高三年级数学复习___球的切、接、截面问题(有答案)
高考数学复习考点题型专题讲解17 球的切、接、截问题
高考数学复习考点题型专题讲解专题17 球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=612a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π答案 D解析因为点E,F分别为PA,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示. 因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=6 2,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥A -BCD 外接球的表面积为________. 答案29π2解析 构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=9,b 2+c 2=4,c 2+a 2=16, 所以2(a 2+b 2+c 2)=9+4+16=29, 即a 2+b 2+c 2=4R 2=292, 则外接球的表面积为S =4πR 2=29π2.考向3 汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h2,所以R 2=r 2+h 24.例3(2022·金华调研)在三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( ) A.63B.3 3 C.32D.3 答案 B解析 如图,设三棱柱上、下底面中心分别为O 1,O 2,则O 1O 2的中点为O ,设球O 的半径为R ,则OA =R ,设AB =BC =AC =a ,AA 1=h ,则OO 2=12h ,O 2A =23×32AB =33a .在Rt△OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立,所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah=3 3.考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.例4(2022·广州模拟)已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=π3,SC=2,则球O的表面积是( ) A.5π B.4πC.3πD.2π答案 A解析依题意,得AB=2AD=2,∠DAB=π3,由余弦定理可得BD=3,则AD2+DB2=AB2,则∠ADB=π2.又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,半径r=AB2=1,设AB的中点为O1,球的半径为R,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1, R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎨⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5(2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为________. 答案 60π解析 边长为6的菱形ABCD ,在折叠的过程中, 当平面ABD ⊥平面BCD 时,三棱锥的体积最大; 由于AB =AD =CD =BC =6, ∠C =∠A =π3.所以△ABD 和△CBD 均为正三角形,设△ABD 和△CBD 的外接圆半径为r , 则2r =BDsin C,所以r =2 3.△ABD 和△CBD 的交线段为BD ,且BD =6. 所以三棱锥A -BCD 的外接球的半径R =(23)2+(23)2-624=15.故S 球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为( ) A.5π B.π C.113π D.73π (2)在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,且PA =4,底面△ABC 的外接圆的半径为3,则三棱锥P -ABC 的外接球的表面积为________. 答案 (1)D (2)52π解析 (1)由三棱柱所有棱的长a =1,可知底面为正三角形, 底面三角形的外接圆直径2r =1sin 60°=233,所以r =33, 设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC , 所以PA ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3,可得R 2=⎝ ⎛⎭⎪⎫PA 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △PAB +S △PAC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2B.9π4 C.9π16D.9π (2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( ) A.16π B.24π C.36π D.64π答案(1)C (2)A解析(1)设球O的半径为r,则三棱锥P-ABC的体积V=13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r,解得r=34,所以球O的体积V=43πr3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形,r=AB+BC-AC2=6+8-102=2.又因为AA1=6,2r=4<6,所以该三棱柱内能放置的最大球半径为2,此时S表面积=4πr2=4π×22=16π.训练 2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7(2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,PA =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =PA =2,AC =BC =AB =2,所以PB 2+PA 2=AB 2,即PB ⊥PA , 同理PB ⊥PC ,PC ⊥PA ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2. 又Q 为BC 中点,由正方体结构特征可得OQ =12PA =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为r =R 2-OQ 2=1, 所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2. 训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5π D.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2, ∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点, 则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4C.π2D.π4 答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA=1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C解析 由题意知球的直径2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.33π D.6π 答案 A解析 构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球, 所以外接球半径R =32, 所以外接球表面积为S =4πR 2=3π.4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132D.310 答案 C解析 将直三棱柱补为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13,则R =132.5.(2022·南阳二模)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π 答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π 答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的,如图所示,十四面体的外接球球心与正方体的外接球球心相同, 建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径R =OD =⎝ ⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( )A.70π3B.80π3C.30πD.40π答案 B解析如图,取BC的中点M,连接AM,DM,由题意可知,△ABC和△BCD都是边长为4的等边三角形. ∵M为BC的中点,∴AM⊥BC,且AM=DM=23,又∵AD=26,∴AM2+DM2=AD2,∴AM⊥DM,∵BC∩DM=M,BC,DM⊂平面BCD,∴AM⊥平面BCD,∵AM⊂平面ABC,∴平面ABC⊥平面BCD,△ABC与△BCD外接圆半径r=23DM=433,又△ABC与△BCD的交线段BC=4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153,四面体ABCD 的外接球的表面积为4π×R 2=803π. 8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3B.5π6C.πD.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3,故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3C.该正方体的棱长为1D.线段MN长的最大值为3+1 答案AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为( ) A.4π B.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=2 2,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析 根据题意知,平面ACD 1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径r =13(32)2-⎝⎛⎭⎪⎫3222=62, 所以平面ACD 1截球O 的截面面积为 S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22, 故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面PAC ⊥平面ABC ,则( )A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1,所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△PAC 外接圆的圆心为O 2,AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6,所以圆O 2的半径r 2=12×1sinπ6=1,则易知O 2D =32, 所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33, 圆O 2的半径r 2=1,△ABC 与△PAC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O-ABC的体积为13×OO1×S△ABC=13×32×34=18,故D选项正确,故选ACD.15.(多选)(2022·湖州调研)已知正四面体ABCD的棱长为3,其外接球的球心为O.点E 满足AE→=λAB→(0<λ<1),过点E作平面α平行于AC和BD,设α分别与该正四面体的棱BC,CD,DA相交于点F,G,H,则( )A.四边形EFGH的周长为定值B.当λ=12时,四边形EFGH为正方形C.当λ=13时,平面α截球O所得截面的周长为13π4D.四棱锥A-EFGH的体积的最大值为22 3答案ABD解析将正四面体ABCD放入正方体中.因为正四面体ABCD的棱长为3,所以正方体的棱长为322.如图所示,过点E作平面α平行于AC和BD,平面α与正方体的棱交于M,N,P,Q四点.因为AE→=λAB→,故AH→=λAD→,即有EH=λBD,同理FG=λBD,EF=(1-λ)AC,HG=(1-λ)AC,且EH∥BD,EF∥AC,故四边形EFGH 为平行四边形.因为AC ⊥BD ,故EF ⊥EH ,则四边形EFGH 为矩形.对于A ,四边形EFGH 的周长为2(EF +EH )=2[(1-λ)AC +λBD ]=2[(1-λ)AC +λAC ]=2AC =6,为定值,故A 选项正确;对于B ,当λ=12时,E 为AB 的中点,故EF =EH ,所以四边形EFGH 为正方形,故B 选项正确;对于C ,当λ=13时,球心O 到平面EFGH 的距离即球心到平面MNPQ 的距离,即BC 中点到MF 的距离,经计算为24,球半径为322×32=364,故截面圆的半径为⎝ ⎛⎭⎪⎫3642-⎝ ⎛⎭⎪⎫242=132,所以截面圆的周长为132×2π=13π,故C 选项错误;对于D ,四棱锥A -EFGH 的高为AQ ,所以其体积V =13×322λ×3(1-λ)×3λ=922λ2(1-λ),0<λ<1, 令f (λ)=922λ2(1-λ),则f ′(λ)=922(2λ-3λ2),令f ′(λ)=0得λ=23,故当λ=23时,四棱锥A -EFGH 的体积最大,最大值为922×49×13=223,故D 选项正确,故选ABD.16.(多选)(2022·嘉兴测试)如图,在等腰梯形ABCD 中,AB =2AD =2BC =2CD =4.现将△DAC沿对角线AC所在的直线翻折成△D′AC,记二面角D′-AC-B的大小为α(0<α<π),则( )A.存在α,使得D′A⊥BCB.存在α,使得D′A⊥平面D′BCC.存在α,使得三棱锥D′-ABC的体积为3 3D.存在α=π2,使得三棱锥D′-ABC的外接球的表面积为20π答案ACD解析如图1,取AB的中点E,连接DE交AC于点F.因为AB=2CD,所以CD=EB=AE,所以四边形AECD为菱形,四边形EBCD为菱形,所以△AED,△DEC,△EBC均为等边三角形,所以AC⊥ED,∠DAC=∠BAC=π6,∠ACB=π2,在翻折过程中,如图2,AC⊥D′F,AC⊥FE,所以∠D′FE为二面角D′-AC-B的平面角,所以∠D′FE=α.对于A,当α=π2时,平面D′AC⊥平面ABC.因为BC⊥AC,所以BC⊥平面D′AC.又因为D′A⊂平面D′AC,所以D′A⊥BC,所以存在α,使得D′A⊥BC,故A选项正确;对于B,假设存在α,使得D′A⊥平面D′BC.因为D′C⊂平面D′BC,所以D′A⊥D′C,与∠AD′C=2π3矛盾,故B选项不正确;对于C,由分析可得,D′F=12DE=12AD=1,AC=2AF=2×32×AD=2 3.设D′到平面ABC的距离为d,则V三棱锥D′-ABC=13×S△ABC×d=13×12×AC×BC×d=13×12×23×2×d=33,解得d=1 2,所以sin α=dD′F=12,所以α=π6或5π6,故C选项正确;对于D,当α=π2时,平面D′AC⊥平面ABC,所以BC⊥平面D′AC,D′F⊥平面ABC.如图2所示,因为E,F分别为AB,AC的中点,所以EF∥BC,且EF=12BC=1,所以EF⊥平面D′AC.设△D′AC外接圆圆心为O1,则O1A=O1D′=AD′=2.因为E是Rt△ABC斜边的中点,所以E为Rt△ABC的外心.过O1作平面D′AC的垂线,过点E作平面ABC的垂线,则两垂线的交点O即为三棱锥D′-ABC外接球的球心,显然四边形EFO1O是矩形,所以OO1=EF=1.设三棱锥D′-ABC的外接球半径为R,则在Rt△OO1D′中,R=OD′=O1O2+O1D′2=1+4=5,所以三棱锥D′-ABC的外接球的表面积S=4πR2=20π,故D选项正确.综上所述,故选ACD.17.在菱形ABCD中,AB=23,∠ABC=60°,若将菱形ABCD沿对角线AC折成大小为60°的二面角B-AC-D,则四面体DABC的外接球球O的体积为________.答案5239π27解析如图,设M,N分别为△ABC,△ACD的外心,E为AC的中点,则EN=EM=13BE=1,在平面BDE内过点M作BE的垂线与过点N作DE的垂线交于点O. ∵BE⊥AC,DE⊥AC,BE∩DE=E,∴AC⊥平面BDE.∵OM⊂平面BDE,∴OM⊥AC,∵OM⊥BE,BE∩AC=E,∴OM⊥平面ABC,同理可得ON⊥平面ACD,则O为四面体DABC的外接球的球心,连接OE,∵EM=EN,OE=OE,∠OME=∠ONE=90°,∴△OME≌△ONE,∴∠OEM=30°,∴OE=EMcos 30°=233.∵AC⊥平面BDE,OE⊂平面BDE,∴OE⊥AC,∴OA=OE2+AE2=39 3,即球O的半径R=39 3.故球O的体积V=43πR3=5239π27.18.(2022·湖南三湘名校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=4,M 为棱AB的中点,N是棱BC的中点,O是三棱柱外接球的球心,则平面MNB1截球O所得截面的面积为________.答案8π解析如图1,将直三棱柱补形成正方体ABCD-A1B1C1D1,连接BD1,则直三棱柱的外接球也是正方体的外接球,球心O是BD1的中点,半径R=2 3. 连接BD交MN于点E,连接B1E交BD1于点F,过点O作OO1⊥B1E于点O1,连接B1D1,因为MN∥AC,AC⊥平面BB1D1D,所以MN⊥平面BB1D1D,所以OO1⊥MN,所以OO1⊥平面MNB1.如图2,31 / 31 在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14, 所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43,BGOO 1=BF OF =23,所以OO 1=2,设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8,所以截面的面积为8π.。
