近世代数课件--2.10 不变子群,商群

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数课件--2.10 不变子群,商群

近世代数课件--2.10 不变子群,商群

S1S2
Sm
定理1 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是:
aNa 1 N
对于 G 的任意一个元 a 都对.
证明 …………证完
a 1 Na N ?
注5. aNa 1 N 可以换成
定理2 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是: n N ana 1 N a G , 证明 这个条件的必要性是显然的,是定理1 的直接结果.我们证明它也是充分的. 条件 ana 1 N 意味着
注9. a 1na N 等价于‥‥‥??
小结:
n N .下面条件等价: 群 G 的一个子群 N , a G ,
1. aN Na 2. aNa 1 N 3. a 1na N 4. aNa1 N
注意: 不变子群不具有传递性.
10.4 商群
不变子群所以重要,是因为这种子群的陪 集,对于某种与原来的群有密切关系的代数 运算来说,也作成一个群.
aNa1 N
(*)
1
因为 a …………证完
1
也是 G 的元,在(*)中以 a
代a ,
注6. 要测验一个子群是不是不变子群,用 定理2的条件一般比较方便. 注7. 用定理2的条件可以改写成 a G , n N a 1na N 注8 .
ana 1 N
等价于 aNa1 N
AB {ab a A, b B} , A1 {a1 a A}
容易证明:
( AB)C A( BC ) ,A( B
C ) ( AB) ( AC )
( AB)1 B1 A1 , ( A1 )1 A
Sm 的乘积用符号 由于结合律成立, S1,S2,…,

