方法解焦点三角形问题利用定义求焦点三角形的周长和面积.解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理.其中|PF 1|+|PF 2|=2a 两边平方是常用技巧.见举例说明3求最值抓住|PF 1|与|PF 2|之和为定值,可联系到基本不等式求|PF 1|·|PF 2|的最值;利用定义|PF 1|+|PF 2|=2a 转化或变形,借助三角形性质求最值.见举例说明21.如下图,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,那么点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 A解析 由题意得|PF |=|MP |,所以|PO |+|PF |=|PO |+|MP |=|MO |>|OF |,即点P 到两定点O ,F 的距离之和为常数(圆的半径),且此常数大于两定点的距离,所以点P 的轨迹是椭圆.2.(2019·某某皖江模拟)F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点,那么△PF 1F 2面积的最大值为________.答案 2解析 解法一:∵△PF 1F 2的面积为12|PF 1||PF 2|·sin ∠F 1PF 2≤12⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=12a 2.又2a =4,∴a 2=4,∴△PF 1F 2面积的最大值为2.解法二:由题意可知2a =4,解得a =2.当P 点到F 1F 2距离最大时,S △PF 1F 2最大,此时P 为短轴端点,S △PF 1F 2=12·2c ·b =bc .又a 2=b 2+c 2=4,∴bc ≤b 2+c 22=2, ∴当b =c =2时,△PF 1F 2面积最大,为2.题型二 椭圆的标准方程角度1 定义法求椭圆的标准方程1.A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,那么动点P 的轨迹方程为________.答案 x 2+y 234=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+y 234=1.角度2 待定系数法求椭圆的标准方程2.椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),那么椭圆方程为________.答案 y 210+x 26=1解析设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ).由得⎩⎨⎧94m +254n =1,3m +5n =1,解得m =16,n =110,所以椭圆方程为y 210+x 26=1.1.定义法求椭圆的标准方程根据椭圆的定义确定a 2,b 2的值,再结合焦点位置求出椭圆的方程.见举例说明1.其中常用的关系有:(1)b2=a2-c2;(2)椭圆上任意一点到椭圆两焦点的距离之和等于2a;(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长a.2.待定系数法求椭圆的标准方程的四步骤提醒:当椭圆的焦点位置不明确时,可设为mx2+ny2=1(m>0,n>0,m≠n)可简记为“先定型,再定量〞.见举例说明2.1.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.答案x225+y216=1解析设动圆的半径为r,圆心为P(x,y),那么有|PC1|=r+1,|PC2|=9-r. 所以|PC1|+|PC2|=10>|C1C2|,所以点P的轨迹是以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为x225+y216=1.2.(2019·某某调研)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上一点,且|PF1|,|F2F2|,|PF2|成等差数列,那么椭圆方程为________.答案x28+y26=1解析 ∵椭圆的中心在原点,焦点F 1,F 2在x 轴上,∴可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,∴⎩⎨⎧4a 2+3b 2=1,2a =4c ,又a 2=b 2+c 2,∴a =22,b =6,c =2,∴椭圆方程为x 28+y 26=1.题型三 椭圆的几何性质1.椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,那么椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)答案 D解析 由得,椭圆的一个焦点坐标为(3,0),故c =3,又因为2b =8,b =4,所以a 2=b 2+c 2=16+9=25.故a =5.所以椭圆的左顶点为(-5,0).2.F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A ,B 上下两点,假设△ABF 2是锐角三角形,那么该椭圆的离心率e 的取值X 围是( )A .(0,2-1)B .(2-1,1)C .(0,3-1)D .(3-1,1)答案 B解析 ∵F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x轴的直线与椭圆交于A ,B 上下两点,∴F 1(-c,0),F 2(c,0),A ⎝ ⎛⎭⎪⎫-c ,b 2a ,B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,∵△ABF 2是锐角三角形,∴∠AF 2F 1<45°,∴tan ∠AF 2F 1<1,∴b 2a2c <1,整理,得b 2<2ac ,∴a 2-c 2<2ac ,两边同时除以a 2,并整理,得e 2+2e -1>0,解得e >2-1或e <-2-1(舍去),∵0<e <1,∴椭圆的离心率e 的取值X 围是(2-1,1).3.(2019·某某质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,那么PF →·P A →的最大值为________.答案 4解析 由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.设P 点坐标为(x 0,y 0).所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.那么当x 0=-2时,PF →·P A →取得最大值4.1.利用椭圆几何性质的注意点及技巧 (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些X 围问题时,经常用到x ,y 的X 围,离心率的X 围等不等关系.见举例说明3.(2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.见举例说明1.2.求椭圆离心率的方法(1)直接求出a,c,利用离心率公式e=ca求解.(2)由a,b,c之间的关系求离心率,可以利用变形公式e=1-b2a2求解.也可以利用b2=a2-c2消去b,得到关于a,c的方程或不等式,进而转化为关于e 的不等式再求解.如举例说明2.(3)由椭圆的定义求离心率.e=ca=2c2a,而2a是椭圆上任意一点到两焦点的距离之和,2c是焦距,从而与焦点三角形联系起来.1.椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,那么椭圆E的标准方程为()A.x22+y22=1 B.x22+y2=1C.x24+y22=1 D.y24+x22=1答案 C解析易知b=c=2,故a2=b2+c2=4,从而椭圆E的标准方程为x24+y22=1.2.(2020·某某模拟)椭圆C:x2a2+y2b2=1(a>b>0)和直线l:x4+y3=1,假设过C的左焦点和下顶点的直线与l平行,那么椭圆C的离心率为()A.45B.35C.34D.15答案 A解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以bc =34,又b 2+c 2=a 2⇒⎝ ⎛⎭⎪⎫34c 2+c 2=a 2⇒2516c 2=a 2,所以e =c a =45. 3.假设点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,那么OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 由椭圆x 24+y 23=1,得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),那么OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP→取得最大值6.题型四 直线与椭圆的综合问题角度1 直线与椭圆的位置关系1.直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点. 解将直线l的方程与椭圆C 的方程联立,得方程组⎩⎨⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理,得9x 2+8mx +2m 2-4=0. ③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解,这时直线l 与椭圆C 没有公共点.角度2 点差法解中点弦问题2.焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.答案 y 275+x 225=1解析 设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程,得⎩⎪⎨⎪⎧y 21a 2+x 21b 2=1,y 22a 2+x 22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x225=1.角度3 弦长问题3.椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,某某数m 的取值X 围; (2)求被椭圆截得的最长弦所在的直线方程.解(1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知,5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]= 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.所以当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x . 角度4 综合计算问题4.(2019·某某高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,假设|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c ,依题意,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0).设直线PB 的斜率为k (k ≠0),又B (0,2),那么直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎨⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k 24+5k2,进而直线OP 的斜率为y P x P =4-5k2-10k.在y=kx+2中,令y=0,得x M=-2 k.由题意得N(0,-1),所以直线MN的斜率为-k2.由OP⊥MN,得4-5k2-10k·⎝⎛⎭⎪⎫-k2=-1,化简得k2=245,从而k=±2305.所以直线PB的斜率为2305或-2305.1.直线与椭圆位置关系的判定方法(1)代数法联立直线与椭圆方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.见举例说明1.(2)几何法画出直线与椭圆的图象,根据图象判断公共点个数.2.“点差法〞的四步骤处理有关中点弦及对应直线斜率关系的问题时,常用“点差法〞,步骤如下:3.中点弦的重要结论AB为椭圆x2a2+y2b2=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0).(1)斜率:k =-b 2x 0a 2y 0.见举例说明2.(2)弦AB 的斜率与弦中点M 和椭圆中心O 的连线的斜率之积为定值-b 2a 2. 4.直线与椭圆相交的弦长公式(1)假设直线y =kx +m 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),那么|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.见举例说明3.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a .1.假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么m 的取值X 围是( ) A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 直线y =kx +1恒过定点(0,1),假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么点(0,1)在椭圆x 25+y 2m =1内部或在椭圆上,所以1m ≤1,由方程x 25+y 2m =1表示椭圆,那么m >0且m ≠5,综上知m 的取值X 围是m ≥1且m ≠5.2.直线y =x +m 被椭圆2x 2+y 2=2截得的线段的中点的横坐标为16,那么中点的纵坐标为________.答案 -13解析 解法一:由⎩⎪⎨⎪⎧y =x +m ,2x 2+y 2=2,消去y 并整理得3x 2+2mx +m 2-2=0,设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2m 3,∴-2m 3=13,解得m =-12.由截得的线段的中点在直线y =x -12上,得中点的纵坐标y =16-12=-13.解法二:设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么2x 21+y 21=2,2x 22+y 22=2.两式相减得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0.把y 1-y 2x 1-x 2=1,x 1+x 2=13代入上式,得y 1+y 22=-13,那么中点的纵坐标为-13.3.(2019·某某六中模拟)直线l :y =kx +2与椭圆C :x 28+y 22=1交于A ,B 两点,直线l 1与直线l 2:x +2y -4=0交于点M .(1)证明:直线l 2与椭圆C 相切;(2)设线段AB 的中点为N ,且|AB |=|MN |,求直线l 1的方程.