新高考数学复习专题58 球的切、接、截问题中最值问题的研究(解析版)
专题58 球的切、接、截问题中最值问题的研究一、题型选讲题型一 、外接球的问题例1、【2018年高考全国Ⅲ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A. B.C. D.【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC的重心,23BM BE ∴== Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯= B. 例2、(2020·河北邯郸市·高三期末)已知三棱锥的三条侧棱两两垂直,且的长分别为,又侧面与底面成角,当三棱锥体积最大时,其外接球的表面积为( )A .B .C .D . 【答案】A【解析】:,当且仅当时取等号,P ABC -,,PA PB PC ,,ab c 2()a b c +=PAB ABC 45︒10π40π20π18π11116666V abc ab ab ==⋅=a b =因为侧面与底面成角,则, , ,所以,故外接球的表面积为.故选:A.例3、(湖北省九师联盟2021届高三联考)已知球O 的半径为4,3点,,,A B C D 均在球面上,若ABC 为等则三棱锥D ABC -的最大体积是___________.【分析】根据三角形面积求出边长,即可求出三角形外接圆半径,继而可求出高的最大值,求出体积.【解析】设ABC 外接圆的圆心为1,O由ABC21sin603,2AB ⋅⋅=解得2AB =, 则1122sin60AB O B =⨯= 当三棱棱锥D ABC -体积最大时,球心O 在1DO 上,因此有12,3OO == 所以1DO 的最大值为42233+=,三棱锥D ABC -的最大体积为1112333ABC V S DO =⋅⋅==. PAB ABC 45︒2PC c==216V a ∴==2,a b c ∴===2222410R a b c =++=10π故答案为:3.题型二、内切求的问题例4、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯=△ABC设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯=解得:22r ,其体积:3433V r =π=π.. 例5、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【解析】(1)因为16(12S =⨯⨯=. (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()63R R =⨯⇒=,所以球的体积334433V R ππ===.故答案为:. 例6、【2020届河北省衡水中学高三年级上学期五调】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90榫卯起来,如图,若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为()(容器壁的厚度忽略不计)A.36πB.40πC.41πD.44π【答案】C【解析】由题意知,当该球为底面边长分别为2、1,高为6的长方体的外接球时,球的半径取最小值,=,因此,该球形容器的表面积的最小值为414414ππ⋅=.故选:C.例7、(2021·江苏徐州市·高三期末)已知三棱锥外接球的表面积为,平面,,,则三棱锥体积的最大值为________.【答案】【解析】P ABC-100πPB⊥ABC 8PB=120BAC∠=︒设三边的长分别为,,,由三棱锥体积公式有,由外接球表面积知外接球半径,应用正弦定理以及含有棱面垂直关系的三棱锥:外接圆半径R 、对应面外接圆半径r 、棱长三者的关系有,即可求,再结合余弦定理求最值,进而求体积的最大值. 【详解】设三边的长分别为,,,则三棱锥体积, 设外接球的半径为,由得,设外接圆的半径为,由正弦定理得,即, 又平面知,所以,即,故,,当且仅当时取等号. 故答案为:题型三、综合性问题例8、(2021·潍坊市潍城区教育局高三月考)已知三棱锥的四个顶点都在球的表面上,平面,,,,则球的半径为______;若是的中点,过点作球的截面,则截面面积的最小值是______.【解析】ABC a b c 3V =225R =2224PB R r =+a bc ABC a b c 11sin1208323V bc =⋅︒⋅=R 24100R ππ=225R =ABC r 2sin120a r =︒r =PB ⊥ABC 222425R ⎫=+=⎪⎪⎝⎭a =22272cos120bc bc =+-⋅︒222723b c bc bc bc bc =++≥+=9bc ≤933V =≤=3==b c P ABC -O PA ⊥ABC 6PA =AB =2AC =4BC =O D BC D O 4π如图所示:由题意知底面三角形为直角三角形,所以底面外接圆的半径,过底面外接圆的圆心作垂直于底面的直线,则球心在该直线上,可得,连接,设外接球的半径为,所以,解得.若是的中点,,重合,过点作球的截面,则截面面积最小时是与垂直的面,即是三角形的外接圆,而三角形的外接圆半径是斜边的一半,即2,所以截面面积为.,例9、(2020·甘肃3月高考模拟月考(理))如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A BC D【答案】D【解析】22BCr==O'O32PAOO'== OA R222222313R r OO'=+=+=R=D BC D O'D OOO'ABCABC224ππ⋅=4π因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1,又因为鸡蛋的体积为4π3,所以球的半径为1,所以球心到截面的距离d ==而截面到球体最低点距离为1-而蛋巢的高度为12,故球体到蛋巢底面的最短距离为111222⎛--= ⎝⎭. 例10、(2021·浙江台州市·高三期末)已知长方体,底面是边长为4的正方形,高为2,点是底面的中心,点在以为球心,半径为1的球面上,设二面角的平面角为,则的取值范围是________.【答案】 【解析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取的中点,过点作球的切线,切点分别为,可以判断为的最小值,为的最大值,且, 1234ABCD A B C D -O ABCD P O 111P A B C --θtanθ⎣⎦11A B H H O ,M N 1O HN ∠θ1O HM ∠θ1112tan 12OO O HO HO ∠===,所以, , , 所以的取值范围是, 故答案为:.二、达标训练1、(2021·湖北高三期末)现有一个三棱锥形状的工艺品,点在底面的投影为,满足,,容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .B .C .D .【答案】D【解析】 作,连接PM ,易证,由,得到,再根据,由对称性得到,然后根据,,求得,在中,由求解半径即可.1OH OM ON ===HM HN ==tan tan NHO OHM ∠=∠=1184tan tan()631O HN O HO NHO -∠=∠-∠====+11tan tan()1O HM O HO OHM ∠=∠+∠====tan θ4433⎡⎢⎣⎦⎣⎦P ABC -P ABC Q 12QABQAC QBC PAB PAC PBC S S S S S S ===△△△△△△22222213QA QB QC AB BC CA ++=++ABC S =42π44π48π49πQM AB ⊥AB PM ⊥112122QABPAB AB QM S S AB PM ⨯⨯==⨯⨯△△2PM QM =12QABQAC QBC PABPAC PBC S S S S S S ===△△△△△△AB BC AC ==22222213QA QB QC AB BC CA ++=++ABC S =6,AB AQ ==AOQ △222AO OQ AQ =+【详解】如图所示:作与M ,连接PM , 因为平面ABC ,所以,又, 所以平面PQM ,所以,所以, ,因为, 由对称性得,又因为,所以 解得,所以, QM AB ⊥PQ ⊥PQ AB ⊥QM PQ Q ⋂=AB ⊥AB PM ⊥112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△2PM QM =12QABQAC QBC PAB PAC PBC S S S S S S ===△△△△△△AB BC AC ==22222213QA QB QC AB BC CA ++=++ABC S =21sin 60932ABC S AB =⨯⨯=6,AB AQ ==3QM PM PQ ===设外接球的半径为r ,在中,,即, 解得, 所以外接球的表面积为,即该球形容器的表面积的最小值为.故选:D2、(湖北省武汉2020-2021学年高三质检)已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( )A .128πB .132πC .144πD .156π 【答案】B【分析】将三棱锥P ABC -补成长方体PQMN ABEC -,设2PA x =,计算出球O的半径为R ,计算出截面圆半径的最大值和最小值,根据已知条件可求得x 的值,可求得球O 的半径,进而可求得球O 的表面积.【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AEBC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =, 设2PA x =,且10AE ==,PE ∴=AOQ △222AO OQ AQ =+()(2223r r =-+72r =2449S r ππ==49π所以,球O 的半径为12R PE == 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==, 在ADF 中,243AD AB ==,5AF =,由余弦定理可得DF =PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥, 12OF PA x ==,OD ∴== 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则sin d OD θ=当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即max r R ==当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即max d OD ==,此时,r 取最小值,即min r =.由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x ,解得x =所以,R =因此,球O 的表面积为24132S R ππ==.故选:B.3、【河北省衡水中学2019-2020学年高三下学期第七次调研(文)】如图,三棱锥P ABC -的四个顶点恰是长、宽、高分别是m ,2,n 的长方体的顶点,此三棱锥的体积为2,则该三棱锥外接球体积的最小值为__________.【答案】323π【解析】又因为三棱锥P ABC -的外接球直径是长方体的体对角线∴R =3334411=3386V R πππ==⨯ 1212=233P ABC ABC mn V S h -∆⋅=⨯⨯= ,6mn ∴= 222=12m n mn ∴+≥,当且仅当=m n =3311=32463=6V πππ≥⨯ 三棱锥外接球体积的最小值为323π,故答案为:323π. 4、(2020·山东济南外国语学校高三月考)用一个体积为的球形铁质原材料切割成为正三棱柱的工业用零配件,则该零配件体积的最大值为( )AB .C .D .【答案】D【解析】如图所示,正三棱柱内接于球的直观图,为底面的中心,因为.设底面边长,则, , 等号成立当且仅当,故选D. 36π1827111ABC A B C -O 1O 111A B C 343633R V R ππ==⇒=球11A B x=12h OO ==21627222V S hx =⋅=⋅⋅⋅=⋅≤正三棱柱22963x x x =-⇔=。
补上一课 立体几何中的截面问题及球的切接问题
补上一课立体几何中的截面问题及球的切接问题)1.立体几何中的截面问题 (1)平面截球:圆(圆面).(2)平面截正方体:三角形、四边形、五边形、六边形. (3)平面截圆柱曲面:圆、椭圆、矩形. 2.球的切接问题 (1)长方体的外接球 ①球心:体对角线的交点; ②半径:r =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球 ①外接球:球心是正方体中心;半径r =32a (a 为正方体的棱长);②内切球:球心是正方体中心;半径r =a2(a 为正方体的棱长);③与各条棱都相切的球:球心是正方体中心;半径r =22a (a 为正方体的棱长).(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分) ①外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长); ②内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长).题型一 立体几何中的截面问题【例1】 (1)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334 B.233 C.324 D.32(2)(2021·浙江新高考仿真卷三)已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N ,若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9πC .11πD .13π 答案 (1)A (2)D解析 (1)记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,即截面EFGHIJ 为平面α截正方体所得最大截面.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×(22)2 =334,所以α截此正方体所得截面面积的最大值为334,故选A.(2)设球的球心为O ,由圆M 的面积为4π得圆M 的半径为2,则|OM |=42-22=23,又因为圆N 所在的平面β与圆M 所在的平面α所成的角为60°,则∠OMN =30°,且ON ⊥MN ,则sin ∠OMN =|ON ||OM |,即sin 30°=|ON |23,解得|ON |=3,则圆N的半径r =42-(3)2=13,圆N 的面积为πr 2=13π,故选D.感悟升华 此类题主要考查空间想象能力及空间几何体的结构特征,解题时可寻找特殊情况使问题得到简化.【训练1】 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π(2)(2020·名校仿真训练五)棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱C 1D 1与C 1B 1的中点,则经过点B ,E ,F 的平面截正方体所得的封闭图形的面积为( )A.92B.310 C.32D.10答案 (1)B (2)A解析 (1)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.故选B.(2)如图,经过点B,E,F的平面BEF截正方体所得截面为四边形BDEF,因为E,F分别是C1D1,C1B1的中点,正方体的棱长为2,所以EF∥BD,且EF=1 2BD,所以四边形BDEF是下底为BD=22,上底为EF=2的等腰梯形.在Rt△BB1F中,由勾股定理可得DE=BF=5,过点F在平面BDEF内作FG⊥BD于点G,由等腰梯形的性质用勾股定理可得FG=322,即梯形BDEF的高为322,所以梯形BDEF的面积为12(22+2)×322=92,故选A.题型二 外接球问题【例2】(1)已知底面边长为1,侧棱长2的正四棱柱的各个顶点均在同一个球的球面上,则该球的体积为( )A.32π3B.4πC.2π D.4π3(2)已知直三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A.3172B.210 C.132D.310(3)正四棱锥的顶点都在同一球面上,若该四棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4(4)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,SA ⊥AC ,SB ⊥BC ,三棱锥S -ABC 的体积为9,则球的表面积为________.答案 (1)D (2)C (3)A (4)36π 解析 (1)如图,正四棱柱ABCD -A 1B 1C 1D 1,底面为边长为1,侧棱长为2,设H 、I 分别为下、上底面中心,HI 的中点为O ,所以O 为外接球的球心,所以外接球半径R =AO =AH 2+OH 2=1,所以外接球体积V =4π3R 3=4π3. (2)如图,由题意可得棱柱上、下底面为直角三角形,所以上、下底面外接圆的圆心分别为B 1C 1、BC 的中点,设其分别为I 、H ,设HI 的中点为O ,则点O 为三棱柱外接球的球心,在Rt △BHO 中,BO =BH 2+OH 2=132,所以外接球的半径R =132.(3)如图,设O 1为底面正方形ABCD 的中心,外接球球心为O ,所以PO1⊥平面ABCD,O在PO1上,设外接球O的半径为R,则R=AO=PO,在Rt△AOO1中,R=AO=AO21+OO21=(2)2+(4-R)2解得R=9 4,所以外接球的表面积为S=4πR2=81 4π.(4)如图,∵SA⊥AC,SB⊥BC,设O为SC的中点,由直角三角形斜边上的中线等于斜边的一半,可得点O到A,B,C,S的距离相等,故点O为三棱锥外接球的球心,∵平面SCA⊥平面SCB,SB=BC,∴OB⊥平面SAC.设球O的半径为R,则V S-ABC=V B-ASC=13·12·2R·R·R=13R3=9,∴R3=27,R=3.所以外接球表面积为S=4πR2=36π.感悟升华 1.常用结论(1)正方体和长方体的外接球的球心为其体对角线的中点.(2)正棱柱的外接球的球心是上、下底面中心连线的中点.(3)直棱柱的外接球的球心是上、下底面多边形外心连线的中点.(4)正棱锥外接球的球心在其高上,具体位置通过构造直角三角形计算得到.