10 不变子群 商群

10 不变子群  商群

§10 不变子群 商群定义 设G 是一个群,N G ≤,称N 为群G 的子群,若,Na aN a G =∀∈.不变子群N 的一个左(右)陪集称为H 的一个陪集.N 是G 的不变子群,记为.N G例1 设G 为一个群,则G 和{}e 都是群G 的不变子群.{}{}{},.Ga aG G a e e a a ====例2 设G 是一个群,{}|,N n na an a G ==∀∈,则.N G,ea ae a G =∀∈,.e N N ∴∈≠∅12,n n N ∀∈,则1122,,,.n a an a G n a an G =∀∈=∀∈()()()()()()121212121212,.n n a n n a n an n a n an n a n n G ∴=====∀∈ 12.n n N ∴∈n N ∀∈,则,.na an a G =∀∈于是1,,a nan a G -=∀∈()1111,.n a n nan an a G ----==∀∈1,.n N N G -∴∈∴≤下证,.aN Na G =∀∈在aN 中任取一个元素an ,这里.n N ∈n N ∈故an na Na =∈.aN Na ∴⊂同理,.Na aN ⊂.aN Na ∴=.N G ∴该不变子群称为群G 的中心.例3 交换群G 的任一子群H 都是不变子群.设H G ≤,下证.aH Ha =ah aH ∀∈,这里h H ∈.因G 是交换群,故ah ha Ha =∈.aH Ha ∴⊂同理,.Ha aH ⊂例4 3,G S =设()()(){}1,123,132N =,则.N G()()()()()()111,1123123,==()()()1132132,=()()()()()()1231123,123123132,==()()()1231321,=()()()()()()1321132,1321231==都属于N ,N G ∴≤又()()()(){}()()()(){}()()()(){}()()()(){}11,123,132,11,123,132,1212,13,13,1212,13,23,N N N N ==== 故()()()()()()11231321123132,N N N N N N =====()()()()()()122313122313.N N N N N N =====.N G ∴定义 设G 是一个群,12,,,m S S S 为集合G 的m 个子集,则把集合{}121122|,,,m m m s s s s S s S s S ∈∈∈称为12,,,m S S S 的乘积,记为12.m S S S 易知()()123123.S S S S S S =这是因为在()123S S S 中任取一个元()123s s s ,这里112233,,s S s S s S ∈∈∈, ()()()123123123.s s s s s s S S S =∈()()123123S S S S S S ⊂.同理()()123123.S S S S S S ⊂定理1 设G 是一个群,N G ≤,则1,.N G nNa N a G -⇔=∴∈注:,,a b G S G ∀∈⊂,把{}{}a S b 记为aSb .把{}a S 记为aS .把{}S b 记为.Sb 易知{}|.aSb asb s S =∈证 “⇒”设N G ,a G ∀∈,则,aN Na G =∀∈.故()()()1111.aNa aN a Na a N aa Ne N ----=====“⇐”设1,aNa N a N -=∀∈,下证1.aNa N -=易知1.aNa N -⊂n N ∀∈,有()1111111.n aa n aa naa a a n a a -------⎡⎤===⎢⎥⎣⎦1a G -∈,()111.a n a N ---∴∈ 1.n aNa -∴∈11..N aNa aNa N --∴⊂∴=设G 是一个群,N G ,{}|S aN a G =∈(即S 为不变子群N 的所有陪集所成的集合),xN yN S ∀∈,这里,x y G ∈,规定S 的乘法如下:()()().xN yN xy N =这在逻辑上没有问题.设 ,xN x N yN y N ''==,下证()().xy N x y N ''=,,x xe xN x N y ye yN y N ''=∈==∈=()1212,,.x x n y y n n n N ''∴==∈12.xy x n y n ''=N G ,1n y Ny y N '''∴∈=,()()()()133123232,n y y n n N xy x n y n x y n n x y n n x y N ''''''''''∴=∈===∈. ()().xy N x y N ''∴=定理3 色环G 是一个群,N G ,{}|,S aN a G =∈则S 对于以上规定的乘法来说成为一个群.证 1)√2)()()()()()()(),xN yN zN xy N zN xy z N xyz N ===⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()()()()()().xN yN zN xN yz N x yz N xyz N ===⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 3)()()().eN xN ex N xN ==4)()()()11.x N xN x x N eN --==定义 定理3中的群S 称为群G 的一个商群,记为/.G N 若G 为有限群,N G ,则/.GG N N =习题P741.假定群G 的不变子群N 的阶是2 ,证明,G 的中心包含.N 证 设C 为群G 的中心,则{}|,.C c G ca ac a G =∈=∀∈2,N =∴可设{},,N e n =其中e 为群G 的单位元.显然,.e C ∈N G ,∴1,.ana N G -∈∀∈显然,不存在a G ∈使得1anae -=,不然,.an a ae n e ===故1,ana n G -=∀∈,即 ,an na a G =∀∈,.n C N C ∴∈∴⊂2. 证明,两个不变子群的交集还是不变子群.证 设G 是一个群,12,N G N G ,则12.N N G ≤12n N N ∀∈,则1,n N ∈且2.n N ∈因12,N G N G ,故,a G ∀∈有 1112,.ana N ana N --∈∈112,.ana N N a G -∴∈∀∈ 12.N N G ∴3. 证明,指数是2的子群一定是不变子群.证 设G 是一个群,(),: 2.N G G N ≤=设a G ∈,但a N ∉,因():2G N =,故()()()(),eN aN Ne Na =∅=∅,且()()()().G eN aN Ne Na ==但.eN Ne N ==aN Na ∴=,或.b aN Na ∈=b G ∀∈,b eN ∈或.b aN Na ∈=若b eN ∈,则,.b Ne bN eN Ne Nb ∈===若b aN ∈,则b Na ∈,故.bN aN Na Nb ===∴由不变子群的定义得,.N G4.设H 是G 的子群,N 是G 的不变子群,证明,HN 是G 的子群. 证 在HN 中任取一个元素11h n ,22h n ,这里1212,,,.h h H n n N ∈∈ 则()11111221122.h n h n h n n h ---=但N G ,H G ≤,1111122212,,n n N Nh h N h h H ----∴∈=∈111111221212.h n n h h Nh h h N HNHN G ----∴∈=⊂∴≤ 5.举例证明,G 的不变子群N 的不变子群1N 未必是G 的不变子群(取4G S =). 解 取4G S =,()()()()()()(){}()()(){}11,1234,1324,1423,1,1234N N ==,则 1,N G N N ,但1N 不是G 的不变子群.。

近世代数课件群的概念

近世代数课件群的概念
ab ba e . 为了阐明这样的 b 是唯一的; 满足
ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an

近世代数简介ppt

近世代数简介ppt
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
不能被 x5+1 整除 不能被 x6+1 整除