解(1)证明:由⎩⎨⎧x 28+y 22=1,x +2y -4=0,消去x 整理得y 2-2y +1=0, ∵Δ=4-4=0,∴l 2与C 相切.(2)由⎩⎪⎨⎪⎧y =kx +2,x +2y -4=0,得M 的坐标为(0,2).由⎩⎨⎧x 28+y 22=1,y =kx +2,消去y 整理得(1+4k 2)x 2+16kx +8=0, 因为直线l 1与椭圆交于A ,B 两点, 所以Δ=(16k )2-32(1+4k 2)=128k 2-32>0,解得k 2>14.设A (x 1,y 1),B (x 2,y 2),N (x 0,y 0), 那么x 1+x 2=-16k 1+4k 2,x 1x 2=81+4k 2, 所以x 0=x 1+x 22=-8k1+4k 2. ∵|AB |=|MN |, 即1+k 2|x 1-x 2|=1+k 2|x 0-0|,∴(x 1+x 2)2-4x 1x 2=|x 0|, 即8k1+4k2=4 24k 2-11+4k 2,解得k 2=12,满足k 2>14.∴k =±22,∴直线l 1的方程为y =±22x +2.组 基础关1.椭圆mx 2+3y 2-6m =0的一个焦点的坐标为(0,2),那么m 的值为( ) A .1 B .3 C .5 D .8答案 C解析 由mx 2+3y 2-6m =0,得x 26+y22m =1.因为椭圆的一个焦点的坐标为(0,2),所以2m =6+4,解得m =5.2.(2019·某某模拟)如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为( )A.25B.35C.235D.255答案 B解析 由题2b =16.4,2a =20.5,那么b a =45,那么离心率e =1-⎝ ⎛⎭⎪⎫452=35.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,那么实数a 的取值X 围是( )A .(-6,-2)B .(3,+∞)C .(-6,-2)∪(3,+∞)D .(-6,-3)∪(2,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,解得⎩⎪⎨⎪⎧a <-2或a >3,a >-6,所以-6<a <-2或a >3.4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,那么△OAB 的面积为( )A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),那么直线AB 的方程为y =2x-2.联立⎩⎨⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝ ⎛⎭⎪⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.应选B.5.如图,椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,那么椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1 D.x 245+y 225=1答案 C解析 设F ′为椭圆的右焦点,连接PF ′,在△POF 中,由余弦定理,得cos ∠POF =|OP |2+|OF |2-|PF |22|OP ||OF |=35,那么|PF ′|=|OP |2+|OF ′|2-2|OP ||OF ′|cos (π-∠POF )=8,由椭圆定义,知2a =4+8=12,所以a =6,又c =25,所以b 2=16.故椭圆C 的方程为x 236+y 216=1.6.椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),那么椭圆的离心率是( )A.12B.22C.32D.55答案 C解析 设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =ca =1-b 2a 2=32.应选C.7.(2020·某某一诊)点M (-1,0)和N (1,0),假设某直线上存在点P ,使得|PM |+|PN |=4,那么称该直线为“椭型直线〞,现有以下直线:①x -2y +6=0;②x -y =0;③2x -y +1=0;④x +y -3=0. 其中是“椭型直线〞的是( ) A .①③ B .①② C .②③ D .③④答案 C解析 由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,其方程为x 24+y 23=1.对于①,把x -2y +6=0代入x 24+y 23=1,整理得2y 2-9y +12=0,由Δ=(-9)2-4×2×12=-15<0,知x -2y +6=0不是“椭型直线〞;对于②,把y =x 代入x 24+y 23=1,整理得x 2=127,所以x -y =0是“椭型直线〞;对于③,把2x -y +1=0代入x 24+y 23=1,整理得19x 2+16x -8=0,由Δ=162-4×19×(-8)>0,知2x-y+1=0是“椭型直线〞;对于④,把x+y-3=0代入x24+y23=1,整理得7x2-24x+24=0,由Δ=(-24)2-4×7×24<0,知x+y-3=0不是“椭型直线〞.故②③是“椭型直线〞.8.椭圆的中心在原点,焦点在x轴上,离心率为55,且过点P(-5,4),那么椭圆的标准方程为________.答案x245+y236=1解析由题意设椭圆的标准方程为x2a2+y2b2=1(a>b>0).由离心率e=55可得a2=5c2,所以b2=4c2,故椭圆的方程为x25c2+y24c2=1,将P(-5,4)代入可得c2=9,故椭圆的方程为x245+y236=1.9.椭圆x25+y24=1的右焦点为F,假设过点F且倾斜角为π4的直线l与椭圆相交于A,B两点,那么|AB|的值为________.答案165 9解析由题意知,F(1,0).∵直线l的倾斜角为π4,∴斜率k=1.∴直线l的方程为y=x-1.代入椭圆方程,得9x2-10x-15=0.设A(x1,y1),B(x2,y2),那么x1+x2=109,x1x2=-53.∴|AB|=2·(x1+x2)2-4x1x2=2×⎝⎛⎭⎪⎫1092+4×53=1659. 10.椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,且PF2垂直于x轴,假设直线PF1的斜率为33,那么该椭圆的离心率为________.答案3 3解析 因为点P 在椭圆上,且PF 2垂直于x 轴,所以点P 的坐标为⎝ ⎛⎭⎪⎫c ,b 2a .又因为直线PF 1的斜率为33,所以在Rt △PF 1F 2中, PF 2F 1F 2=33,即b 2a 2c =33.所以3b 2=2ac . 3(a 2-c 2)=2ac ,3(1-e 2)=2e , 整理得3e 2+2e -3=0, 又0<e <1,解得e =33.组 能力关1.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,那么△PQF 周长的最小值是( )A .14B .16C .18D .20答案 C解析 如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上、下顶点时,△PQF 1(或△PQF 2)的周长即△PQF 周长的最小值,为10+2×4=18.2.离心率为22的椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下、上焦点分别为F 1,F 2,直线l :y =kx +1过椭圆C 的焦点F 2,与椭圆交于A ,B 两点,假设点A 到y 轴的距离是点B 到y 轴距离的2倍,那么k 2=________.答案 27解析 直线l 过定点(0,1),即F 2为(0,1),由于c a =22,a 2=b 2+c 2,故a =2,b =1,那么椭圆C 的方程为y 22+x 2=1,由⎩⎨⎧y 22+x 2=1,y =kx +1,得(k 2+2)x 2+2kx -1=0,设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2kk 2+2,x 1x 2=-1k 2+2,由点A 到y 轴的距离是点B 到y 轴距离的2倍,得x 1=-2x 2,代入x 1+x 2=-2kk 2+2,解得x 2=2kk 2+2,x 1=-4k k 2+2,代入x 1x 2=-1k 2+2,解得k 2=27.3.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.假设△MF 1F 2为等腰三角形,那么M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心,焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎨⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎪⎨⎪⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).4.(2020·某某摸底)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且A P →·A Q →=0,O P →=3O Q →,那么椭圆C 的标准方程为________,圆A 的标准方程为________.答案 x 24+y 2=1 (x -2)2+y 2=85 解析 如图,设T 为线段PQ 的中点,连接AT ,那么AT ⊥PQ . ∵A P →·A Q →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又O P →=3O Q →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12.由得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105. ∴圆A 的方程为(x -2)2+y 2=85.5.椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 中点的横坐标为14,且AF→=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)某某数λ的值.解(1)由椭圆的焦距为2,知c =1, 又e =12,∴a =2,故b 2=a 2-c 2=3, ∴椭圆C 的标准方程为x 24+y 23=1.(2)由AF→=λFB →,可知A ,B ,F 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).假设直线AB ⊥x 轴,那么x 1=x 2=1,不符合题意; 当AB 所在直线l 的斜率k 存在时, 设l 的方程为y =k (x -1).由⎩⎨⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12)=144(k 2+1)>0. ∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=2×14=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0,解得x =1±354. 又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, 即1-x 1=λ(x 2-1),λ=1-x 1x 2-1,又λ>1,∴λ=3+52.组 素养关1.(2019·某某二模)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点,且满足PF 2⊥x 轴,|PF 2|=32,离心率为12.(1)求椭圆的标准方程;(2)假设M 为y 轴正半轴上的定点,过M 的直线l 交椭圆于A ,B 两点,设O 为坐标原点,S AOB =-32tan ∠AOB ,求点M 的坐标.解(1)由题意,知c a =12,b 2a =32,结合a 2=b 2+c 2,得a =2,b =3,所以x 24+y 23=1.(2)设M (0,t ),t >0,由题意知,直线l 的斜率存在,设l 为y =kx +t ,A (x 1,y 1),B (x 2,y 2),由S △AOB =-32tan ∠AOB ,得12|OA ||OB |sin ∠AOB =-32·sin ∠AOBcos ∠AOB ,得|OA ||OB |cos ∠AOB =-3,即OA →·OB→=-3, 联立直线l 和椭圆C 的方程,有 ⎩⎨⎧y =kx +t ,x 24+y 23=1,整理得(3+4k 2)x 2+8ktx +4t 2-12=0, ∴x 1+x 2=-8kt3+4k 2,x 1x 2=4t 2-123+4k 2,由x 1x 2+(kx 1+t )(kx 2+t )=-3,得(k 2+1)x 1x 2+kt (x 1+x 2)+t 2=-3, ∴(k 2+1)4t 2-123+4k 2-kt ·8kt3+4k 2+t 2=-3, 整理可得7t 2=3,又t >0,得t =217. 故M 的坐标为⎝⎛⎭⎪⎫0,217 2.(2019·某某六市第二次联考)动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :y =mx +n 与曲线E 交于C ,D 两点,与AB 相交于一点(交点位于线段AB 上,且与点A ,B 不重合).(1)求曲线E 的方程;(2)求直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值?假设有,求出其最大值及对应的直线l 的方程;假设没有,请说明理由.解(1)设点P (x ,y ).由题意可得(x -1)2+y 2|x -2|=22,化简得x 22+y 2=1.所以曲线E 的方程为x 22+y 2=1. (2)设点C (x 1,y 1),D (x 2,y 2).将x =1代入x 22+y 2=1,得|y |=22,所以|AB |= 2. 当m =0时,显然不符合题意.当m ≠0时,因为直线l 与圆x 2+y 2=1相切,word- 31 - / 31 所以|n |m 2+1=1,所以n 2=m 2+1.由⎩⎨⎧ y =mx +n ,x 22+y 2=1消去y 并整理, 得⎝ ⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0. 因为Δ=4m 2n 2-4⎝ ⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0, 所以x 1+x 2=-4mn2m 2+1,x 1x 2=2(n 2-1)2m 2+1. 所以S 四边形ACBD =12|AB |·|x 1-x 2|=12×2·(x 1+x 2)2-4x 1x 2=2|m |2m 2+1=22|m |+1|m |≤22, 当且仅当2|m |=1|m |,即m =±22时等号成立.将m =±22代入n 2=m 2+1,得n =±62.经检验可知,直线y =22x -62和直线y =-22x +62符合题意.故四边形ACBD 的面积有最大值,最大值为22,对应的直线方程为y =22x-62和y =-22x +62.。