(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.2.构造正方体、长方体、直棱柱等用上述结论确定外接球的球心(1)同一个顶点上的三条棱两两垂直的四面体,求其外接球问题可构造正方体或长方体.(2)相对的棱长相等的三棱锥,求其外接球问题可构造正方体或长方体.【训练2】 (1)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A .3πB .4πC .33πD .6π(2)已知正三棱锥P -ABC ,点P 、A 、B 、C 都在半径为3的球面上,若PA 、PB 、PC 两两互相垂直,则球心到截面ABC 的距离是________.(3)三棱锥P -ABC 中,PA ⊥AB ,PA ⊥AC ,∠BAC =120°,PA =AB =AC =2,则此三棱锥外接球的体积为________. 答案 (1)A (2)33 (3)205π3 解析 (1)构造正方体,则正方体棱长为1,因此,该四面体的外接球也就是棱长为1的正方体外接球,所以外接球半径R =32,所以外接球表面积为S =4πR 2=3π. (2)如图,构造正方体,则球心为正方体的中心O ,易求得正方体棱长为2,设点O 到平面ABC 的距离为d ,作CH 垂直MN 交MN 于H , 由V O -ABC =V C -ABO ,得13S △ABC ·d =13S △ABO ·CH ,所以d =33.(3)∵PA ⊥AB ,PA ⊥AC , ∴PA ⊥平面ABC ,构造直三棱柱PQT -ABC ,设O 1为△ABC 外心,O 为三棱锥外接球球心,所以OO 1⊥平面ABC , 易得OO 1=12PA ,在△ABC 由余弦定理可求得BC =23,再由正弦定理BCsin 120°=2r ,可求得△ABC外接圆半径r =2,在Rt △AOO 1中,AO =AO 21+OO 21=5, 所以三棱锥P -ABC 外接球半径R =5,外接球体积V =205π3. 题型三 内切球问题【例3】 (一题多解)已知棱长为a 的正四面体ABCD ,证明:其内切球的半径为612a .证明 法一 如图,设AH ⊥平面BCD ,则H 为△BCD 外心, 可得外接球球心在AH 上,设外接球球心为O , 外接球半径为R ,则AO =BO =R , 在△BCD 中,可得BH =33a ,在Rt △ABH 中, AH =AB 2-BH 2=63a ,在Rt △BHO 中,BO 2=BH 2+OH 2, ∴BO 2=BH 2+(AH -OA )2, ∴R 2=(33a )2 +(63a -R )2 ,∴R =64a , 因内切球球心与外接球球心重合,所以内切球半径r =OH =AH -AO =63a -64a=612a .法二 如图,设AH ⊥平面BCD ,设外接球球心为O ,则点O 也是内切球球心, 由于内切球球心到各个面的距离相等,都为内切球半径,设为r , ∵V A -BCD =V O -ABC +V O -ACD +V O -ABD +V O -BCD . ∴13S △BCD ·AH =13S △BCD ·r ·4,∴r =14AH =612a . 感悟升华 求内切球的半径常用等积法(1)正多面体内切球的球心与其外接球的球心重合,内切球的半径为球心到多面体任一面的距离.(2)正棱锥的内切球与外接球的球心都在其高线上,但不一定重合.【训练3】 (1)(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(2)(2021·金华一中月考)已知某锥体的三视图如图所示(各正方形的边长为2),则该锥体的体积是________;该锥体的内切球的表面积是________.答案 (1)2π3 (2)83 4π3解析 (1)圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故POPB=OEDB,即22-r3=r1,解得r=22,故内切球的体积为43π(22)3=23π.(2)如图,由几何体的三视图可知该几何体是一个棱长为22的正四面体A-BCD,其可以为边长为2的正方体截去四个角而得,所以其体积为V=23-4×1 3×1 2×23=83.因为正四面体的棱长为22,所以其底面的三角形的高为6,该正四面体的高为433,设内切球的半径为r,则有(433-r)2=r2+(263)2,解得r=33,所以该内切球的表面积为S=4πr2=4π3 .一、选择题1.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱D.六棱柱答案 C解析 由几何体的结构特征知,剩下的几何体为五棱柱.2.(2021·北京东城区一模)正方体被一个平面截去一部分后,所得几何体的三视图如图所示,则截面图形的形状为( )A .等腰三角形B .直角三角形C .平行四边形D .梯形 答案 A解析 如图所示,由三视图可得,该几何体是正方体被一个平面截去一个三棱锥所得的几何体,很明显三棱锥的两条侧棱相等,故截面是等腰三角形.3.(2021·浙江名师预测三)古希腊著名数学家阿基米德曾经研究过球的体积问题,并得出圆柱的内切球的体积是这个圆柱体积的23,并把圆柱和其内切球的图形刻到他的墓碑上.如图是将一个圆柱挖去内切球后的几何体的三视图,则该几何体的体积是( )A.23π B.23C.π D.13π答案 A解析 圆柱的底面直径为2,高为2,内切球的直径为2,则该几何体的体积V=2π-43π=23π,故选A.4.(2021·昆明模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若此几何体的各个顶点在同一球面上,则该球的表面积为( )A.8πB.9πC.32πD.36π答案 B解析 通过三视图可知,该几何体是直三棱柱D1A1C1-DAC,其中底面是直角三角形,把它补成长方体如图所示:连接D1B,设外接球的半径为R,所以有2R=D1D2+DB2=D1D2+AD2+AB2=1+4+4=3,球的表面积为S=4πR2=9π.5.(2021·安阳一模)已知某几何体的三视图如图所示,若该几何体的外接球体积为32π3,则h=( )A.13 B.26 C.23 D.3答案 C解析 由三视图知几何体为三棱锥,且一条侧棱垂直底面,如图,O为AC的中点,∵正视图和俯视图都是等腰直角三角形,EO⊥底面ABC,OB=OC=OA=1,E为球心.设球半径为r,则V球=43πr3=32π3,∴r=2,EO=3,∴h=2 3.6.(2021·名校仿真训练二)在四面体ABCD中,BD=CD=AB=1,AB⊥BD,CD⊥BD.当四面体ABCD体积最大时,四面体ABCD外接球的表面积是( )A.2πB.3πC.4πD.5π答案 B解析 如图,将四面体ABCD置于棱长为1的正方体中,显然当AB⊥平面BCD 时,四面体ABCD的体积最大.此时四面体ABCD的外接球就是正方体的外接球,球心O即为AC的中点,而AC=3,则外接球的半径为32,故外接球的表面积为4π(32)2=3π,故选B.7.(2018·全国Ⅲ卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为( ) A.123 B.183 C.243 D.543答案 B解析 设等边△ABC的边长为x,则12x2sin 60°=93,得x=6.设△ABC的外接圆半径为r ,则2r =6sin 60°,解得r =23,所以球心到△ABC 所在平面的距离d =42-(23)2=2,则点D 到平面ABC 的最大距离d 1=d +4=6,所以三棱锥D -ABC 体积的最大值V max =13S △ABC ×6=13×93×6=18 3.8.(2019·全国Ⅰ卷)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26π D.6π 答案 D解析 因为点E ,F 分别为PA ,AB 的中点,所以EF ∥PB , 因为∠CEF =90°,所以EF ⊥CE ,所以PB ⊥CE . 取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP ,所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE ⊂平面PAC ,所以PB ⊥平面PAC , 所以PB ⊥PA ,PB ⊥PC ,因为PA =PB =PC ,△ABC 为正三角形,所以PA ⊥PC ,即PA ,PB ,PC 两两垂直,将三棱锥P -ABC 放在正方体中如图所示.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P -ABC 的外接球的半径R =62,所以球O 的体积V =43πR 3=43π(62)3=6π,故选D.9.(2021·重庆调研二)已知三棱锥S -ABC 各顶点均在球O 上,SB 为球O 的直径,若AB =BC =2,∠ABC =2π3,三棱锥S -ABC 的体积为4,则球O 的表面积为( )A .120πB .64πC .32πD .16π 答案 B 解析 如图所示,由AB =BC =2,∠ABC =2π3得AC =23,则S △ABC =12AB ·BC sin 2π3=3,设△ABC 外接圆圆心为O ′,则OO ′⊥⊙O ′, 由正弦定理可知,△ABC 外接圆半径O ′A =232sin2π3=2,设S 到面ABC 距离为d , 由SB 为球O 直径可知OO ′=12d ,∴V S -ABC =13×3×d =4,∴d =43,则OO ′=23,∴球的半径OA =O ′A 2+O ′O 2=4+12=4, ∴球O 的表面积S =4π×42=64π.10.(2021·厦门质检)如图,网格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的外接球的表面积是( )A .π B.4π3C .4πD .16π答案 C解析 由三视图可得,三棱锥为如图所示的三棱锥P -ABC ,其中侧面PAB ⊥底面ABC ,在△ABC 和△PAB 中,∠ACB =∠APB =90°,AC =BC =AP =BP = 2. 取AB 的中点D ,连PD ,则D 为△ABC 外接圆的圆心,且PD ⊥底面ABC,所以球心O 在PD 上,设球半径为R ,则在Rt △ODB 中,OD =1-R ,OB =R ,DB =1,由勾股定理得R 2=(1-R )2+12,解得R =1,所以三棱锥的外接球的表面积为S =4πR 2=4π.二、填空题11.(2021·杭州三校三联)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P -ABCD ,PA ⊥底面ABCD ,PA =AB =2,AD =1,则该“阳马”的最长棱长为________;外接球表面积为________. 答案 3 9π解析 由题意得“阳马”P -ABCD 可以看作是棱长为2,2,1的长方体的一部分,则该“阳马”的最长棱为长方体的体对角线,长度为22+22+12=3,该“阳马”的外接球为长方体的外接球,其表面积为4π×(32)2=9π. 12.(2021·金华十校期末调研)一个棱柱的底面是边长为6的正三角形,侧棱与底面垂直.其三视图如图所示,则这个棱柱的体积为________,此棱柱的外接球的表面积为________.答案 363 64π解析 由题意可知该三棱柱是一个直三棱柱,且底面是边长为6的正三角形,底面积为S =12×62×sin 60°=93,又因为该三棱柱的高h =4,所以该三棱柱的体积为V=Sh=93×4=36 3.由正弦定理可知该正三棱柱底面的外接圆直径为2r=6sin 60°=43,则其外接球的半径为R=(23)2+22=4,因此,此棱柱的外接球的表面积为4πR2=4π×42=64π.13.(2021·宁波适考)一个四面体的三视图如图所示(单位:cm),则该四面体的体积(单位:cm3)为________,外接球的表面积(单位:cm2)为________.答案 6 34π解析 由图可知,该几何体是一个三棱锥,其体积V=13×12×3×4×3=6.该三棱锥的外接球的直径2R=42+32+32=34,所以该外接球的表面积S=4πR2=34π.14.(2021·西安质检三)已知正三棱柱ABC-A1B1C1的各条棱长都相等,且内接于球O,若正三棱柱ABC-A1B1C1的体积是23,则球O的表面积为________.答案 28π3解析 设AA1=A1B1=a,则正三棱柱ABC-A1B1C1的体积是34a3=23,解得a=2,则底面正三角形的外接圆半径r=a2sin 60°=23,所以球的半径R=(22)2+(23)2=213,所以球O的表面积为4πR2=28π3.15.(2021·石家庄二模)在三棱椎P-ABC中,底面ABC是等边三角形,侧面PAB 是直角三角形,且PA=PB=2,PA⊥AC,则该三棱锥外接球的表面积为________.答案 12π解析 由于PA=PB,CA=CB,PA⊥AC,则PB⊥CB,因此取PC中点O,则有OP =OC =OA =OB ,即O 为三棱锥P -ABC 外接球球心,又由PA =PB =2,得AC =AB =22,所以PC =22+(22)2=23,所以S =4π×(3)2=12π. 16.(2021·大庆二模)已知点A ,B ,C ,D 均在同一球面上,AD ⊥平面ABC ,其中△ABC 是等边三角形,AD =2AB =6,则该球的表面积为________. 答案 48π解析 由题意画出几何体的图形如图所示:把A ,B ,C ,D 扩展为三棱柱,上下底面中心连线的中点O 与A 的距离为球的半径R ,因为AD =2AB =6,所以OE =3,AB =3,又因为△ABC 是正三角形, 所以AE =23AB 2-(12AB)2 =2332-(32)2=3,所以R =OA =AE 2+OE 2=(3)2+32=23, 所以所求的球的表面积为S =4πR 2=4π×(23)2=48π.17.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC .则截面的周长为________. 答案 8解析 过点G 作EF ∥AC 交PA ,PC 于点E ,F ,过E ,F 分别作EN ∥PB ,FM ∥PB 分别交AB ,BC 于点N ,M ,连接MN ,∴四边形EFMN 是平行四边形,∴EF 3=23,即EF =MN =2,FM PB =FM 6=13,即FM =EN =2,∴截面的周长为2×4=8.18.已知正四棱锥S -ABCD 的底面边长为2,侧棱长为3,则内切球半径为________.答案 214-77解析 如图,设E为BC的中点,I为底面正方形ABCD的中心,∴SI⊥平面ABCD,则内切球球心在SI上,设为O,过O作OH⊥SE交SE于H,在Rt△SIC中,易求出SI=7,即正四棱锥S-ABCD高为7,在△SBC中,易求出SE=22,即正四棱锥S-ABCD斜高为22,设内切球半径为r,则OI=OH=r,由Rt△SIE与Rt△SHO相似,得OHSO=IESE,∴OHSI-OI=IESE,∴r7-r=122,∴r=722+1=214-77.。
高考必考题—几何体中与球有关的切、接问题(含解析)
几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π例2、【2020年高考天津】若棱长为 A .12π B .24π C .36πD .144π例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16πB .20πC .32πD .64π2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________.9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC=________,该四面体外接球的表面积为________.10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形-的外接球的体积为ABCD,现将四边形ABCD沿BD折成直二面角A BD C--,则三棱锥A BCDcm.__________3一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.例2、【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==2452S ππ==,故选C.例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .【答案】A【解析】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD , 平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD ,四棱锥P ABCD -的体积是13AB AB PQ =⨯⨯⨯13AB AB AB =⨯⨯,所以边长6AB =,PQ =OH x =,OM x =,()(222222R OA OM AM x==+=+,2222223R OP OH PH x ==+=+,x =2212321R =+=343V R π==球.故选:A.例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.【答案】20π 【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED =,所以,ADE ∆的外接圆半径为122AE r ===设鳖臑P ADE -的外接球的半径1R ,则3143R π=,解得12R =.PA ⊥平面ADE ,1R ∴=2PA ==PA ∴=正方形ABCD 的外接圆直径为22r AC ==22r ∴=,PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的表面积为22420R ππ=.故答案为:20π. 题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r,其体积:343V r =π=.故答案为:3. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【解析】(1)因为16(12S =⨯⨯=. (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,每个三角形面积是4,六面体体积是正四面体的2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()6349R R =⨯⨯⨯⇒=,所以球的体积334433V R ππ===.故答案为:. 