2021高考数学一轮复习第八章平面解析几何第5节椭圆第1课时椭圆及简单几何性质练习

2021高考数学一轮复习第八章平面解析几何第5节椭圆第1课时椭圆及简单几何性质练习

第1课时 椭圆及简单几何性质[A 级 基础巩固]1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解析:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,所以|PF 2|=6,所以|PF 1|=2a -|PF 2|=10-6=4.答案:A2.(2020·南昌三中期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:因为△AF 1B 的周长为43,且△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , 所以4a =43,所以a =3, 因为离心率为33,所以c a =33,解得c =1, 所以b =a 2-c 2=2, 所以椭圆C 的方程为x 23+y 22=1.答案:A3.(2020·青岛十六中周考)若曲线x 21-k +y 21+k =1表示椭圆,则k 的取值范围是( )A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <1解析:因为曲线x 21-k +y 21+k=1表示椭圆,所以⎩⎪⎨⎪⎧1-k >0,1+k >0,1-k ≠1+k ,解得-1<k <1,且k ≠0,则-1<k <0或0<k <1. 答案:D4.(2020·东营市联考)设F 1,F 2是椭圆x 24+y 2b2=1(0<b <2)的左、右焦点,过F 1的直线l交椭圆于A ,B 两点,若|AF 2|+|BF 2|最大值为5,则椭圆的离心率为( )A.12B.22C.5-12D.32解析:因x 24+y 2b2=1,则a =2,由0<b <2可知,焦点在x 轴上, 因为过F 1的直线l 交椭圆于A ,B 两点, 则|BF 2|+|AF 2|+|BF 1|+|AF 1|=2a +2a =4a =8, 所以|BF 2|+|AF 2|=8-|AB |,当AB 垂直x 轴时|AB |最小,|BF 2|+|AF 2|值最大, 此时|AB |=2b 2a=b 2,则5=8-b 2,解得b =3,则椭圆的离心率e =ca=1-b 2a 2=12. 答案:A5.(2020·聊城市调研)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1 B.x 210+y 215=1 C.x 215+y 210=1 D.x 225+y 210=1 解析:椭圆3x 2+8y 2=24化为x 28+y 23=1,它的焦点为(±5,0),可得c =5,设椭圆的方程为:x 2a 2+y 2b2=1(a >b >0),可得:9a 2+4b2=1,a 2-b 2=5,解得a =15,b =10,故所求的椭圆方程为x 215+y 210=1.答案:C6.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为________.解析:由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由离心率e =55可得a 2=5c 2,所以b 2=4c 2,故椭圆的方程为x 25c 2+y 24c 2=1,将P (-5,4)代入可得c 2=9,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=17.如图所示,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1、F 2,点P 在椭圆上,若|PF 1|=4,∠F 1PF 2=120°,则a 的值为________.解析:由题意知|F 1F 2|=2a 2-2,因为|PF 1|=4,|PF 1|+|PF 2|=2a ,所以|PF 2|=2a -4, 在△F 1PF 2中,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3. 答案:38.(2020·雅礼中学质检)已知点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2分别为椭圆的左、右焦点,已知∠F 1PF 2=120°,且|PF 1|=3|PF 2|,则椭圆的离心率为________.解析:点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2分别为椭圆的左、右焦点,因为∠F 1PF 2=120°,且|PF 1|=3|PF 2|,如图所示,设|PF 2|=m ,则|PF 1|=3m ,则⎩⎪⎨⎪⎧4m =2a ,4c 2=m 2+9m 2-2·m ·3m cos 120°, 可得4c 2=13×a 24,解得e =c a =134.答案:1349.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,a 2=b 2+c 2,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.(2020·青岛二中月考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1、F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围. 解:(1)由题意,因为|F 1F 2|=2,椭圆的离心率为e =12,所以c =1,a =2, 所以b =3,所以椭圆的标准方程为x 24+y 23=1.(2)设P (x 0,y 0),A (-2,0),F 1(-1,0),所以PF 1→·PA →=(-1-x 0)(-2-x 0)+y 20=x 20+3x 0+2+y 20, 因为P 点在椭圆上,所以x 204+y 203=1,y 20=3-34x 20,所以PF 1→·PA →=14x 20+3x 0+5,由椭圆方程得-2≤x 0≤2,二次函数14x 20+3x 0+5的开口向上,对称轴x 0=-6<-2,当x 0=-2时,取最小值0, 当x 0=2时,取最大值12.所以PF 1→·PA →的取值范围是[0,12].[B 级 能力提升]11.(2020·菏泽市期末)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为( )A.12 B.23 C.32D.22解析:设|BF 1|=k (k >0), 则|AF 1|=3k ,|AB |=4k ,所以|AF 2|=2a -3k ,|BF 2|=2a -k ,因为cos ∠AF 2B =35,在△ABF 2中,由余弦定理得:|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|cos ∠AF 2B , 所以(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k , 所以|AF 2|=|AF 1|=3k ,|BF 2|=5k ,|AB |=4k , 所以|BF 2|2=|AF 2|2+|AB |2, 所以AF 1⊥AF 2,且AF 1=AF 2=3k ,所以△AF 1F 2是等腰直角三角形,(2c )2=2a 2, 所以c =22a ,所以椭圆的离心率e =c a =22. 答案:D12.(2020·青岛实验高中测试)方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,则m 的取值范围是______________________________.解析:因为方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,所以该椭圆的标准方程为y 21-m +x 22m =1,满足1-m >2m >0,解之得0<m <13.答案:0<m <1313.如图所示,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c =1.因为AF →·FB →=1,即(a +c )(a -c )=1=a 2-c 2, 所以a 2=2,故椭圆方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y =x +m .联立⎩⎪⎨⎪⎧y =x +m ,x 2+2y 2=2,得3x 2+4mx +2m 2-2=0, 则x 1+x 2=-4m 3,x 1x 2=2m 2-23.因为MP →·FQ →=0=x 1(x 2-1)+y 2(y 1-1), 又y i =x i +m (i =1,2),得x 1(x 2-1)+(x 2+m )(x 1+m -1)=0, 即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0, 所以2·2m 2-23-4m 3(m -1)+m 2-m =0,解得m =-43或m =1(舍去).经检验m =-43符合条件,所以直线l 的方程为y =x -43.故存在直线l ,使得点F 恰为△PQM 的垂心,此时l 的方程为y =x -43.[C 级 素养升华]14.(多选题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切,则椭圆C 的方程为( )A.x 28+y 26=1B.x 212+y 29=1 C.x 24+y 23=1 D .3x 2+4y 2=12解析:由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2,以原点为圆心,椭圆的短半轴长为半径的圆的方程为x 2+y 2=b 2.由题意可知b =62=3,所以a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1,即3x 2+4y 2=12. 答案:CD素养培育数学运算——离心率求解面面观(自主阅读)离心率是圆锥曲线中的一个重要元素,它的变化会直接导致曲线形状甚至是类型的变化.近年来,涉及离心率的问题频频出现在高考试题和各省市高考模拟试题中,且题型不断翻新,显示出旺盛的生命力!解决有关离心率的问题,除了要求深刻领会离心率的概念、几何意义之外,还要常常综合运用其他有关知识,因而,涉及离心率的问题不仅具有很强的综合性,而且其解法极富灵活性.1.巧求离心率的值[典例1] 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F 1,F 2是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当∠F 1PF 2=60°时,这一对相关曲线中椭圆的离心率为( )A.33B.32C.22 D.12解析:设|F 1P |=m ,|F 2P |=n ,|F 1F 2|=2c ,由余弦定理得(2c )2=m 2+n 2-2mn cos 60°,即4c 2=m 2+n 2-mn ,设a 1是椭圆的长半轴,a 2是双曲线的实半轴,由椭圆及双曲线定义,得m +n =2a 1,m -n =2a 2,所以m =a 1+a 2,n =a 1-a 2,代入上式得4c 2=3a 22+a 21,又它们的离心率互为倒数,c a 1·ca 2=1,即c 2=a 1a 2,代入4c 2=3a 22+a 21得3a 22-4a 1a 2+a 21=0,a 1=3a 2,e 1·e 2=c a 1·c a 2=c a 1·3c a 1=1,即3e 21=1,所以e 1=33. 答案:A2.求离心率的取值范围[典例2] 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足FA →·FB →=0,|FB |≤|FA |≤2|FB |,则椭圆C 的离心率的取值范围是( )A.⎣⎢⎡⎦⎥⎤22,53 B.⎣⎢⎡⎭⎪⎫53,1 C.⎣⎢⎡⎦⎥⎤22,3-1 D .[3-1,1)解析:设椭圆左焦点为F ′,连接AF ′、BF ′.由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA →·FB →=0,即FA ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设|AF ′|=n ,|AF |=m ,则在直角三角形AF ′F 中m +n =2a ,m 2+n 2=4c 2,①得mn =2b 2,②①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c2b2.又由|FB |≤|FA |≤2|FB |得1≤|FA ||FB |≤2,则m n =t ∈[1,2],所以t +1t =2c 2b 2∈⎣⎢⎡⎦⎥⎤2,52, 又2c2b 2=2c 2a 2-c 2=2e 21-e 2,则可得22≤e ≤53,即离心率的取值范围是⎣⎢⎡⎦⎥⎤22,53. 答案:A3.探寻离心率的最值[典例3] 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C .3D .2 解析:设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 21+r 22-2r 1r 2cos π3,得4c 2=r 21+r 22-r 1r 2.由r 1+r 2=2a 1,r 1-r 2=2a 2,得r 1=a 1+a 2,r 2=a 1-a 2,所以1e 1+1e 2=a 1+a 2c =r 1c.令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+⎝ ⎛⎭⎪⎫r 2r 12-r 2r 1=4⎝ ⎛⎭⎪⎫r 2r 1-122+34,当r 2r 1=12时,m max =163,所以⎝ ⎛⎭⎪⎫r 1c max =433,即1e 1+1e 2的最大值为433. 答案:A。

届数学一轮复习第八章平面解析几何第四节直线与圆圆与圆的位置关系教师文档教案文

届数学一轮复习第八章平面解析几何第四节直线与圆圆与圆的位置关系教师文档教案文

第四节直线与圆、圆与圆的位置关系授课提示:对应学生用书第158页[基础梳理]1.直线与圆的位置关系与判断方法(1)几何法:利用圆心到直线的距离d与半径r的大小关系.①d〈r⇔直线与圆相交;②d=r⇔直线与圆相切;③d〉r⇔直线与圆相离.(2)代数法:联立方程,消去x(或y)得一元二次方程,计算Δ=b2-4ac.①Δ〉0⇔直线与圆相交;②Δ=0⇔直线与圆相切;③Δ〈0⇔直线与圆相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1〉0),圆O2+(y-b2=r2方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况外离d〉r1+r2无解外切d=r1+r2一组实数解续表相交|r1-r2|〈d〈r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d〈|r1-r2|(r1≠r2)无解位置关系内含内切相交外切外离公切线条数01234圆的方程两种设法技巧:(1)经过直线l:Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的交点的圆的方程表示为(x2+y2+Dx+Ey+F)+λ(Ax+By+C)=0.(2)经过圆x2+y2+D1x+E1y+F1=0与圆x2+y2+D2x+E2y+F2=0的两个交点的圆的方程表示为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0。

[四基自测]1.(基础点:直线与圆的位置关系)直线y=x+6与圆x2+y2-2y-4=0的位置关系为()A.相离B.相切C.相交且不过圆心 D.相交过圆心答案:A2.(基础点:圆与圆的位置关系)两圆x2+y2-2y=0与x2+y2-4=0的位置关系是()A.相交B.内切C.外切 D.内含答案:B3.(基础点:圆的弦长)直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=________.答案:104.(易错点:求圆的切线方程)已知直线l:y=k(x+错误!)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=________.答案:0或3授课提示:对应学生用书第158页考点一直线与圆的位置关系挖掘1直线与圆位置关系的判断/ 自主练透[例1](1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D。

高考数学大一轮复习 第八章 平面解析几何 第5课时 椭圆名师课件 文 北师大版

高考数学大一轮复习 第八章 平面解析几何 第5课时 椭圆名师课件 文 北师大版

(1)椭圆的几何性质常涉及一些不等关系,例如对椭圆ax22+by22 =1,有-a≤x≤a,-b≤y≤b,0<e<1等,在求与椭圆有关的一 些量的范围,或者求这些量的最大值或最小值时,经常用到这些 不等关系.
(2)求解与椭圆几何性质有关的问题时要结合图形进行分析,
即使不画出图形,思考时也要联想到图形,当涉及到顶点、焦
5.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3 2
,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方
程为________.
解析:设椭圆的长半轴长为a,由2a=12知a=6.又e=
c a

3 2
,故c=3
3
,∴b2=a2-c2=36-27=9.∴椭圆标准方程为
x2 36
+y92=1.
2.椭圆的标准方程与几何性质
[基础自测]
1.(2016·合肥月考)设P是椭圆
x2 25

y2 16
=1上的点,若F1、F2
是椭圆的两个焦点,则|PF1|+|PF2|等于( )
A.4
B.5
C.8
D.10
解析:由椭圆的定义知:|PF1|+|PF2|=2×5=10. 答案:D
2.(教材改编题)若椭圆的对称轴为坐标轴,长轴长与短轴长
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第5课时 椭圆
1.掌握椭圆的定义、几何图形、标准方程及简单性质. 2.理解数形结合的思想. 3.了解椭圆的简单应用,了解椭圆的实际背景,了解椭圆 在刻画现实世界和解决实际问题中的作用.
1.椭圆的定义 (1)定义:平面内两定点为F1、F2,当动点P满足条件点P到点 F1、F2的距离之和 等于 常数(大于|F1F2|)时,P点的轨迹为椭 圆;F1、F2是椭圆的两个 焦点 . (2)定义的数学表达式为: |PF1|+|PF2|=2a(2a>|F1F2|) . (3)在定义中,“定值大于|F1F2|”(即2a>2c)是必要条件.当 2a=2c时,动点轨迹是 两焦点的连线段 ;而当2a<2c时,动点 轨迹不存在.