二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16π B .20πC .32πD .64π【答案】D【解析】如图所示,因为正三棱锥S ABC -的侧棱长为6,则263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =, 所以球的表面积为2464S R ππ==, 故选D.2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C .本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D.本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B . C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==,Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯= B.5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.. 6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________. 【答案】13π【解析】如图:SA ⊥平面ABC ,则SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan3SA AB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心, 连结,,,,OA OB GA GB OG ,则必有OG ⊥面ABC 在ABC ∆,2222cos 312162AC AB BC AB BC π=+-⋅⋅=+-=, 则1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的表面积为21344134S R πππ==⨯=, 故答案为:13π.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.【答案】45︒ 6π【解析】如图,作平行四边形ABCD ,连接PD ,由AB BC ⊥,则平行四边形ABCD 是矩形. 由BC CD ⊥,BC PC ⊥,PCCD C =,∴BC ⊥平面PCD ,而PD ⊂平面PCD ,∴BC PD ⊥,同理可得AB PD ⊥,又AB BC B ⋂=,∴PD ⊥平面ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,CD AB PC ===1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.由,PA AB ⊥PC BC ⊥知PB 的中点到,,,A B C P 的距离相等,PB 是三棱锥P -ABC 外接球的直径.由BC ⊥平面PCD 得BC PC ⊥,PB ===24()62PB S ππ==. 故答案为:45︒;6π.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________. 【答案】52π 4π【解析】(1)由题,根据勾股定理可得AC AB ⊥,则可将三棱锥P ABC -可放入以,,AP AC AB 为长方体的长,宽,高的长方体中,则体对角线为外接球直径,即2r ==则r =,所以球的表面积为224452r πππ=⨯=;(2)由题,因为Rt ABC ,所以D 为底面ABC 的外接圆圆心,当DO ⊥截面时,截面面积最小,即截面为平面ABC ,则外接圆半径为2,故截面面积为224ππ⨯=故答案为:(1)52π;(2)4π9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC =________,该四面体外接球的表面积为________.【答案】68π【解析】因为2SA SB ==,且SA SB ⊥,BC =,AC =AB ==,因此222BC AC AB +=,则AC BC ⊥;取AB 中点为O ,连接OS ,OC ,则OA OB OC OS ====,所以该四面体的外接球的球心为O ,半径为OC=所以该四面体外接球的表面积为248S ππ=⋅=; 又因为SA SB =,所以SO AB ⊥;因为底面三角形ABC 的面积为定值122AC BC ⋅=,SO ,因此,当SO ⊥平面ABC 时,四面体的体积最大,为136ABC V S SO =⋅=.故答案为:(1).6(2). 8π10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm 的等腰直角三角形拼成的一个四边形ABCD ,现将四边形ABCD 沿BD 折成直二面角A BD C --,则三棱锥A BCD -的外接球的体积为__________3cm .【答案】 【解析】由题设可将该三棱锥拓展成如图所示的正方体,则该正方体的外接球就是三棱锥的外接球,由于正方体的对角线长为2l R ==即球的半径R =该球的体积343V R π==,应填答案.。
高三复习资料:球的截面与外接问题
球的截面与外接问题一、截面性质:当截面圆为小圆时有:球心和截面圆心的连线 截面圆;球心到截面的距离d 与球的半径R 及截面的半径r 有下面的关系: ;(计算公式)二、多面体的外接球(转化成截面问题)(一)、特殊几何体的外接球:1、长(正)方体的外接球直径等于长(正)方体的对角线!(二)直棱柱的外接球:1、球心为直棱柱上下两底面外心连线的中点;2、222R r d =+中:22h l d ==(为直棱柱高的一半),r 为底面多边形外接圆的半径;d 为心距! (三)圆锥的外接球:1、球心在圆锥的高上,且有h R d =+h 为圆锥的高,2、222R r d =+:R 为外接球的半径,r 为底面圆的半径,d 为心距)(四)正棱锥的外接球:1、球心在正棱锥的高上(即顶点与底面中心的连线),且有h R d =+(h 为圆锥的高);2、222R r d =+:r 为底面多边形外接圆的半径,d 为心距)(五)有三条侧棱互相垂直的三棱锥(直三棱锥):补形为一个长(正)方体,练习二1、一球的球心为O ,R=4,圆C 是该球的一个截面圆,圆心为C ,且|OC |=3,则圆C 的面积为 ;2、三棱锥ABCD 中,ABC ∆为边长为6的正三角形,AD ABC ⊥面且AD=4,则该三棱锥的外接球体积为 ;3、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为_________.4.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积 ;5、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 6、已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 。
7、正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .8、若三棱锥P-ABC 的三条侧棱PA,PB,PC 两两互相垂直且长相等,其外接球半径为2,则三棱锥的表面积为;9、(不规则几何体:确定球心位置法)在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B.1259π1253π10.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,求半球的表面积和体积.11、(13全国2)已知正四棱锥O ABCD -的体积为,则以O 为球心,OA 为半径的球的表面积为________。
高三总复习数学检测题 与球有关的切、托问题
与球有关的切、托问题1.(多选)已知正方体ABCD -A 1B 1C 1D 1的各棱长均为2,下列结论正确的是( )A .该正方体外接球的直径为2 3B .该正方体内切球的表面积为4πC .若球O 与正方体的各棱相切,则该球的半径为 2D .该正方体外接球的体积为4 3解析:选ABC 若正方体的棱长为2,则:①若球为正方体的外接球,则外接球直径等于正方体体对角线,即2R 1=22+22+22=23,故A 正确;外接球体积为43πR 31=43π,故D 错误;②若球为正方体的内切球,则内切球半径为棱长的一半,故R 2=1,球的表面积为4πR 22=4π,故B 正确;③若球与正方体的各棱相切,则球的直径等于正方形对角线长,即2R 3=22+22=22,球的半径为R 3=2,故C 正确.2.球面上有A, B, C, D 四个点,若AB, AC, AD 两两垂直,且AB =AC =AD =4,则该球的表面积为( )A.80π3 B .32π C .42π D .48π解析:选D 由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:(2R )2=42+42+42,据此可得R 2=12,外接球的表面积为S =4πR 2=4π×12=48π.3.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83πB.323π C .16π D .32π 解析:选B 设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R=2,所以所求球的体积V =43πR 3=43π×23=323π. 4.已知在三棱锥P -ABC 中,AP ,AB ,AC 两两互相垂直,AP =5 cm ,AB =4 cm ,AC =3 cm ,点O 为三棱锥P -ABC 的外接球的球心,点D 为△ABC 的外接圆的圆心,下列说法不正确的是( )A .三棱锥P -ABC 的体积为10 cm 3B .直线BC 与平面PAC 所成角的正切值为43C .球O 的表面积为50π cm 2D .OD ⊥PA解析:选D 因为AP ,AB ,AC 两两互相垂直,以AP ,AB ,AC 为棱补成一个长方体,如图,由长方体性质知:V P -ABC =16AB ·AC ·AP =10 cm 3,A 正确;BC 与平面PAC 所成角为∠BCA ,tan ∠CBA =AB AC =43,B 正确;长方体的体对角线是其外接球也是三棱锥P -ABC 外接球的直径,长度为32+42+52=5 2 cm ,则球的表面积为S =4π×⎝⎛⎭⎫5222=50π cm 2,C 正确;由外接球性质,OD ⊥平面ABC ,而PA ⊥平面ABC ,所以OD ∥PA ,D 错误.5.已知某三棱柱的侧棱垂直于底面,且底面是边长为2的正三角形,若其外接球的表面积为43π3,则该三棱柱的高为( ) A.32 B .3 C .4 D .52解析:选B 由题意易知该三棱柱是底面边长为2的正三棱柱.设C ,B分别为三棱柱上、下底面的中心,连接BC ,则三棱柱外接球的球心为BC 的中点O ,如图.设三棱柱外接球的半径为R .∵三棱柱的外接球的表面积为43π3,∴4πR 2=43π3,∴R =4312.又R =OA =OB 2+AB 2= OB 2+⎝⎛⎭⎫2332=4312,∴OB =32,∴该三棱柱的高为BC =2OB =3.6.在三棱锥P -ABC 中,已知PA ⊥底面ABC ,∠BAC =60°,PA =2,AB =AC =3,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( ) A.4π3 B.82π3C .8πD .12π解析:选C 由题易知△ABC 是等边三角形.如图,作OM ⊥平面ABC ,其中M 为△ABC 的中心,且点O 满足OM =12PA =1,则点O 为三棱锥P -ABC 外接球的球心.于是,该外接球的半径R =OA =AM 2+OM 2=⎝⎛⎭⎫32×3×232+12= 2.故该球的表面积S =4πR 2=8π. 7.(多选)已知四棱台ABCD -A1B 1C 1D 1的上下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=2,则下述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π解析:选AD 由棱台性质,画出切割前的四棱锥如图所示,由于AB =22,A 1B 1=2,可知△SA 1B 1与△SAB 相似比为1∶2,则SA =2AA 1=4,AO =2,则SO =23,则OO 1=3,该四棱台的高为3,A 正确;因为SA =SC =AC =4,所以AA 1与CC 1夹角为60°,不垂直,B 错误;该四棱台的表面积为S =S 上底+S 下底+S 侧=2+8+4×2+222×142=10+67,C 错误;由于上下底面都是正方形,则外接球的球心在OO 1上,在平面B 1BOO 1中,由于OO 1=3,B 1O 1=1,则OB 1=2=OB ,即点O 到点B 与点B 1的距离相等,则外接球半径r =OB =2,该四棱台外接球的表面积为16π,D 正确.故选A 、D.8.(多选)如图,长方体ABCD -A1B 1C 1D 1的底面是正方形,AA 1=2AB ,E 是DD 1的中点,则( )A .△B 1EC 为直角三角形B .CE ∥A 1BC .三棱锥C 1-B 1CE 的体积是长方体体积的16D .三棱锥C 1-B 1CD 1的外接球的表面积是正方形ABCD 面积的6π倍解析:选ACD 令AA 1=2AB =2a ,在△B 1EC 中,B 1E =3a ,EC =2a ,B 1C =5a ,所以B 1E 2+EC 2=B 1C 2,则△B 1EC 为直角三角形,故A 正确;因为A 1B 与D 1C 平行,而CE 与D 1C 相交,所以CE 与A 1B 不平行,故B 错误;三棱锥C 1-B 1CE 的体积为VC 1-B 1CE=VB 1-C 1CE =13×12×2a 2×a =a 33,VABCD -A 1B 1C 1D 1=2a 3,则三棱锥C 1-B 1CE 的体积是长方体体积的16,故C 正确;因为三棱锥C 1-B 1CD 1的外接球就是长方体ABCD -A 1B 1C 1D 1的外接球,所以三棱锥C 1-B 1CD 1的外接球半径R =a 2+a 2+(2a )22=6a 2,三棱锥C 1-B 1CD 1的外接球的表面积为S =4π×⎝⎛⎭⎫6a 22=6a 2π,又S 正方形ABCD =a 2,所以三棱锥C 1-B 1CD 1的外接球的表面积是正方形ABCD 面积的6π倍,故D 正确.故选A 、C 、D.9.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A .10 3 cmB .10 cmC .10 2 cmD .30 cm解析:选B 依题意,在四棱锥S -ABCD 中,所有棱长均为20 cm ,连接AC ,BD 交于点O ,连接SO ,则SO =AO =BO =CO =DO =10 2cm ,易知点O 到AB ,BC ,CD ,AD 的距离均为10 cm ,在等腰三角形OAS 中,AO =SO =10 2 cm ,SA =20 cm ,所以O 到SA 的距离d =10 cm ,同理可证O 到SB ,SC ,SD 的距离也为10 cm ,所以球心为四棱锥底面ABCD 的中心O ,所以皮球的半径r =10 cm.10.底面边长与侧棱长均相等的正四棱锥(底面为正方形,顶点在底面上的射影为正方形的中心)的外接球半径与内切球半径的比值为( ) A.3+1 B .3 C.2+1 D .2解析:选A 不妨设其棱长为2,外接球的半径为R ,内切球的半径为r ,如图.则BO =12BD =12×22=2,PO = PB 2-BO 2=2,PM = PC 2-CM 2=3,所以可知O 即为该几何体外接球的球心,故R = 2.因为V P -ABCD =4×13×S △PCD ×r +13×S 四边形ABCD ×r =13×S 四边形ABCD ×PO ,又S 四边形ABCD =22=4,S △PCD =12·CD ·PM =3,所以内切球半径为r =23+1,于是R r =2×3+12=3+1,故选A.11.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. 解析:设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,故V 1V 2=πR 2·2R 43πR 3=32. 答案:3212.在四棱锥P -ABCD 中,底面ABCD 是边长为2a 的正方形,PD ⊥底面ABCD ,且PD =2a .若在这个四棱锥内放一球,则此球的最大半径为________.解析:由题意知,当球与四棱锥各面均相切,即内切于四棱锥时球的半径最大.作出其侧视图,如图所示.易知球的半径r =(2-2)a .答案:(2-2)a13.三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,且三棱柱的侧面积为3 3.若该三棱柱的顶点都在同一个球O 的表面上,则球O 的表面积的最小值为________.解析:如图,∵三棱柱ABC -A1B 1C 1为正三棱柱,∴设A 1C 1=a ,BB 1=h ,∴三棱柱的侧面积为3a ·h =33,∴ah = 3.又球O 的半径R =⎝⎛⎭⎫a 32+⎝⎛⎭⎫h 22≥2·a 3·h 2=1,当且仅当a 3=h 2,且ah =3,即a =62,h =2时,等号成立.∴球O 的表面积S =4πR 2≥4π.答案:4π14.粽子古称“角黍”,是中国传统的节庆食品之一,由粽叶包裹糯米等食材蒸制而成.因各地风俗不同,粽子的形状和味道也不同,某地流行的“五角粽子”,其形状可以看成所有棱长均为8 cm 的正四棱锥,则这个粽子的表面积为________cm 2.现在需要在粽子内部放入一颗咸蛋黄,蛋黄的形状近似地看成球,则当这个蛋黄的体积最大时,其半径与正四棱锥的高的比值为________.解析:如图,正四棱锥P -ABCD 的表面积S P -ABCD =4S △PAB +S 正方形ABCD=4×34×8×8+8×8=64(3+1)(cm 2).设该正四棱锥的高为h ,体积为V ,内切球半径为r ,则由r =3V S P -ABCD ,h =3V S 正方形ABCD,得r h =S 正方形ABCD S P -ABCD =8×864(3+1)=3-12. 答案:64(3+1) 3-12。
高三总复习数学课件 空间几何体的截面、球的切(接)问题
[解析] 如图,依题意,平面α与棱BA,BC,BB1所在直线所 成角都相等,容易得到平面AB1C符合题意,进而所有平行于平面 AB1C的平面均符合题意.由对称性,知过正方体ABCD-A1B1C1D1 中心的截面面积应取最大值,此时截面为正六边形EFGHIJ.易
知正六边形EFGHIJ的边长为
2 2
,将该正六边形分成6个边长为
已知点M是棱长为2的正方体ABCD-A1B1C1D1的棱AD的中点,点P在平面BCC1B1所
在的平面内.若平面D1PM分别与平面ABCD和平面BCC1B1所成的锐二面角相等,
则点P与点C1的最短距离是
()
A.2 5 5
B.