北师大版2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆学案含解析

北师大版2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆学案含解析

第5讲椭圆基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做01椭圆.这两定点叫做椭圆的02焦点,两焦点间的距离叫做03焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若04a>c,则集合P表示椭圆;(2)若05a=c,则集合P表示线段;(3)若06a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围07-a≤x≤08a09-b≤y≤10b11-b≤x≤12b13-a≤y≤14a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为152a;短轴B1B2的长为162b焦距|F1F2|=172c焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 离心率e=18ca∈19(0,1)a,b,c的关系c2=20a2-b21.椭圆的焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.如图所示,设∠F 1PF 2=θ.(1)当P 为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc .(3)焦点三角形的周长为2(a +c ). (4)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.2.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a.3.AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则(1)弦长l =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|;(2)直线AB 的斜率k AB =-b 2x 0a 2y 0.1.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9答案 B解析 由4=25-m 2(m >0 )⇒m =3,故选B .2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为( ) A .14 B .12 C .2 D .4答案 A解析 将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,∴a =1m,b =1.∴1m=2,∴m =14.3.(2019·北京高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案 B解析 因为椭圆的离心率e =c a =12,所以a 2=4c 2.又a 2=b 2+c 2,所以3a 2=4b 2.故选B .4.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是( )A .x 24+y 23=1B .x 24+y 23=1C .x 24+y 22=1D .x 29+y 28=1 答案 D解析 依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =13,c 2=a 2-b 2,解得a 2=9,b 2=8.故椭圆C 的方程为x 29+y 28=1.5.(2019·西安模拟)已知点P (x 1,y 1)是椭圆x 225+y 216=1上的一点,F 1,F 2是其左、右焦点,当∠F 1PF 2最大时,△PF 1F 2的面积是( )A .1633B .12C .16(2+3)D .16(2-3)答案 B解析 ∵椭圆的方程为x 225+y 216=1,∴a =5,b =4,c =25-16=3,∴F 1(-3,0),F 2(3,0).根据椭圆的性质可知当点P 与短轴端点重合时,∠F 1PF 2最大,此时△PF 1F 2的面积S=12×2×3×4=12,故选B . 6.椭圆3x 2+ky 2=3的一个焦点是(0,2),则k =________. 答案 1解析 方程3x 2+ky 2=3可化为x 2+y 23k=1.a 2=3k >1=b 2,c 2=a 2-b 2=3k-1=2,解得k =1.核心考向突破考向一 椭圆定义及其应用例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PA |=|PM |+|PN |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.(2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.则|AF 2|=________.答案 5解析 由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3.∵△ABF 2的周长为16,∴4a =16,∴a =4.则|AF 1|+|AF 2|=2a =8,∴|AF 2|=8-|AF 1|=8-3=5.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的应用椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|,|PF 2|;通过整体代入可求其面积等.[即时训练] 1.(2019·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案x 225+y 216=1 解析 设动圆的半径为r ,圆心P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r ,所以|PC 1|+|PC 2|=10>|C 1C 2|,即点P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,即点P 的轨迹方程为x 225+y 216=1.2.已知椭圆C :x 29+y 24=1,点M 与椭圆C 的焦点不重合.若M 关于椭圆C 的焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=________.答案 12解析 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于椭圆C 的焦点F 1的对称点为A ,点M 关于椭圆C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.考向二 椭圆的标准方程例2 (1)(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A .x 22+y 2=1B .x 23+y 22=1C .x 24+y 23=1D .x 25+y 24=1答案 B解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a . 又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B . (2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.答案x 29+y 23=1 解析设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以点P 1,P 2的坐标满足椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②解得⎩⎪⎨⎪⎧m =19,n =13.所以所求椭圆的方程为x 29+y 23=1.求椭圆标准方程的两种方法(1)定义法:根据椭圆的定义确定2a,2c ,然后确定a 2,b 2的值,再结合焦点位置写出椭圆的标准方程.(2)待定系数法:具体过程是先定位,再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组.如果焦点位置不确定,那么要考虑是否有两解.有时为了解题方便,也可把椭圆方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.解题步骤如下:定位置—根据条件确定椭圆的焦点在哪条坐标轴上设方程—根据焦点位置,设方程为x 2a 2+y 2b2=1a >b >0或y 2a 2+x 2b2=1a >b >0;也可设整式形式的方程:mx 2+ny 2=1m >0,n >0,m ≠n寻关系—根据条件列出关于a ,b 或m ,n 的方程组 得方程—解方程组,将相应值代入所设方程,写出标准方程[即时训练] 3.(2019·青岛模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A .x 22+y 2=1B .x 23+y 22=1C .x 24+y 23=1D .x 25+y 24=1答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32. ①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝ ⎛⎭⎪⎫322+22. ②由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1,应选C .4.已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆:⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|PA |=|PB |,|PF |+|BP |=2.所以|PA |+|PF |=2且|PA |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.考向三 椭圆的几何性质例3 (1)(2019·云南保山期末)椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F 1,若椭圆上存在一点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为( )A .22B .23C .59D .53答案 D解析 设线段PF 1的中点为M ,另一个焦点为F 2,由题意知,|OM |=b ,又OM 是△F 2PF 1的中位线,∴|OM |=12|PF 2|=b ,|PF 2|=2b ,由椭圆的定义知|PF 1|=2a -|PF 2|=2a -2b .又|MF 1|=12|PF 1|=12(2a -2b )=a -b ,又|OF 1|=c ,在直角三角形OMF 1中,由勾股定理得(a -b )2+b 2=c 2,又a 2-b 2=c 2,可得2a =3b ,故有4a 2=9b 2=9(a 2-c 2),由此可求得离心率e =c a =53,故选D . (2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e的取值范围是________.答案 ⎝⎛⎭⎪⎫0,12解析 ∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+c a<0,即2e2+e -1<0,解得-1<e <12.又0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝ ⎛⎭⎪⎫0,12.1.求椭圆的离心率的方法(1)直接求出a ,c 来求解,通过已知条件列方程组,解出a ,c 的值;(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;(3)通过取特殊值或特殊位置,求出离心率.2.椭圆的范围或最值问题常常涉及一些不等式,例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等式关系.[即时训练] 5.(2019·辽宁大连二模)焦点在x 轴上的椭圆方程为x 2a 2+y 2b2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A .14B .13C .12D .23答案 C解析 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c )·b 3,得a =2c ,即e =c a =12,故选C .6.(2019·郑州市高三预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )A .22B .2- 3C .5-2D .6- 3答案 D解析 设|F 1F 2|=2c ,|AF 1|=m ,若△ABF 1是以A 为直角顶点的等腰直角三角形,则|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可得△ABF 1的周长为4a ,即有4a =2m +2m ,即m =(4-22)a ,则|AF 2|=2a -m =(22-2)a ,在Rt △AF 1F 2中,|F 1F 2|2=|AF 1|2+|AF 2|2,即4c2=4×(2-2)2a 2+4×(2-1)2a 2,即有c 2=(9-62)a 2,即c =(6-3)a ,即e =c a=6-3,故选D .精准设计考向,多角度探究突破 考向四 直线与椭圆的位置关系角度1 例4 (2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <⎝ ⎛⎭⎪⎫1-14×3=32,且m >0, 即0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB →|=2-x 22. 所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.角度2 切线问题例5 (2019·湖北优质高中联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点为A ,上顶点为B .已知|AB |=3|OF |,且△AOB 的面积为 2.(1)求椭圆的方程;(2)直线y =2上是否存在点M ,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点M 的坐标;若不存在,说明理由.解 (1)由|AB |=3|OF |,△AOB 的面积为2, 得 a 2+b 2=3c ,12ab =2,∴a =2,b =2,即椭圆方程为x 24+y 22=1.(2)假设直线y =2上存在点M 满足题意,设M (m,2),当m =±2时,从M 点所引的两切线不垂直.当m ≠±2时,设过点M 向椭圆所引的切线的斜率为k ,则l 的方程为y =k (x -m )+2,由⎩⎪⎨⎪⎧y =k x -m +2,x 24+y22=1,得(1+2k 2)x 2-4k (mk -2)x +2(mk -2)2-4=0,∵Δ=0,∴(m 2-4)k 2-4mk +2=0,设两切线的斜率分别为k 1,k 2,则k 1k 2=2m 2-4=-1,∴m =±2,即点M 坐标为(2,2)或(-2,2).角度3 弦长问题例6 (2019·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1,整理,得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14× x 1+x 22-4x 1x 2=54-m2.点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S △PAB =12d |AB |=12×2|m |5×54-m2=m24-m2≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时,△PAB 的面积取得最大值2.(1)解决有关弦及弦中点问题常用方法是利用根与系数的关系和“点差法”.这两种方法的前提都必须保证直线和椭圆有两个不同的公共点.(2)直线与椭圆相切,有且仅有一个公共点,过椭圆外一点可以作两条切线,过椭圆上一点只能作一条切线.(3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2) 则有|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率,k ≠0).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.[即时训练] 7.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则椭圆上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b2=1(a >b >0),其焦距为2,且过点⎝ ⎛⎭⎪⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( )A .22B . 2C . 3D .2答案 B解析 由题意,得2c =2,即c =1,a 2-b 2=1,将点⎝ ⎛⎭⎪⎫1,22代入椭圆方程,可得1a 2+12b 2=1,解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2),则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1,令x =0,得y D =1y 2,令y =0,可得x C =2x 2,又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1,所以S △OCD =12·1y 2·2x 2=1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2,即S △OCD ≥2,当且仅当x 222=y 22=12,即点B 的坐标为⎝ ⎛⎭⎪⎫1,22时,△OCD 面积取得最小值2,故选B .8.(2019·广西联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为4π3,过椭圆C 的右焦点作斜率为k (k ≠0)的直线l 与椭圆C 相交于A ,B两点,线段AB 的中点为P .(1)求椭圆C 的标准方程;(2)过点P 且垂直于AB 的直线与x 轴交于点D ⎝ ⎛⎭⎪⎫17,0,求k 的值. 解 (1)由题中条件,可得过椭圆短轴的一个端点与两个焦点的圆的半径为 43. 设椭圆的右焦点的坐标为(c,0),依题意知⎩⎪⎨⎪⎧2c =2,a 2=b 2+c 2,⎝ ⎛⎭⎪⎫b -432+c 2=43.又因为b >1,解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题意,过椭圆C 的右焦点的直线l 的方程为y =k (x -1),将其代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,所以y 1+y 2=k (x 1+x 2)-2k =-6k3+4k 2.因为P 为线段AB 的中点,所以点P 的坐标为⎝ ⎛⎭⎪⎫4k 23+4k 2,-3k 3+4k 2.又因为直线PD 的斜率为-1k,所以直线PD 的方程为 y --3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 23+4k 2. 令y =0,得x =k 23+4k2,所以点D 的坐标为⎝ ⎛⎭⎪⎫k 23+4k 2,0, 则k 23+4k 2=17,解得k =±1. 9.(2019·云南昆明模拟)已知中心在原点O ,焦点在x 轴上的椭圆E 过点C (0,1),离心率为22. (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解 (1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0). 当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝ ⎛⎭⎪⎫-1,22, 此时|AB |=2,则S △OAB =12×2×1=22,不满足条件.当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23,得|y 1-y 2|=43.因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k · -4k 21+2k 2+2k =2k1+2k2,y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k21+2k 2, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=4k21+2k22+4k 21+2k 2=43, 所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.1.已知点F 1,F 2是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2答案 C解析 解法一:设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),所以PF 1→+PF 2→=(-2x 0,-2y 0),所以|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.因为点P 在椭圆上,所以0≤y 20≤1,所以当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C .解法二:由PF 1→+PF 2→=PO →+OF 1→+PO →+OF 2→=2PO →,所以|PF 1→+PF 2→|=2|P O →|=2x 20+y 20,因为点P 在椭圆上,所以x 20+2y 20=2,且0≤y 20≤1,则2x 20+y 20=22-2y 20+y 20=2-y 20+2,当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C .2.已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解 由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.3.在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解 设所求点坐标为A (32cos θ,22sin θ),θ∈R , 由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+-32=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2). 答题启示椭圆中距离的最值问题一般有三种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解. 对点训练1.(2020·青海西宁复习检测)在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则|PA |+|PB |的最大值为( )A .5B .4C .3D .2答案 A解析 ∵椭圆的方程为y 24+x 23=1,∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,|PB |+|PC |=4,∴|PB |=4-|PC |,∴|PA |+|PB |=4+|PA |-|PC |≤4+|AC |=5,即|PA |+|PB |的最大值为5.2.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B .46+ 2C .7+ 2D .6 2答案 D解析 解法一:设椭圆上任意一点为Q (x ,y ),且-10≤x ≤10,-1≤y ≤1,则圆心(0,6)到点Q 的距离d =x 2+y -62=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50, 当y =-23时,d max =52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ), 则|MQ |=10cos 2θ+sin θ-62=-9sin 2θ-12sin θ+46 =-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,所以|PQ |max =52+2=6 2.故选D .3.如图,焦点在x轴上的椭圆x24+y2b2=1的离心率e=12,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则PF→·PA→的最大值为________.答案 4解析设P点坐标为(x0,y0).由题意知a=2,因为e=ca=12,所以c=1,所以b2=a2-c2=3.所以椭圆方程为x24+y23=1.所以-2≤x0≤2,-3≤y0≤ 3.因为F(-1,0),A(2,0),PF→=(-1-x0,-y0),PA→=(2-x0,-y0),所以PF→·PA→=x20-x0-2+y20=14x20-x0+1=14(x0-2)2.即当x0=-2时,PF→·PA→取得最大值4.1、在最软入的时候,你会想起谁。

2021一轮数学教师用书目录

2021一轮数学教师用书目录

目录课堂过关第一章集合与常用逻辑用语第1课时集合的概念1第2课时集合的基本运算4第3课时简单的逻辑联结词、全称量词与存在量词8第二章函数与导数第1课时函数及其表示13第2课时函数的定义域和值域18第3课时函数的单调性22第4课时函数的奇偶性及周期性26第5课时函数的图象31第6课时二次函数36第7课时指数函数、对数函数及幂函数(1)40第8课时指数函数、对数函数及幂函数(2)44第9课时指数函数、对数函数及幂函数(3)48第10课时函数与方程53第11课时导数的概念与运算57第12课时导数在研究函数中的应用61第13课时函数模型及其应用68第14课时函数的综合应用75第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数81第2课时同角三角函数的基本关系式与诱导公式86第3课时三角函数的图象和性质90第4课时两角和与差的正弦、余弦和正切公式97第5课时二倍角的正弦、余弦和正切公式102第6课时简单的三角恒等变换106第7课时正弦定理和余弦定理110第8课时解三角形应用举例114第9课时三角函数的综合应用120第四章平面向量与复数第1课时平面向量的概念与线性运算126第2课时平面向量的基本定理及坐标表示131第3课时平面向量的数量积及平面向量的应用举例135第4课时复数140第五章数列第1课时数列的概念及其简单表示法144第2课时等差数列148第3课时等比数列152第4课时数列的求和157第5课时数列的简单应用161第6课时数列的综合应用167第六章不等式第1课时一元二次不等式及其解法172第2课时二元一次不等式(组)与简单的线性规划177 第3课时基本不等式182第4课时不等式的综合应用186第七章推理与证明第1课时合情推理与演绎推理190第2课时直接证明与间接证明195第3课时数学归纳法(理科专用)199第八章立体几何初步第1课时空间点、直线、平面之间的位置关系204第2课时直线与平面的位置关系(1)208第3课时直线与平面的位置关系(2)213第4课时平面与平面的位置关系218第5课时空间几何体的表面积和体积224第6课时空间向量在立体几何中的应用(理科专用)228第九章平面解析几何第1课时直线的倾斜角与斜率236第2课时直线的方程239第3课时直线与直线的位置关系243第4课时圆的方程247第5课时直线与圆的位置关系252第6课时椭圆(1)258第7课时椭圆(2)263第8课时双曲线269第9课时抛物线273第10课时直线与圆锥曲线的综合应用(1)277第11课时直线与圆锥曲线的综合应用(2)282第十章算法、统计与概率第1课时算法290第2课时统计初步(1)295第3课时统计初步(2)298第4课时古典概型(1)303第5课时古典概型(2)307第6课时几何概型与互斥事件311第十一章计数原理、随机变量及分布列第1课时分类加法计数原理与分步乘法计数原理(理科专用)316第2课时排列与组合(理科专用)320第3课时二项式定理(理科专用)324第4课时离散型随机变量及分布列、超几何分布(理科专用)328第5课时独立性及二项分布(理科专用)334第6课时离散型随机变量的均值与方差(理科专用)340选修4-1几何证明选讲第1课时相似三角形的进一步认识(理科专用)346第2课时圆的进一步认识(理科专用)351选修4-2矩阵与变换第1课时线性变换、二阶矩阵及其乘法(理科专用)357第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)362选修4-4坐标系与参数方程第1课时坐标系(理科专用)366第2课时参数方程(理科专用)370选修4-5不等式选讲第1课时绝对值不等式(理科专用)375第2课时不等式证明的基本方法(理科专用)379课时训练第一章集合与常用逻辑用语第1课时集合的概念383第2课时集合的基本运算384第3课时简单的逻辑联结词、全称量词与存在量词385第二章函数与导数第1课时函数及其表示387第2课时函数的定义域和值域388第3课时函数的单调性390第4课时函数的奇偶性及周期性391第5课时函数的图象393第6课时二次函数395第7课时指数函数、对数函数及幂函数(1)396第8课时指数函数、对数函数及幂函数(2)397第9课时指数函数、对数函数及幂函数(3)399第10课时函数与方程400第11课时导数的概念与运算402第12课时导数在研究函数中的应用403第13课时函数模型及其应用405第14课时函数的综合应用407第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数410第2课时同角三角函数的基本关系式与诱导公式411第3课时三角函数的图象和性质413第4课时两角和与差的正弦、余弦和正切公式415第5课时二倍角的正弦、余弦和正切公式417第6课时简单的三角恒等变换418第7课时正弦定理和余弦定理420第8课时解三角形应用举例421第9课时三角函数的综合应用425第四章平面向量与复数第1课时平面向量的概念与线性运算428第2课时平面向量的基本定理及坐标表示430第3课时平面向量的数量积及平面向量的应用举例431第4课时复数433第五章数列第1课时数列的概念及其简单表示法435第2课时等差数列436第3课时等比数列437第4课时数列的求和439第5课时数列的简单应用441第6课时数列的综合应用442第六章不等式第1课时一元二次不等式及其解法445第2课时二元一次不等式(组)与简单的线性规划446第3课时基本不等式448第4课时不等式的综合应用450第七章推理与证明第1课时合情推理与演绎推理452第2课时直接证明与间接证明454第3课时数学归纳法(理科专用)455第八章立体几何初步第1课时空间点、直线、平面之间的位置关系458第2课时直线与平面的位置关系(1)460第3课时直线与平面的位置关系(2)461第4课时平面与平面的位置关系463第5课时空间几何体的表面积和体积465第6课时空间向量在立体几何中的应用(理科专用)467第九章平面解析几何第1课时直线的倾斜角与斜率470第2课时直线的方程471第3课时直线与直线的位置关系474第4课时圆的方程476第5课时直线与圆的位置关系477第6课时椭圆(1)480第7课时椭圆(2)482第8课时双曲线484第9课时抛物线486第10课时直线与圆锥曲线的综合应用(1)488第11课时直线与圆锥曲线的综合应用(2)490第十章算法、统计与概率第1课时算法493第2课时统计初步(1)495第3课时统计初步(2)496第4课时古典概型(1)498第5课时古典概型(2)500第6课时几何概型与互斥事件501第十一章计数原理、随机变量及分布列第1课时分类加法计数原理与分步乘法计数原理(理科专用)504第2课时排列与组合(理科专用)505第3课时二项式定理(理科专用)507第4课时离散型随机变量及分布列、超几何分布(理科专用)508第5课时独立性及二项分布(理科专用)510第6课时离散型随机变量的均值与方差(理科专用)512选修4-1几何证明选讲第1课时相似三角形的进一步认识(理科专用)515第2课时圆的进一步认识(理科专用)517选修4-2矩阵与变换第1课时线性变换、二阶矩阵及其乘法(理科专用)520第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)522选修4-4坐标系与参数方程第1课时坐标系(理科专用)525第2课时参数方程(理科专用)526选修4-5不等式选讲第1课时绝对值不等式(理科专用)529第2课时不等式证明的基本方法(理科专用)530。