2 2
C.1
D.
6 3
解析:设P在平面ABCD上的射影为P′,M在平面BB1C1C上的射影为M′(图略),平面
答案:C
立体几何中的最值问题
如图,平面ACD⊥α,B为AC的中点,|AC|=2,∠CBD=60°,P为α内的
动点,且点P到直线BD的距离为 3,则∠APC的最大值为
()
A.30° C.90°
B.60° D.120°
[解析] 因为点P到直线BD的距离为 3 ,所以空间中到直线BD的距离为 3 的 点构成一个圆柱面,如图所示,它和平面α相交得一椭圆,即点P在α内的轨迹为一 个椭圆,B为椭圆的中心,b= 3 ,a= sin 630°=2,则c=1,所以A,C为椭圆的焦 点.因为椭圆上的点关于两焦点的张角在短轴的端点取得最大值,所以∠APC的最 大值为60°.故选B.
D1PM与平面ABCD和平面BCC1B1所成的锐二面角分别为α,β,则cos
α=
S△DP′M S△D1PM
,
cos β=SS△△PDM1′PMC1.因为cos α=cos β,所以S△DP′M=S△PM′C1,设P到C1M′距离
高三总复习数学课件 与球有关的切、托问题
[方法技巧] 由几何体外接球的定义可知,几何体的各顶点到球心的距离相等.常见的 两种情况是: (1)若四面体的两个面是公共斜边的直角三角形,则球心是斜边的中点; (2)直三棱柱的外接球的球心在该直三棱柱的上下底面三角形外心的连线的 中点处.
[针对训练]
1.(2022·宣城期末)在三棱锥 P-ABC 中,PA⊥平面 ABC,AP=2,AB=2 2,
[针对训练]
1.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-
ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个
顶点都在球O的球面上,则球O的表面积为
()
A.12π B.20π C.24π
D.32π
解析:将三棱锥P-ABC放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA=AB=2,AC=4, △ABC为直角三角形,所以BC=2 3 .设外接球的半径为R, 依题意可得(2R)2=4+4+12=20,故R2=5,则球O的表面 积为S=4πR2=20π. 答案:B
球心O到底面△PAB的距离为d=
1 2
AC=1,由
正弦定理,可得△PAB的外接圆的半径为r=12×sinPA60°= 23,所以球O的半径为
R= d2+r2= 12+ 2 2= 3
[答案]
77 (1) 6 π
28π (2) 3
73,所以球O的表面积为S=4πR2=4π×73=283π.
[方法技巧] 补形求心的常用模型
+OG2=DO2,即 23a×232+12a2=1,得 a=2 721,故正三棱
柱
的
体
积
为
1 2
a2×
3 2
×a
(完整版)球的切接问题专题
专题:球的切接问题 一.知识点1. 正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
设正方体的棱长为a ,球半径为R 。
如图1,截面图为正方形EFGH 的内切圆,得2a R =;2与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点, 如图2作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
3正方体的外接球:正方体的八个顶点都在球面上,如图3,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。
4.正四面体的外接球和内切球如图4所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R . 正四面体的表面积223434a a S =⨯=表. 正四面体的体积22221234331BE AB a AE a V BCD A -=⨯⨯=- 322212233123a a a a =⎪⎪⎭⎫ ⎝⎛-= 图1 图2图3图4BCD A V r S -=⋅表31,a aaS V r BCD A 12631223323=⨯==∴-表在BEO Rt ∆中,222EO BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46=,得r R 3= 小结:正四面体内切球半径是高的14,外接球半径是高的345.长方体的外接球:即正方体的各顶点都在球面上。
设长方体的棱长分别为a ,b ,c 。
怎么作平面截图来反映半径和边长的关系?结论:由图形(4)我们可以发现外接球的半径2222c b a R ++=二、题型与方法归类 例1、(1)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________.本题主要考查简单的组合体和球的表面积.画出球的轴截面可得,球的直径是正方体的对角线,所以有球的半径R =332,则该球的表面积为S =4πR 2=27π.故填27π (2) 求棱长为1的正四面体外接球的体积.设SO 1是正四面体S -ABC 的高,外接球的球心O 在SO 1上,设外接球半径为R ,AO 1=r , 则在△ABC 中,用解直角三角形知识得r =33, 从而SO 1=SA 2-AO 21=1-13=23, 在Rt △AOO 1中,由勾股定理得R 2=(23-R )2+(33)2,解得R =64, ∴V 球=43πR 3=43π(64)3=68π.变式练习:1已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积( C )A .16πB .20πC .24πD .32π2已知正方体外接球的体积是323π,那么正方体的棱长等于( D ) A .2 2 B.233 C.423 D.433解析 由题意知V =43πR 3=32π3,∴R =2,外接球直径为4,即正方体的体对角线,设棱长为a ,则体对角线l =3a =4,a =433.3.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为________,体积为________.【解析】 外切圆柱的底面半径为R ,高为2R ,∴S 表=S 侧+2S 底=2πR ·2R +2πR 2=6πR 2,V 圆柱=πR 2·2R =2πR 3. 【答案】 6πR 2;2πR 3例2、已知A 、B 、C 、D 是球O 面上的四个点,OA 、OB 、OC 两两垂直,且OA =1,OB =2,OC =3,求球的体积与表面积。
与球有关的切、接问题(有答案)
与球有关的切、接问题1.球的表面积公式:S =4πR 2;球的体积公式V =43πR 3 2.与球有关的切、接问题中常见的组合: (1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a 2(r 为内切球半径). ②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1-AB 1D 1的外接球的球心和正方体ABCD -A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a . ②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长). 角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2 D.22解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π. 答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R=94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A. [类题通法]“切”“接”问题的处理规律1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[牛刀小试]1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3 C .25π D.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π.2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D. 3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B.3 C .2 6 D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3. 4.(2015·山西四校联考)将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A -BCD ,则四面体A -BCD 的外接球的体积为________.解析:设AC 与BD 相交于O ,折起来后仍然有OA =OB =OC =OD ,∴外接球的半径r =32+422=52,从而体积V =4π3×⎝⎛⎭⎫523=125π6. 5.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.解析:设等边三角形的边长为2a ,则V 圆锥=13·πa 2·3a =33πa 3;又R 2=a 2+(3a -R )2,所以R =233a ,故 V 球=4π3·⎝⎛⎭⎫233a 3=323π27a 3,则其体积比为932. [高考全国课标卷真题追踪]1.(15课标1理)已知,A B 是球O 的球面上两点,090AOB ∠=,C 为该球面上的动点,若O ABC -三棱锥体积的最大值为36,则球O 的表面积为( C )(A)36π (B)64π (C)144π (D)256π2.(13课标1理)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( A )(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π 3.(12课标理)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( A )(A)26 (B)36 (C)23 (D )224.(12课标文)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( B )(A )6π (B )43π (C )46π (D )63π5.(10新课标理)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( B )(A) 2a π (B) 273a π (C) 2113a π (D) 25a π 6.(10新课标文)设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为( B )(A )23a π (B )26a π (C )212a π (D )224a π 7.(07新课标文)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是(D)A.π B.2π C.3π D.4π8.(13新课标2文)已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为24π。
微专题6 与球有关的切、接、截面问题 --2025年高考数学复习讲义及练习解析
球的切、接、截面问题是历年高考的热点内容,常以选择题、填空题的形式出现,一般围绕球与其他几何体的内切、外接问题命题,考查球的体积、表面积等.类型一外接球解决与外接球相关问题的关键是确定球心,然后通过球心和接点作截面,进而将球的外接问题转化为平面几何问题,利用平面几何知识来分析、处理.例1(1)(2024·江苏启东中学阶段考试)已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB =5,BC=7,AC=2,则此三棱锥的外接球的体积为()A.8π3B.82π3C.16π3D.32π3答案B解析由题意知,可将三棱锥放入长方体中考虑,则长方体的外接球即为三棱锥的外接球,故球的半径为长方体体对角线的一半,设PA=x,则PB2+PC2=BC2=7,即5-x2+4-x2=7,解得x=1,故PA=1,PB=2,PC=3,所以R=12+22+(3)22=2,所以此三棱锥的外接球的体积为43πR3=82π3.(2)(2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π答案A解析设正三棱台上、下底面所在圆面的半径分别为r1,r2,所以2r1=33sin60°,2r2=43sin60°,则r1=3,r2=4.设球心到上、下底面的距离分别为d1,d2,球的半径为R(R≥4),所以d1=R2-9,d2=R2-16,故|d1-d2|=1或d1+d2=1,即|R2-9-R2-16|=1或R2-9+R2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.故选A.(3)(2023·全国乙卷)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=________.答案2解析如图,将三棱锥S-ABC转化为直三棱柱SMN-ABC,设△ABC的外接圆的圆心为O1,半径为r,则2r=ABsin∠ACB=332=23,可得r= 3.设三棱锥S-ABC的外接球的球心为O,连接OA ,OO 1,则OA =2,OO 1=12SA ,因为OA 2=O 1A 2+OO 21,即4=3+14SA 2,所以SA =2.(4)(2022·新高考Ⅰ卷改编)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是________.答案274,643解析如图,设该球的半径为R ,球心为O ,正四棱锥的底边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,则正四棱锥的底边长a =2l sin θ,高h =l cos θ.依题意,得36π=43πR 3,解得R =3.在△OPC 中,作OE ⊥PC ,垂足为E ,则可得cos θ=l 2R =l6∈12,32,所以l =6cos θ,所以正四棱锥的体积V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2.设sin θ=t ,易得t ∈12,32.令y =sin θcos 2θ=t (1-t 2)=t -t 3,则y ′=1-3t 2,令y ′=0,得t =33,所以当12<t <33时,y ′>0;当33<t <32时,y ′<0,所以函数y =t -t 3,.又当t =33时,y =239;当t =12时,y =38;当t =32时,y =38.所以38≤y ≤239,所以274≤V ≤643.所以该正四棱锥的体积的取值范围是274,643.1.求解几何体外接球半径的思路一是根据球的截面的性质,利用球的半径R 、截面圆的半径r 及球心到截面圆的距离d 三者的关系R 2=r 2+d 2求解,其中,确定球心的位置是关键;二是将几何体补成长方体,利用该几何体与长方体共有外接球的特征,由外接球的直径等于长方体的体对角线长求解.2.确定球心常用的方法(1)长方体或正方体的外接球的球心是其体对角线的中点.(2)正棱柱的外接球的球心是上、下底面中心连线的中点.(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点.(4)正棱锥的外接球的球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到.1.(2024·福建宁德一中高三模拟)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,BC =1,AB =3,AA 1=23,则该直三棱柱的外接球的体积为()A .8π3B .16π3C .32π3D .64π3答案C解析如图所示,将直三棱柱ABC -A 1B 1C 1补成长方体,则长方体的外接球即为直三棱柱的外接球.长方体的体对角线长为(23)2+(3)2+1=4,设长方体的外接球的半径为R ,则2R =4,解得R =2,所以该直三棱柱的外接球的体积V =43πR 3=32π3.故选C.2.(2024·鞍山一中高三模拟)在三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,则三棱锥P -ABC 外接球的表面积为()A .26πB .12πC .8πD .24π答案A解析三棱锥P -ABC 中,PA =BC =4,PB =AC =5,PC =AB =11,如图,构造长方体,使得面上的对角线长分别为4,5,11,则长方体的体对角线长等于三棱锥P -ABC 外接球的直径,设长方体的棱长分别为x ,y ,z ,则x 2+y 2=16,y 2+z 2=25,x 2+z 2=11,则x 2+y 2+z 2=26,因此三棱锥P -ABC 外接球的直径为26,所以三棱锥P -ABC 外接球的表面积为=26π.故选A.3.(2024·四川遂宁高三期末)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为________.答案16π解析球心O 在平面ABC 的投影为△ABC 的中心,设为O 1,连接OD ,OO 1,OA ,设H 是AD 的中点,连接OH ,如图所示,则AO 1=32sin60°=3,OA =OD =R ,则OH ⊥AD ,四边形AO 1OH 为矩形,OO 1=AH =1,R 2=AO 21+OO 21=3+1=4,故R =2,S=4πR 2=16π.4.(2022·全国乙卷改编)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为________.答案33解析设该四棱锥的底面为四边形ABCD ,四边形ABCD 所在小圆的半径为r ,四边形ABCD对角线的夹角为α,则S 四边形ABCD =12AC ·BD sin α≤12AC ·BD ≤12·2r ·2r =2r 2(当且仅当四边形ABCD为正方形时,等号成立),即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 的面积的最大值为2r 2,设该四棱锥的高为h ,则r 2+h 2=1,所以V O -ABCD =13·2r 2·h =23r 2·r 2·2h 2≤23=4327,当且仅当r 2=2h 2,即h =33时,等号成立.类型二内切球解决与内切球相关的问题,其通法也是作截面,将空间几何问题转化为平面几何问题来解决.例2(1)(2024·广东广州模拟)已知一个圆台的母线长为5,且它的内切球的表面积为16π,则该圆台的体积为()A .25πB .84π3C .28πD .36π答案C解析由圆台的内切球的表面积为16π,可得球的半径为2.设圆台上、下底面圆的半径分别为x ,y ,作出圆台的轴截面如图所示.+y =5,2+(y -x )2=52,=1,=4.又圆台的高为4,所以该圆台的体积为13×(π+16π+π×16π)×4=28π.故选C.(2)已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________.答案2-1解析如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE =2.所以S 三棱锥表=3×12×23×2+33=36+33.因为PD =1,所以三棱锥的体积V =13×33×1=3.设内切球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3,得r =3336+33=2-1.(3)(2023·全国甲卷)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CD ,A 1B 1的中点,则以EF 为直径的球面与正方体每条棱的交点总数为________.答案12解析如图,不妨设正方体的棱长为2,EF 的中点为O ,取AB ,BB 1的中点G ,M ,侧面BB 1C 1C 的中心为N ,连接FG ,EG ,OM ,ON ,MN ,由题意可知,O 为球心,在正方体中,EF =FG 2+EG 2=22+22=22,即R =2,则球心O 到BB 1的距离为OM =ON 2+MN 2=12+12=2,所以球O 与棱BB 1相切,球面与棱BB 1只有1个交点,同理,根据正方体的对称性知,球面与其余各棱也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.“切”的问题常用的处理方法(1)找准切点,通过作过球心的截面来解决.(2)通过体积分割法来求内切球的半径.5.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2π3解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22,故内切球的体积为43π×=2π3.6.(2024·山东烟台模拟)某学校开展手工艺品展示活动,某同学用塑料制作了如图所示的手工艺品,其外部为一个底面边长为6的正三棱柱,内部为一个球,球的表面与三棱柱的各面均相切,则该内切球的表面积为________,三棱柱的顶点到球的表面的最短距离为________.答案12π15-3解析过侧棱的中点作正三棱柱的截面,如图所示,则球心为△MNG 的中心.因为MN=6,所以△MNG内切圆的半径r=OH=13MH=13MN2-HN2=3,即内切球的半径R=3,所以内切球的表面积S=4πR2=12π.又正三棱柱的高AA1=2R=23,OM=23 MH=23,所以AO=OM2+AM2=(23)2+(3)2=15,所以点A到球的表面的最短距离为AO-R=15- 3.类型三球的截面、截线问题解决球的截面、截线问题的关键是利用球的截面的性质.例3(1)(2024·云南昆明模拟)已知OA为球O的半径,M为线段OA上的点,且AM=2MO,过点M且垂直于OA的平面截球面得到圆M,若圆M的面积为8π,则OA=()A.22B.3C.23D.4答案B解析如图所示,由题意,得π×BM2=8π,则BM=2 2.设球的半径为R,则MO=13R,OB=R,所以R2=19R2+(22)2,所以OA=R=3.故选B.(2)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π答案A解析设⊙O1的半径为r,球的半径为R,依题意,得πr2=4π,∴r=2.由正弦定理可得AB sin60°=2r,∴AB=2r sin60°=23,∴OO1=AB=23.根据球的截面性质,得OO1⊥平面ABC,∴OO1⊥O1A,R=OA=OO21+O1A2=OO21+r2=4,∴球O的表面积S=4πR2=64π.故选A.(3)(2020·新高考Ⅰ卷)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.答案2π2解析如图所示,取B 1C 1的中点为E ,BB 1的中点为F ,CC 1的中点为G ,连接D 1E ,EF ,EG ,D 1B 1,因为∠BAD =60°,直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =3,D 1E ⊥B 1C 1.又四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥D 1E .因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB .设P 为侧面B 1C 1CB 与球面的交线上的点,连接D 1P ,EP ,则D 1E ⊥EP .因为球的半径为5,D 1E =3,所以EP =D 1P 2-D 1E 2=5-3=2,所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为2.因为EF =EG =2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ︵.因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2,所以根据弧长公式可得交线长l =π2×2=2π2.(1)球的截面一定是一个圆面.(2)球心和小圆圆心连线垂直于小圆圆面.(3)过球内一点作球的截面,最大截面为过球心的圆面,最小截面为过该点且垂直于球心和该点连线的截面.7.(2024·江苏苏州校考阶段练习)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图是一个圆柱容球,O 1,O 2为圆柱两个底面的圆心,O 为球心,EF 为底面圆O 1的一条直径,若球的半径R =2,则(1)平面DEF 截得球的截面面积的最小值为________;(2)若P 为球面和圆柱侧面的交线上一点,则PE +PF 的取值范围为______________.答案(1)16π5(2)[25+2,43]解析(1)过点O 在平面ABCD 内作OG ⊥DO 1,垂足为G ,如图所示,易知O 1O 2⊥CD ,O 1O 2=4,O 2D =2,由勾股定理,可得O 1D =O 1O 22+O 2D 2=25,则由题意,可得OG =12×O 1O 2×O 2D O 1D =12×4×225=255,设点O 到平面DEF 的距离为d 1,平面DEF 截得球的截面圆的半径为r 1,因为O 1D ⊂平面DEF ,当OG ⊥平面DEF 时,d 1取得最大值OG ,即d 1≤OG =255,所以r 1=4-d 21≥4-45=455,所以平面DEF 截得球的截面面积的最小值为=16π5.(2)由题意可知,点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ′,则PP ′=2,PE =22+P ′E 2=4+P ′E 2,PF =22+P ′F 2=4+P ′F 2,由勾股定理,可得P ′E 2+P ′F 2=16,令P ′F 2=8-t ,则P ′E 2=8+t ,其中-8≤t ≤8,所以PE +PF =12+t +12-t ,所以(PE +PF )2=(12+t +12-t )2=24+2144-t 2∈[24+85,48],因此PE +PF ∈[25+2,43].。
高考数学专题19 几何体中与球有关的切、接问题(解析版)
专题19 几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①假设球为正方体的外接球,那么2R =3a ;②假设球为正方体的内切球,那么2R =a ;③假设球与正方体的各棱相切,那么2R =2a .(2)假设长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,那么2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,那么球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2021年高考全国Ⅰ卷理数】,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,假设⊙1O 的面积为4π,1AB BC AC OO ===,那么球O 的外表积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的外表积2464S R ππ==.应选:A.此题考查球的外表积,应用球的截面性质是解题的关键,考查计算求解能力,属于根底题.例2、【2021年高考天津】假设棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的外表积为2244336S R πππ==⨯=. 应选:C .此题考查正方体的外接球的外表积的求法,求出外接球的半径是此题的解题关键,属于根底题.求多面体的外接球的面积和体积问题,常用方法有:〔1〕三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;〔2〕直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;〔3〕如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 例3、〔2021届山东省潍坊市高三上学期统考〕边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,那么过A ,B ,C ,D 四点的球的外表积为〔 〕A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==24(52S ππ==,应选C.例4、〔2021届山东省日照市高三上期末联考〕四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,那么四棱锥P ABCD -外接球体积为〔 〕A .BCD .【答案】A【解析】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD , 平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD ,四棱锥P ABCD -的体积是,13AB AB PQ =⨯⨯⨯13AB AB AB =⨯⨯,所以边长6AB =,PQ =OH x =,OM x =,()(222222R OA OM AM x ==+=+,2222223R OP OH PH x ==+=+,x =2212321R =+=343V R π==球.应选:A.例5、〔2021届山东省德州市高三上期末〕中国古代数学经典?九章算术?系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =,假设鳖臑P ADE -的外接球的体积为,那么阳马P ABCD -的外接球的外表积等于______.【答案】20π 【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED ,所以,ADE ∆的外接圆半径为122AE r ===设鳖臑P ADE -的外接球的半径1R ,那么3143R π=,解得1R =.PA ⊥平面ADE ,1R ∴=,可得2PA ==PA ∴正方形ABCD 的外接圆直径为22r AC ==,2r ∴=PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的外表积为22420R ππ=. 故答案为:20π.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2021年高考全国Ⅲ卷理数】圆锥的底面半径为1,母线长为3,那么该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如下图, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM =122S =⨯⨯=△ABC 设内切圆半径为r ,那么:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r =π=π.. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出适宜的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、〔2021届山东省潍坊市高三上期中〕如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如下图粽子形状的六面体,那么该六面体的外表积为__________;假设该六面体内有一小球,那么小球的最大体积为___________.【答案】2 729【解析】〔1〕因为16(1222S =⨯⨯⨯=,所以该六面体的外表积为2. 〔2〕由图形的对称性得,小球的体积要到达最大,即球与六个面都相切时,2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()63R R =⨯⇒=,所以球的体积3344()393297V R ππ===.故答案为:. 二、达标训练1、〔2021届山东省泰安市高三上期末〕正三棱锥S ABC -的侧棱长为6,那么该正三棱锥外接球的外表积是〔 〕 A .16π B .20πC .32πD .64π【答案】D【解析】如下图,因为正三棱锥S ABC -的侧棱长为6,那么263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =, 所以球的外表积为2464S R ππ==, 应选D.2、【2021年高考全国II 卷理数】△ABC 的等边三角形,且其顶点都在球O 的球面上.假设球O的外表积为16π,那么O 到平面ABC 的距离为A B .32C .1D 【答案】C【解析】设球O 的半径为R ,那么2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.应选:C .此题考查球的相关问题的求解,涉及到球的外表积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3、【2021年高考全国Ⅰ卷理数】三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,那么球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一局部,2R ==即344π33R V R =∴=π==,应选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,2R ∴=,344338V R ∴=π=π⨯=,应选D.此题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.4、【2021年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B .C .D .【答案】B【解析】如下图,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABCS AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=, ()max 163D ABC V -∴=⨯= B.5、【2021年新高考全国Ⅰ卷】直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,那么1DE EP ⊥,1D E ,所以||EP ===所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG ==11BC CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==.故答案为:2. 6、〔2021届山东省滨州市三校高三上学期联考〕三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.假设三棱锥S ABC -的四个顶点都在同一球面上,那么该球的外表积为________.【答案】13π【解析】如图:SA ⊥平面ABC ,那么SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan 3SAAB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心,连结,,,,OA OB GA GB OG ,那么必有OG ⊥面ABC在ABC ∆,2222cos31216AC AB BC AB BC π=+-⋅⋅=+-=, 那么1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的外表积为21344134S R πππ==⨯=, 故答案为:13π.7、〔2021届山东省枣庄、滕州市高三上期末〕如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC ,那么PA 与平面ABC 所成角的大小为________;三棱锥P -ABC外接球的外表积是________.【答案】45︒ 6π【解析】如图,作平行四边形ABCD ,连接PD ,由AB BC ⊥,那么平行四边形ABCD 是矩形.由BC CD ⊥,BC PC ⊥,PC CD C =,∴BC ⊥平面PCD ,而PD ⊂平面PCD ,∴BC PD ⊥,同理可得AB PD ⊥,又AB BC B ⋂=,∴PD ⊥平面ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,CD AB PC ===1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.由,PA AB ⊥PC BC ⊥知PB 的中点到,,,A B C P 的距离相等,PB 是三棱锥P -ABC 外接球的直径.由BC ⊥平面PCD 得BC PC ⊥,PB ===24()62PB S ππ==. 故答案为:45︒;6π.8、〔2021届山东省烟台市高三上期末〕三棱锥P ABC -的四个顶点都在球O 的外表上,PA ⊥平面ABC ,6PA =,AB =2AC =,4BC =,那么:〔1〕球O 的外表积为__________;〔2〕假设D 是BC 的中点,过点D 作球O 的截面,那么截面面积的最小值是__________.【答案】52π 4π【解析】〔1〕由题,根据勾股定理可得AC AB ⊥,那么可将三棱锥P ABC -可放入以,,AP AC AB 为长方体的长,宽,高的长方体中,那么体对角线为外接球直径,即2r ==,那么r =,所以球的外表积为224452r πππ=⨯=;〔2〕由题,因为Rt ABC ,所以D 为底面ABC 的外接圆圆心,当DO ⊥截面时,截面面积最小,即截面为平面ABC ,那么外接圆半径为2,故截面面积为224ππ⨯=故答案为:〔1〕52π;〔2〕4π9、〔2021届山东省滨州市高三上期末〕在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC =________,该四面体外接球的外表积为________.8π【解析】因为2SA SB ==,且SA SB ⊥,BC ,AC =AB ==因此222BC AC AB +=,那么AC BC ⊥;取AB 中点为O ,连接OS ,OC ,那么OA OB OC OS ====所以该四面体的外接球的球心为O ,半径为OC =所以该四面体外接球的外表积为248S ππ=⋅=;又因为SA SB =,所以SO AB ⊥;因为底面三角形ABC 的面积为定值122AC BC ⋅=,SO因此,当SO ⊥平面ABC 时,四面体的体积最大,为13ABC V S SO =⋅=故答案为:(1). (2). 8π10、〔2021届山东省济宁市高三上期末〕下列图是两个腰长均为10cm 的等腰直角三角形拼成的一个四边形ABCD ,现将四边形ABCD 沿BD 折成直二面角A BD C --,那么三棱锥A BCD -的外接球的体积为__________3cm .【答案】【解析】由题设可将该三棱锥拓展成如下图的正方体,那么该正方体的外接球就是三棱锥的外接球,由于正方体的对角线长为2l R ==即球的半径R =该球的体积343V R π==,应填答案.。
专题15 几何体与球切、接、截的问题(讲)【解析版】