2018高考一轮北师大版数学文教师用书:第八章 平面解

2018高考一轮北师大版数学文教师用书:第八章 平面解

第五节椭圆[考纲传真] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质.3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义(1)我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)椭圆既是轴对称图形,又是中心对称图形.()[答案](1)×(2)√(3)×(4)√2.(教材改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1B.x24+y23=1C.x24+y22=1 D.x24+y23=1D[椭圆的焦点在x轴上,c=1.又离心率为ca=12,故a=2,b2=a2-c2=4-1=3,故椭圆的方程为x24+y23=1.]3.(2015·广东高考)已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A .2B .3C .4D .9B [由左焦点为F 1(-4,0)知c =4.又a =5,∴25-m 2=16,解得m =3或-3.又m >0,故m =3.]4.(2016·全国卷Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13 B .12 C.23D .34B [如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b2,所以e =c a =12.]5.椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当△F AB 的周长最大时,△F AB 的面积是__________.3 [直线x =m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8,即a =2,此时,|AB |=2×b 2a =2×32=3, ∴S △F AB =12×2×3=3.](1)如图8-5-1所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆图8-5-1(2)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________.【导学号:66482393】(1)A (2)x 2+32y 2=1 [(1)由条件知|PM |=|PF |. ∴|PO |+|PF |=|PO |+|PM |=|OM |=R >|OF |. ∴P 点的轨迹是以O ,F 为焦点的椭圆. (2)不妨设点A 在第一象限,设半焦距为c , 则F 1(-c,0),F 2(c,0).∵AF 2⊥x 轴,则A (c ,b 2)(其中c 2=1-b 2,0<b <1). 又|AF 1|=3|F 1B |,得AF 1→=3F 1B →,设B (x 0,y 0),则(-2c ,-b 2)=3(x 0+c ,y 0), ∴x 0=-5c 3且y 0=-b 23,代入椭圆x 2+y 2b 2=1,得25c 2+b 2=9,①又c 2=1-b 2,② 联立①②,得b 2=23.故椭圆E 的方程为x 2+32y 2=1.][规律方法] 1.(1)利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意|PF 1|+|PF 2|与|PF 1|·|PF 2|的整体代换.2.求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a ,b 的方程组,若焦点位置不确定,可把椭圆方程设为Ax 2+By 2=1(A >0,B >0,A ≠B )的形式.[变式训练1] (1)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =__________.(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为__________.【导学号:66482394】(1)3 (2)x 24+y 23=1 [(1)由定义,|PF 1|+|PF 2|=2a ,且PF 1→⊥PF 2→, ∴|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,∴2|PF 1||PF 2|=4a 2-4c 2=4b 2,∴|PF 1||PF 2|=2b 2. ∴S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=9,因此b =3. (2)依题意,设椭圆C :x 2a 2+y 2b 2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上,∴1a 2+94b 2=1.①又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1.](2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C .23D .34A [法一:设点M (-c ,y 0),OE 的中点为N ,则直线AM 的斜率k =y 0a -c,从而直线AM 的方程为y =y 0a -c (x +a ),令x =0,得点E 的纵坐标y E =ay 0a -c. 同理,OE 的中点N 的纵坐标y N =ay 0a +c. ∵2y N =y E ,∴2a +c =1a -c,即2a -2c =a +c , ∴e =c a =13.法二:如图,设OE 的中点为N ,由题意知 |AF |=a -c ,|BF |=a +c ,|OF |=c ,|OA |=|OB |=a .∵PF ∥y 轴,∴|MF ||OE |=|AF ||AO |=a -c a ,|MF ||ON |=|BF ||OB |=a +c a . 又|MF ||OE |=|MF |2|ON |,即a -c a =a +c 2a , ∴a =3c ,故e =c a =13.][规律方法] 1.与椭圆几何性质有关的问题要结合图形进行分析.2.求椭圆离心率的主要方法有:(1)直接求出a ,c 的值,利用离心率公式直接求解.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.[变式训练2] (2015·福建高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32B .⎝ ⎛⎦⎥⎤0,34C.⎣⎢⎡⎭⎪⎫32,1 D .⎣⎢⎡⎭⎪⎫34,1A [根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,所以e=ca =1-b 2a 2=1-b 24.因为1≤b <2,所以0<e ≤32,故选A.]☞角度已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为c2.图8-5-2(1)求椭圆E 的离心率;(2)如图8-5-2,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.[解] (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca ,3分 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. 5分(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1, 代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 8分 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 10分 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1. 12分 ☞角度2 由位置关系研究直线的性质(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b 2=1, 解得a 2=8,b 2=4. 3分 所以C 的方程为x 28+y 24=1. 5分(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 7分将y =kx +b 代入x 28+y 24=1,得 (2k 2+1)x 2+4kbx +2b 2-8=0. 9分 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值. 12分[规律方法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).[思想与方法]1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆方程的方法,除了直接根据定义外,常用待定系数法.当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为x 2m +y 2n =1(m >0,n >0,且m ≠n )可以避免讨论和烦琐的计算,也可以设为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这种形式在解题中更简便.3.讨论椭圆的几何性质时,离心率问题是重点,常用方法: (1)求得a ,c 的值,直接代入公式e =ca 求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b 2=a 2-c 2,消去b ,转化成关于e 的方程(或不等式)求解.[易错与防范]1.判断两种标准方程的方法是比较标准形式中x 2与y 2的分母大小. 2.注意椭圆的范围,在设椭圆x 2a 2+y 2b 2=1(a >b >0)上点的坐标为P (x ,y )时,则|x |≤a ,这往往在求与点P 有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因.3.椭圆上任意一点M 到焦点F 的最大距离为a +c ,最小距离为a -c .。