第一篇 热点、难点突破篇专题15几何体与球切、接、截的问题(讲)1.(2021·全国·统考高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%.(全国统考高考真题)已知为球O 的球面上的三个点,⊙1为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A .64π B .48πC .36πD .32π【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出截面性质,求出球的半径,即可得出结论,球的半径为,ABC 为等边三角形,sin 602r ︒=,根据球的截面性质211OO O +264R π=.3.(2022·全国·统考高考真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( ) A .13B .12C D由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a ,底面所在圆的半径为r ,则r =,所以该四棱锥的高h 13V a =令2(02)a t t =<<,V 设()322t t f t =-,则()2322t f t t -'=,403t <<,()0f t '>,单调递增, 423t <<,()0f t '<,单调递减,所以当43t =时,V 最大,此时h故选:C.【整体点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解; 方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.(一)规律与预测(1)以几何体的结构特征为基础,考查几何体的面积体积计算为主,题型基本稳定为选择题或填空题,难度中等以下;也有几何体的面积或体积在解答题中与平行关系、垂直关系等相结合考查的情况.(2)与立体几何相关的“数学文化”、实际问题等相结合,考查数学应用.(3)几何体的表面积与体积是主要命题形式.有时作为解答题的一个构成部分考查几何体的表面积与体积,有时结合面积、体积的计算考查等积变换等转化思想.几何体与球的切、接、截问题,往往是知识考查的载体.(4)以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理,对命题的真假进行判断,属于基础题.空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问,第(2)问则考查几何体面积、体积的计算. (二)本专题考向展示考向一 空间几何体的外接球(1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R ; ②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R .(4)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R .(5)正四面体的外接球与内切球的半径之比为3∶1. 【典例分析】典例1. (2022·全国·校联考模拟预测)已知,,A B C 均在球O 的球面上运动,且满足π3AOB ∠=,若三棱锥O ABC -体积的最大值为6,则球O 的体积为( )A .12πB .48πC .D .【答案】C【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,等体积法即可解决.【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大, 典例2.(2022秋·河南·高三信阳高中校联考期末)如图,已知长方体1111的体积为16,122AB AA BC ==,1AD 与1A D 相交于点E ,则三棱锥E ACD -的外接球的表面积为( )A .12πB .16πC .20πD .36π【答案】C【分析】根据已知线面关系,判断三棱锥E ACD -的外接球球心的位置并计算出求得半径,从而得外接球的表面积即可. 【详解】解:方法一:设1222AB AA BC x ===,则由长方体的体积公式,得216x x x ⋅⋅=,解得2x =, 所以1224AB AA BC ===,由题可知,四边形11ADD A 为正方形,所以AE DE ⊥, 所以EAD 外接圆的圆心为AD 的中点,记为点M ,如下图:又ACD 是直角三角形,同理ACD 外接圆的圆心为AC 的中点,记为点N , 过点M ,N 分别作平面与平面ACD 所以三棱雉的外接球的球心是25AC =,所以外接球半径12R AC =故选:C.方法二:设2x =,则由长方体的体积公式,得则三棱锥E ACD -的外接球,即为正四棱柱EAFD E BFC -的外接球,AC 为外接球的直径.面ABC 外一点,PO ⊥平面ABC ,二面角P AB C 的大小为60°,则三棱锥-P ABC 外接球的表面积为______. PAB C 的平面角为2OC ,可得球的半径,即可得结果的中心,则OA OB =P AB C 的平面角为323,32OC OD PO OD, 则三棱锥-P ABC 的外接球的球心M 在直线23R ⎫+⎪⎭,解得74R =,249【点睛】结论点睛:球的相关性质: 1.空间几何体的外接球是高中数学的重难点.我们可以通过对几何体的割补或寻求几何体外接球的球心两大策略求解此类问题.2.关键在于利用几何体的结构特征确定球的球心,利用球的截面的性质,球心和球的截面的中心连线垂直于截面.结合相关几何量之间的数量关系可确定球心.考向二 空间几何体的内切球1.确定锥体内切球球心的方法(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. (2)正多面体的内切球和外接球的球心重合.(3)正棱锥的内切球和外接球的球心都在高线上,但不一定重合. 2.多面体的内切球可利用等积法求半径. 【典例分析】典例4.(2022秋·四川巴中·高三南江中学校考阶段练习)一个圆锥的侧面展开图是半径为1的半圆,则此圆锥的内切球的表面积为( ) A .π B .π2C .π3D .π4典例5.(2022秋·山东·高三利津县高级中学校联考阶段练习)已知三棱柱111中,1C C AC ⊥,1A A BC ⊥,平面1A BC ⊥平面1AA B ,5AC =,若该三棱柱存在体积为43π的内切球,则三棱锥1A A BC -体积为( ) A .23B .43C .2D .4【答案】D【分析】由已知条件可证得三棱锥为底面是直角三角形的直三棱柱,根据三棱柱内切球的体积可计算得三棱柱的高,设底面直角三角形的边长,则可列关系式222b a c =+,2c a b +-=即可找到直角三角形的两边长,用体积转换的方法求得体积. 【详解】如图所示,因为1C C AC ⊥,11A A BC C C BC ⊥⇔⊥,ACBC C =,所以1CC ⊥平面ABC ,又因为平面1A BC ⊥平面1AA B ,平面1A BC ⋂平面11AA B A B =,过点A 作1AE A B ⊥,则⊥AE 平面1A BC ,则AE BC ⊥,又因为1BC BB ⊥,所以BC ⊥平面1AA B ,AB ⊂平面11ABB A ,所以AB BC ⊥.球与圆台的两个底面和侧面均相切,则该圆台的侧面积与球的表面积之比为( ) A .136B C .1312 D .43【详解】上图是该几何图形的正视图,由切线长定理可知:,DE DF CH CF == , Rt DGC 中,20,R Rr ∴=20)4r R l R π+⋅=空间几何体与球接、切问题的求解方法(1)确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.(2)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (3)补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.考向三 几何体与球切、接、截综合问题正四面体与球常用的结论 设正四面体的棱长为a,则(1a .(2. 【典例分析】典例7.(多选题)(2022秋·湖北·高三校联考阶段练习)《九章算术》中将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马.已知四棱锥-P ABCD 为阳马,底面ABCD 是边长为2的正方形,其中两条侧棱长都为3,则( )A B .该阳马的表面积为10+C D 中点,内切球的大圆半径其实是PAB 的内切圆半径【详解】如图,不妨PA ⊥底面ABCD ,,,,AB AD PA AD AB =∴两两互相垂直,,,PCB PDC PAC 都是以分析易知:内切球的大圆半径其实是PAB 的内切圆半径,根据内切圆半径公式可得:【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确确定有关元素间的数量关系,正方体的棱长等于球的直径;AP =PB =PC =1,则以点PABC 截得的图像的面积为___________.【答案】83π##83π 是底面ABC 的中心,如图,则33, 232)33=典例9.(2023·全国·高三专题练习)棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E ,F 分别为棱AB ,11A D 的中点,则经过E ,F 球的截面面积的最小值为_________【答案】5π8##5π8 ,所以,在QPO 中,所得的截面的面积的最小值是:典例10.(2022·广西·统考一模)已知棱长为8的正方体1111ABCD A B C D -中,点E 为棱BC上一点,满足14BE BC =,以点E 11BDD B 的交线长为___________.DD ⊥平面ABCD ,OE ⊂平面ABCD ,故DD OE ⊥,EO BD ⊥,1BDDD D =124BC =,故的轨迹是以π242它可以看做是一个正方体截去八个一样的四面体得到的,它的表面是由正三角形和正方形组成,设被截正方体的棱长为2a ,若球О以该几何体的中心为球心,且与正三角形表面相切,则该球被其中一个正方形表面截得的截面面积为__________.2OA OB OM AB AM BM a ======,泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________.【答案】15【分析】作出图形,在球2O 中求得三角形ABC 的面积的最大值为3,作出图形,求得点M 为到平面ABC 的距离最大值为15,根据锥体的体积公式即可求得答案.【详解】解:如图一所示:所以ABC 为直角三角形,且又因为22O A =所以可得AH =,AB m BC =22m n +=212m n =+ABC S =如图二所示:因为球O 的半径为10,16,PQ M =为线段PQ 的中点,15ABC S ⋅体积的最大值是1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.3.几何体的外接球一个多面体的顶点都在球面上即为球的外接问题,解决这类问题的关键是抓住外接球的特点,即球心到多面体的顶点的距离等于球的半径.4.几何体的内切球求解多面体的内切球问题,一般是将多面体分割为以内切球球心为顶点,多面体的各侧面为底面的棱锥,利用多面体的体积等于各分割棱锥的体积之和求内切球的半径.。
2019年人教版高三数学复习---球的切、接、截面问题(有答案)Word版
数学复习---球的切、接、截面问题(附参考答案)一.选择题(共16小题)2.(2014•宝鸡三模)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()D3.(2014•锦州一模)一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为()DC5.(2014•临汾模拟)三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,π6.(2014•沈阳模拟)四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,7.(2013•辽宁)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()C D8.(2013•河池模拟)将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则9.(2013•黄梅县模拟)已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一C D10.(2013•郑州一模)在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()π11.(2013•河池模拟)一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表D12.(2012•南宁模拟)已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥OC D13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()C14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣C D15.(2014•安阳一模)如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为()D16.(2011•琼海一模)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=C D二.填空题(共8小题)17.(2014•乌鲁木齐二模)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________.18.(2014•江西模拟)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为_________.19.(2014•呼伦贝尔二模)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是_________.20.(2014•河南模拟)已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于_________.21.(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为_________.22.(2009•湖南)在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为_________;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为_________.23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是_________.24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r=_________.截面问题一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是__.2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________(只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是_________.4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为_________.5.(2012•桂林模拟)如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为_________.6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是_________.7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为_________.8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为_________.9.(2014•上海二模)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?2015年高三数学复习---球的切接问题组参考答案与试题解析一.选择题(共16小题))R=).2.(2014•宝鸡三模)一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . . .1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.4.三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为()A.B.C.16πD.64π5.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()A.16πB.32πC.48πD.64π6.四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,则球O截直线EF所得弦长为()A.6B.12 C.6D.67.已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.8.将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为()A.25πB.50πC.5πD.10π9.已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()A.B.C.D.10.在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()A.2πB.4πC.6πD.24π11.一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为()12.已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O﹣ABC的体积为()A.B.C.D.13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()A.5 B.C.10 D.14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣AOB 的高为()A.B.C.D.115.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为()A.B.3πC.D.2π16.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.17.直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于_________ .18.正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为_________ .19.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是_________ .20.已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于_________ .21.已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC 的距离为_________ .22.在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为_________ ;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为_________ .23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是_________ .24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r= _________ .截面问题一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是__ .2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________ (只填写序号).3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是_________ .4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为_________ .5.如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为_________ .6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是_________ .7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为_________ .8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为_________ .9.