椭圆课件-2025届高三数学一轮基础专项复习

椭圆课件-2025届高三数学一轮基础专项复习
2.[链接苏教选必一P88—P89知识]椭圆的右焦点为,椭圆上的两点, 关于原点对称,若,且椭圆的离心率为,则椭圆 的方程为( )
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 椭 圆授课提示:对应学生用书第161页[基础梳理]1.椭圆的定义(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. ①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2; ③当2a <|F 1F 2|时,M 点的轨迹不存在. 2.椭圆的标准方程和几何性质图形标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 续表性质范围 -a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a对称性 对称轴:坐标轴 对称中心:原点顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b ) A 1(0,-a ),A 2(0,a ) B 1(-b ,0),B 2(b ,0)轴 长轴A 1A 2的长为2a ; 短轴B 1B 2的长为2b焦距 |F 1F 2|=2c 离心率 e =ca∈(0,1) a ,b ,c 的关系a 2=b 2+c 21.e 与b a :因为e =c a =a 2-b 2a =1-⎝⎛⎭⎫b a 2,所以离心率e 越大,则b a越小,椭圆就越扁;离心率e 越小,则ba越大,椭圆就越圆.2.点与椭圆的位置关系已知点P (x 0,y 0),椭圆x 2a 2+y 2b2=1(a >b >0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.3.设椭圆x 2a 2+y2b2=1(a >b >0)上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P为短轴端点;当x =±a 时,|OP |有最大值a ,这时,P 为长轴端点.4.若点P 是椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点,F 1、F 2是椭圆的左、右焦点,且∠F 1PF 2=θ,则S △PF 1F 2=b 2tan θ2.5.过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点F 作x 轴的垂线,交椭圆于A ,B ,则|AB |=2b 2a .6.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,P (x 0,y 0)是椭圆上任意一点,则|PF 1|=a +ex 0,|PF 2|=a -ex 0.7.若P 为椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点,则a -c ≤|PF |≤a +c .[四基自测]1.(易错点:椭圆的概念)下列说法中正确的个数是( )①平面内到两定点距离之和为常数是动点的轨迹是椭圆的必要不充分条件;②椭圆的离心率越大,椭圆越接近圆;③若方程x 25-k +y 2k -3=1表示椭圆,则(5-k )(k -3)>0;④椭圆离心率e ∈(0,1).A .1B .2C .3 D.0 答案:B2.(基础点:椭圆的定义)已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P到另一个焦点F 2的距离为( ) A .2 B .3 C .5 D.7 答案:D3.(基础点:椭圆的方程与性质)已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.答案:x 24+y 23=14.(易错点:椭圆方程的特征)已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于________. 答案:8授课提示:对应学生用书第162页考点一 椭圆的定义及应用挖掘1 利用椭圆定义求方程/ 自主练透[例1] (1)已知圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B .x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 [解析] 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.[答案] D(2)已知动圆M 过定点A (-3,0)并且与定圆B :(x -3)2+y 2=64相切,则动圆圆心M 的轨迹方程为________.[解析] 因为点A 在圆B 内, 所以过点A 的圆与圆B 只能内切, 因为定圆圆心坐标为B (3,0), 所以|AB |=6.所以|BM |=8-|MA |,即|MB |+|MA |=8>|AB |, 所以动点M 的轨迹是以A ,B 为焦点的椭圆,即a =4,c =3.故b 2=7.即椭圆方程为x 216+y 27=1.[答案] x 216+y27=1挖掘2 椭圆定义的应用/ 互动探究[例2] (1)(2020·郑州第二次质量预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( ) A.x 23+y 2=1 B .x 23+y 22=1 C.x 29+y 24=1 D.x 29+y 25=1 [解析] 由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D.[答案] D(2)已知点P (x ,y )在椭圆x 236+y 2100=1上,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的面积为18,则∠F 1PF 2的余弦值为________.[解析] 椭圆x 236+y 2100=1的两个焦点为F 1(0,-8),F 2(0,8),由椭圆的定义知|PF 1|+|PF 2|=20,两边平方得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=202,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos ∠F 1PF 2=162, 两式相减得2|PF 1||PF 2|(1+cos ∠F 1PF 2)=144,又S △PF 1F 2=12|PF 1||PF 2|sin ∠F 1PF 2=18,所以1+cos ∠F 1PF 2=2sin ∠F 1PF 2,解得cos ∠F 1PF 2=35.[答案] 35[破题技法] 椭圆定义应用技巧思路考点二 椭圆的标准方程及应用挖掘 求椭圆方程的方法/ 自主练透 [例] (1)(2020·宁德模拟)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( ) A.x 28+y 26=1 B .x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 [解析] 设椭圆的标准方程为x 2a 2+y2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎨⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.[答案] A(2)(2020·成都模拟)与椭圆x 24+y 23=1有相同离心率且经过点(2,-3)的椭圆方程为________.[解析] 因为e =ca=a 2-b 2a=1-b 2a 2= 1-34=12, 若焦点在x 轴上,设所求椭圆方程为x 2m 2+y2n2=1(m >n >0),则1-⎝⎛⎭⎫n m 2=14,从而⎝⎛⎭⎫n m 2=34,n m =32.又4m 2+3n2=1,所以m 2=8,n 2=6. 所以方程为x 28+y 26=1.若焦点在y 轴上,设方程为y 2h 2+x 2k2=1(h >k >0),则3h 2+4k 2=1,且k h =32,解得h 2=253,k 2=254. 故所求方程为y 2253+x2254=1.[答案] x 28+y 26=1或y 2253+x 2254=1(3)已知椭圆C 1:x24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.求椭圆C 2的方程.[解析] 法一:(待定系数法):由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,解得a =4,故椭圆C 2的方程为y 216+x 24=1. 法二:(椭圆系法):因椭圆C 2与C 1有相同的离心率,且焦点在y 轴上,故设C 2:y 24+x 2=k (k >0),即y 24k +x 2k=1. 又2k =2×2,故k =4,故C 2的方程为y 216+x 24=1.挖掘1 求离心率(范围)/ 自主练透[例1] (1)(2018·高考全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A.13 B .12 C.22 D.223 [解析] ∵a 2=4+22=8, ∴a =22,∴e =c a =222=22.故选C. [答案] C(2)(2018·高考全国卷Ⅱ)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B .12C.13D.14[解析] 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°, 可得|PB |=3, |BF 2|=1,故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.故选D. [答案] D(3)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是( )A.⎣⎡⎦⎤22,53 B .⎣⎡⎭⎫53,1C.⎣⎡⎦⎤22,3-1 D.[3-1,1) [解析] 设椭圆左焦点为F ′,连接AF ′、BF ′.由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c . 设|AF ′|=n ,|AF |=m ,则在直角三角形AF ′F 中,m +n =2a , m 2+n 2=4c 2,① 得mn =2b 2,②①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b 2. 又由|FB |≤|F A |≤2|FB |得1≤|F A ||FB |≤2,则mn=t ∈[1,2], ∴t +1t =2c 2b 2∈⎣⎡⎦⎤2,52,又2c 2b 2=2c 2a 2-c 2=2e 21-e 2,则可得22≤e ≤53,即离心率的取值范围是⎣⎡⎦⎤22,53.故选A.[破题技法] 求椭圆离心率的关键点(1)分析题设中所给量与离心率有什么关系(直接的或间接的). (2)转化条件,求离心率所用的量.①若直接可求出a 、b 、c 的具体值,用公式e =c a =1-(ba )2.②构造a 、b 、c 之间的齐次关系,进而求c a 或ba 的整体值.③若求e 的具体值,构造方程,若求e 的范围,构造不等式. ④根据e ∈(0,1)进行取舍.挖掘2 根据椭圆性质求值或范围/ 互动探究[例2] (1)(2020·广东七校4月联考)已知点P 为椭圆x 216+y 212=1上的动点,EF 为圆N :x 2+(y-1)2=1的任一直径,则PE →·PF →的最大值和最小值分别是( ) A .16,12-4 3 B .17,13-4 3 C .19,12-4 3 D.20,13-4 3[解析] EF 是圆N 的直径,∴|NE |=|NF |=1,且NF →=-NE →,则PE →·PF →=(PN →+NE →)·(PN →+NF →)=(PN →+NE →)·(PN →-NE →)=PN →2-NE →2=PN →2-1,设P (x 0,y 0),则有x 2016+y 2012=1,即x 20=16-43y 20,又N (0,1),∴|PN →|2=x 20+(y 0-1)2=-13(y 0+3)2+20,又∵y 0∈[-23,23],∴当y 0=-3时,|PN →|2取得最大值20,则(PE →·PF →)max =20-1=19.当y 0=23时,|PN →|2取得最小值13-43,则(PE →·PF →)min=12-4 3.综上,PE →·PF →的最大值和最小值分别为19,12-43,故选C. [答案] C(2)(2020·山东烟台模拟)已知F (2,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________. [解析] 设椭圆的左焦点为F ′,由椭圆的右焦点为F (2,0),得c =2,又过F 且垂直于x 轴的弦长为6,即2b 2a =6,则a 2-c 2a =a 2-4a=3,解得a =4,所以|MF |+|MA |=8-|MF ′|+|MA |=8+|MA |-|MF ′|, 当M ,A ,F ′三点共线时,|MA |-|MF ′|取得最大值, (|MA |-|MF ′|)max =|AF ′|=2, 所以|MF |+|MA |的最大值为8+ 2. [答案] 8+ 2考点四 椭圆的综合应用 挖掘 椭圆中的综合问题/ 自主练透 [例] (2020·湖南永州二模)已知动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m<2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA →·OB →=2(O 为坐标原点),求k[解析] (1)由0<m <2,得2m <4,可知:曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b 2=1,把点N ⎝⎛⎭⎫3,12代入 得34+14b2=1,解得b 2=1,由c 2=a 2-b 2,解得c 2=3,所以m = 3. (2)由(1)知曲线C 的方程为x 24+y 2=1,设A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝⎛⎭⎫14+k 2x 2+22kx +1=0,则有Δ=4k 2-1>0,得k 2>14.x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k 2, 则OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k 21+4k 2=2.得k 2=13>14,所以k 的值±33.[破题技法] 1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则 |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]= ⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.。

相关文档
最新文档