设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()2.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则这个球的表面积是()3.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为()4.三棱锥S﹣ABC的顶点都在同一球面上,且,则该球的体积为()A.B.C.16πD.64π5.三棱锥P﹣ABC的四个顶点均在同一球面上,其中△AB C是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为()6.四个顶点都在球O上的四面体ABCD所有棱长都为12,点E、F分别为棱AB、AC的中点,则球O截直线EF所得弦长为()点评:本题是基础题,考查空间想象能力,正四面体的外接球转化为正方体外接球,使得问题的难度得到降低,问题得到解决,注意正方体的对角线就是球的直径,也是比较重要的.7.已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()8.将长宽分别为3和4的长方形ABCD沿对角线AC折起直二面角,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的表面积为()9.已知半径为5的球O被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为()10.在三棱锥A﹣BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB 的面积分别为、、,则该三棱锥外接球的表面积为()11.一个四面体A﹣BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么这个四面体的外接球的表面积为()A.50πB.25πC.D.考点:球内接多面体;球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由四面体A﹣BCD相对的棱长度相等,将其放置于长方体中,如图所示.由题意得该长方体的外接球就是四面体A﹣BCD的外接球,因此算出长方体的对角线长得到外接球的直径,利用球的表面积公式加以计算,可得四面体A﹣BCD的外接球的表面积.解答:解:将四面体A﹣BCD放置于长方体中,如图所示.∵四面体A﹣BCD的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A﹣BCD的外接球,∵AC=BD=3,AD=BC=4,AB=CD=5,∴长方体的对角线长为=5,可得外接球的直径2R=5,所以R=因此,外接球的表面积为S=4πR2=25π.故选:B点评:本题给出相对棱长相等的四面体,求它的外接球的表面积.着重考查了长方体的性质、长方体的对角线长公式和球的表面积公式等知识,属于中档题.12.已知Rt△ABC的顶点都在半径为4的球O面上,且AB=3,BC=2,∠ABC=,则棱锥O﹣ABC的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:先求AC的值,利用△ABC外接圆是球O的截面圆,球心O在平面ABC的射影点为AC的中点O′,求出OO′,即可求得棱锥O﹣ABC的体积.解答:解:∵AB=3,BC=2,∠ABC=,∴AC=△ABC外接圆是球O的截面圆,球心O在平面ABC的射影点为AC的中点O′,此时OO′==∴棱锥O﹣ABC的体积为=故选A.点评:本题考查棱锥体积的计算,考查球的截面圆,属于基础题.13.在正四棱锥S﹣ABCD中,侧面与底面所成角为,则它的外接球的半径R与内径球半径r的比值为()A.5 B.C.10 D.考点:球内接多面体.专题:计算题;压轴题.分析:由题意通过侧面与底面所成角为,设出正四棱锥的底面边长,求出斜高,侧棱长,求出内切球的半径与正四棱锥底面边长的关系;利用外接球的球心与正四棱锥的高在同一条直线,结合勾股定理求出,外接球的半径与底面边长的关系,即可得到比值.解答:解:由于侧面与底面所成角为,可知底面边长与两个对面斜高构成正三角形,设底面边长为a,则斜高也为a,进而可得侧棱长为,高为四棱锥的内切球半径就是上述正三角形的内切圆半径为,其外接球球心必在顶点与底面中心连线上,半径为R,球心为O,顶点为P,底面中心为O1,底面一个顶点为B,则OB=OP,于是就有:(﹣R)2+()2=R2解得R=.所以两者的比为:.故选D点评:本题是中档题,考查学生的空间想象能力,计算能力推理能力.求出球的半径与正三棱柱的底面边长的关系,是本题的关键.14.已知球O的表面积为20π,SC是球O的直径,A、B两点在球面上,且AB=BC=2,,则三棱锥S﹣AOB 的高为()A.B.C.D.1考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:计算题;压轴题;空间位置关系与距离.分析:将三棱锥S﹣AOB的高,转化为C到平面AOB的距离,利用等体积法,即可求得结论.解答:解:∵球O的表面积为20π,∴球O的半径为,∵SC是球O的直径,∴三棱锥S﹣AOB的高等于C到平面AOB的距离,设为h∵AB=BC=2,,∴cosA==∴sinA=∴△ABC外接圆半径为=2∴O到平面ABC的距离为1∵,∴∴h=故选C.点评:本题考查三棱锥的高,考查三棱锥的体积公式,考查学生的转化能力,属于中档题.15.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为()A.B.3πC.D.2π考点:球内接多面体;球的体积和表面积.专题:计算题;压轴题.分析:说明折叠后几何体的特征,求出三棱锥的外接球的半径,然后求出球的体积.解答:解:由题意平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:;所以球的体积为:=.故选A点评:本题是基础题,考查折叠问题,三棱锥的外接球的体积的求法,考查计算能力,正确球的外接球的半径是解题的关键.16.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为()A.B.C.D.考点:球内接多面体.专题:计算题;压轴题.分析:根据正六棱柱和球的对称性,球心O必然是正六棱柱上下底面中心连线的中点,作出过正六棱柱的对角面的轴截面即可得到正六棱柱的底面边长、高和球的半径的关系,在这个关系下求函数取得最值的条件即可求出所要求的量.解答:解:以正六棱柱的最大对角面作截面,如图.设球心为O,正六棱柱的上下底面中心分别为O,O2,则O是1 O1,O2的中点.设正六棱柱的底面边长为a,高为2h,则a2+h2=9.正六棱柱的体积为,即,则,得极值点,不难知道这个极值点是极大值点,也是最大值点.故当正六棱柱的体积最大,其高为.故选B点评:本题是在空间几何体、导数的应用交汇处命制,解题的关键是建立正六棱柱体积的函数关系式.考生如果对选修系列四的《不等式选讲》较为熟悉的话,求函数的条件可以使用三个正数的均值不等式进行.17.直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.考点:球内接多面体.专题:计算题;压轴题.分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.解答:解:在△ABC中AB=AC=2,∠BAC=120°,可得,由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.18.正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为4π.考点:球内接多面体.专题:计算题;空间位置关系与距离;球.分析:根据题意,将四面体ABCD放置于如图所示的正方体中,则正方体的外接球就是四面体ABCD的外接球.因此利用题中数据算出外接球半径R=,过E点的截面到球心的最大距离为,再利用球的截面圆性质可算出截面面积的最小值.解答:解:将四面体ABCD放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD的外接球,∵正四面体ABCD的棱长为4,∴正方体的棱长为,可得外接球半径R满足,解得R=E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,截面圆的面积达最小值,此时球心O到截面的距离等于正方体棱长的一半,可得截面圆的半径为r==2,得到截面圆的面积最小值为S=πr2=4π.故答案为:4π点评:本题给出正四面体的外接球,求截面圆的面积最小值.着重考查了正方体的性质、球内接多面体和球的截面圆性质等知识,属于中档题.19.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是8 .考点:球内接多面体.分析:根据题意,以AB、AC、AD为长、宽、高作长方体,可得长方体与三棱锥D﹣ABC有相同的外接球.从而算出长方体的对角线长为4,得AB2+AC2+AD2=16.再利用基本不等式求最值即可算出S△ABC+S△ABD+S△ACD的最大值.解答:解:∵AB⊥AC,AD⊥AC,AB⊥AD,∴以AB、AC、AD为长、宽、高,作长方体如图所示可得长方体的外接球就是三棱锥D﹣ABC的外接球∵球的半径为2,可得直径为4∴长方体的对角线长为4,得AB2+AC2+AD2=16∵S△ABC=AB•AC,S△ABD=AB•AD,S△ACD=AC•AD∴S△ABC+S△ABD+S△ACD=(AB•AC+AB•AD+AC•AD)∵AB•AC+AB•AD+AC•AD≤AB2+AC2+AD2=16当且仅当AB=AC=AD时,等号成立∴当且仅当AB=AC=AD时,S△ABC+S△ABD+S△ACD的最大值为8故答案为:8点评:本题求内接于球的三棱锥的侧面积的最大值,着重考查了球内接多面体、长方体的性质和基本不等式求最值等知识,属于中档题.20.已知四棱锥P﹣ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则等于.考点:球内接多面体.专题:空间位置关系与距离.分析:画出图形,求出外接球的半径即可求出结果.解答:解:底面ABCD外接圆的半径是,即AO=.则PO===,∴四棱锥的外接球的半径为:,即R=,∴=.故答案为:.点评:本题考查几何体的外接球的体积的求法,考查空间想象能力以及计算能力.21.已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC 的距离为.考点:球内接多面体.专题:计算题;压轴题.分析:先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算解答:解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,∵圆O的半径为,∴正方体的边长为2,即PA=PB=PC=2球心到截面ABC的距离即正方体中心到截面ABC的距离设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V=S△ABC×h=S△PAB×PC=××2×2×2=2△ABC为边长为2的正三角形,S△ABC=×∴h==∴正方体中心O到截面ABC的距离为﹣=故答案为点评:本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题22.在半径为13的球面上有A,B,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC的距离为12 ;(2)过A,B两点的大圆面与平面ABC所成二面角为(锐角)的正切值为 3 .考点:球内接多面体.专题:计算题;压轴题.分析:(1)由题意说明△ABC是直角三角形,平面ABC是小圆,圆心在AC的中点,利用勾股定理直接求出球心到平面ABC的距离.(2)如图作出过A,B两点的大圆面与平面ABC所成二面角,直接求出它的正切值即可.解答:解:(1)AB=6,BC=8,CA=10,△ABC是直角三角形,平面ABC是小圆,圆心在AC的中点D,AO=13,AD=5,球心到圆心的距离就是球心到平面ABC的距离,即:OD=12(2)过D作DE垂直AB于E,连接OE则∠OED就是过A,B两点的大圆面与平面ABC所成二面角.易得DE=4所以tan∠OED==3故答案为:(1)12;(2)3.点评:本题是基础题,考查球的截面问题,二面角的求法,考查空间想象能力,计算能力,能够正确作出图形是解好本题个前提,也是空间想象能力的具体体现.23.正三棱锥P﹣ABC的四个顶点同在一个半径为2的球面上,若正三棱锥的侧棱长为2,则正三棱锥的底面边长是3 .考点:球内接多面体;棱锥的结构特征.专题:计算题;作图题;压轴题.分析:画出正三棱锥的图形,设出底面边长,利用三角形相似求出AE,求出底面三角形的高,设出底面边长,然后求出正三棱锥的底面边长.解答:解:由题意画出正三棱锥的图形如图,三角形ABC的中心为E,连接PE,球的球心O,在PE上,连接OA,取PA的中点F连接OF,则PO=2=OA,PF=,OF=1△PFO∽△PAE所以,AE=,底面三角形的高为:底面三角形的边长为:aa=3故答案为:3点评:本题考查球内接多面体,棱锥的结构特征,考查作图能力,计算能力,是基础题.24.与四面体的一个面及另外三个面的延长面都相切的球称为该四面体的旁切球,则棱长为1的正四面体的旁切球的半径r= .考点:球内接多面体.专题:计算题;压轴题;新定义.分析:先根据题意作出图形,如图所示,圆O是棱长为1的正四面体ABCD的旁切球的大圆,AF是正四面体ABCD 的高,F是底面三角形BCD的中心,AG是大圆O的切线,G为切点,设大圆的半径为R,在三角形ABC中,求出AE,在直角三角形AEF中,求出AF,再利用△AOG∽△AEF,得出关于R的方程即可求出答案.解答:解:根据题意作出图形,如图所示,圆O是棱长为1的正四面体ABCD的旁切球的大圆,AF是正四面体A﹣BCD的高,F是底面三角形BCD的中心,AE是侧面上的中线,AG是大圆O的切线,G为切点,设大圆的半径为R,在三角形ABC中,AE==ED,在直角三角形AEF中,EF=ED=×=,∴AF==,在三角形AOG和三角形AEF中,∵∠OAG=∠EAF,∠AGO=∠AFE=90°,∴△AOG∽△AEF,∴即,∴R=.故答案为:.点评:本小题主要考查球内接多面体、棱锥的几何特征、三角形相似等基础知识,考查运算求解能力,考查空间想象能力.属于基础题.参考答案与试题解析一.填空题(共8小题)1.过正三棱锥一侧棱及其半径为R的外接球的球心O所作截面如图,则它的侧面三角形的面积是.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;空间位置关系与距离.分析:底面正三角形在球的大圆上,且圆心是正三角形的中心,从而求出底和高.解答:解:由图可知,底面正三角形在球的大圆上,则正三角形的高为,边长为=R.正三棱锥的高为R.则侧面三角形的底边长为R,高为=;则S=•R•R=.点评:考查了学生的空间想象力,及组合体中面积,体积的求法.2.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为①②③(只填写序号).考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:当截面的角度和方向不同时,球的截面不相同,应分情况考虑.解答:解:当截面与正方体的一面平行时,截面图形如③,当截面不与正方体的一面平行,截面图形如①②.故答案为:①②③.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.3.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是.考点:球内接多面体;棱锥的结构特征.专题:作图题;证明题.分析:将截面图转化为立体图,求三角形面积就是求正四面体中的△ABD的面积.解答:解:如图球的截面图就是正四面体中的△ABD,已知正四面体棱长为2所以AD=,AC=1所以CD=截面面积是:故答案为:点评:本题考查球内接多面体以及棱锥的特征,考查空间想象能力,是中档题.4.已知正三棱锥S﹣ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为.考点:球的体积和表面积;棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;压轴题.分析:根据图示,这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上,从而可求得侧面的底边长与高,故可求.解答:解:根据图示,这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上,于是有半径R=底面中线长设BC的中点为D,连接SO∵R=6∴AD=9,∴OD=3,SD==,BC=,∴三棱锥的侧面积=×=.故答案为:点评:本题考查空间想象能力,关键是要抓住这个截面三角形图由原正三棱锥的一条棱,一个侧面三角形的中线和底面正三角形的中线围成,正三棱锥的外接球的球心在底面正三角形的重心上.5.(2012•桂林模拟)如图,已知球O是棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为.考点:球的体积和表面积.专题:计算题;数形结合.分析:根据正方体和球的结构特征,判断出平面ACD是正三角形,求出它的边长,再通过图求出它的内切圆的半1径,最后求出内切圆的面积解答:解:根据题意知,平面ACD是边长为的正三角形,且球与以点D为公共点的三个面的切点恰为三角形1ACD1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD1内切圆的半径是×tan30°=,则所求的截面圆的面积是π××=.故选A.点评:本题考查了正方体和它的内接球的几何结构特征,关键是想象出截面图的形状,考查了空间想象能力,数形结合的思想6.已知正方体ABCD﹣A1B1C1D1内有一个球与正方体的各个面都相切,经过DD1和BB1作一个截面,正确的截面图是(2).考点:棱柱的结构特征.专题:计算题;空间位置关系与距离.分析:由正方体ABCD﹣AB1C1D1内有一个球与正方体的各个面都相切,知经过DD1和BB1作一个截面,得到的截面1是一个长方形,里面包含一个圆,且这个圆的直径与长方形的宽相等,圆心是长方形的对角线的交点.解答:解:∵正方体ABCD﹣AB1C1D1内有一个球与正方体的各个面都相切,1经过DD1和BB1作一个截面,∴得到的截面是一个长方形,里面包含一个圆,且这个圆的直径与长方形的宽相等,圆心是长方形的对角线的交点,∴正确的截面图是(2).故答案为:(2).点评:本题考查棱柱的结构特征及其应用,是基础题.解题时要认真审题,仔细解答.7.已知空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,其截面圆心分别为M,N,则线段|MN|的长度最大值为.考点:球的体积和表面积.专题:计算题;空间位置关系与距离;球.分析:画出图形,利用两个截面圆的圆心距与截面圆的圆心与球的球心的距离的关系,判断MN的距离的最大值的位置,求出距离即可.解答:解:由题意可知几何体的图形如图,截面圆的圆心与球的球心三点中,MO,NO是定值,当三点共线时,MN 距离最大,空间中动平面α,β与半径为5的定球相交所得的截面的面积为4π与9π,OM==,ON==4,MN的最大距离为:.故答案为:.点评:本题考查球的截面圆的位置关系,考查空间想象能力以及计算能力.8.球O的球面上有三点A,B,C,且BC=3,∠BAC=30°,过A,B,C三点作球O的截面,球心O到截面的距离为4,则该球的体积为.考点:球的体积和表面积.专题:空间位置关系与距离.分析:根据正弦定理,求出△ABC的外接圆半径r,进而根据球心O到截面的距离d=4,结合R=求出球的半径,代入球的体积公式,可得答案.解答:解:∵△ABC中BC=3,∠BAC=30°,∴△ABC的外接圆半径r满足:2r==6.故r=3.又∵球心O到截面的距离d=4,∴球的半径R==5.故球的体积V==,故答案为:点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.二.解答题(共1小题)9.(2014•上海二模)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?。