不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
对于有限域GF(q)上的m次既约多项式P(x),若能 被它整除的最简首一多项式(x n -1)的次数n qm
–1, 则称该多项式为本原多项式。 本原多项式一定既约;
反之,既约多项式未必本原。
多项式循环群 Cycle Group
由多项式的各次幂所构成的群称为多项式循环群
比如, x4+x+1
(q=2, m=4, 2m-1=15)
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文

近世代数学习课件

近世代数学习课件
注:X上的一元和二元代数运算均满足 运算的封闭性。
定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:

近世代数精品课程25页PPT

近世代数精品课程25页PPT
近世代数精品课程

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

近世代数课件2

近世代数课件2
25
代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.

近世代数主要知识点PPT课件

近世代数主要知识点PPT课件
• 假如运算1和1‘来说,有一个A到A’的满射的同态映射存在,同态满射 • 同构映射 一一映射的同态映射就是一个同构映射 • 自同构
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么‫ג‬x:

近世代数讲义子群

近世代数讲义子群

§3 子 群
设 G 是一个群. 显然,{e} 和 G 都是 G 的子群.{e} 和 G 都称为 G 的平凡子群. 若 H 是 G 的子群并且集合 H 是集合 G 的真子 集,则称 H 为 G 的真子群.
注意 若 G 是一个群, H 和 K 都是 G 的子群, 并且 K H ,则由子群的定义可知, K 也是 H 的 子群.
iI
Si 和 Si 分别称为 S 的这族子集的交(集)和并
§3 子 群
代数运算“ '”如下: a'b ab , a, b S .
我们约定,将“ ”在 S 上的限制“ '”也记作 “ ”.显而易见,当 A 上的代数运算“ ”适 合结合律时, S 上的代数运算“ ”也适合结 合律.
2020/8/13
数学与计算科学学院Company Logo
§3 子 群
2020/8/13
数学与计算科学学院Company Logo
§3 子 群
定理 3.3 设 G 是一个群, H 是 G 的一个 非空子集.那么, H 为 G 的子群的充分必要条件 是:
(1) ab H , a, b H ; (2) a1 H , a H . 证明 先证明必要性.假设 H 是 G 的子群. 首先,根据子群的定义, H 满足条件(1). 其次,
例 2 设 P 是一个数域, nN .于是, SLn (P ) 是 GLn (P ) 的子群.(参看§2 的例 2).若令 H 表示数域 P 上全体 n 级可逆的上三角形矩阵构成的集合, K 表示 数域 P 上全体 n 级可逆的对角形矩阵构成的集合,则 H 是 GLn (P ) 的子群, K 是 H 的子群.
2020/8/13
数学与计算科学学院Company Logo

近世代数群的概念课件

近世代数群的概念课件

反身性
任何元素与自己相乘的结果仍为该元素本身。
可交换性
对于任意$a, b$在群中,有$a cdot b = b cdot a$。
可结合性
对于任意$a, b, c$在群中,有$(a cdot b) cdot c = a cdot (b cdot c)$。
子群与商群
子群
一个子群是一个集合在某个二元运算 下构成一个群,且该子集是原群的非 空子集。
05
有限群的结构
有限群的分 类
阿贝尔群和非阿贝尔群
01
根据群中元素的乘法是否满足交换律,可以将有限群分为阿贝
尔群和非阿贝尔群。
循环群和非循环群
02
根据群中是否存在循环子群,可以将有限群分为循环群和非循
环群。
素数阶群和非素数阶群
03
根据群的阶是否为素数,可以将有限群分为素数阶群和非素数
阶群。
有限群的Sylow定理
近世代数群的概念
目 录
• 群的定义与性质 • 群的表示与同态 • 循环群与交换群 • 群的扩张与直积 • 有限群的结构 • 群的应用
contents
01
群的定义与性质
群的定 义
群的定义
一个群是由一个集合和一个 在其上的二元运算所组成, 满足结合律、存在单位元、 存在逆元的代数系统。
结合律
群中的二元运算满足结合律, 即对于任意$a, b, c$在群中, 有$(a cdot b) cdot c = a cdot (b cdot c)$。
单位元
群中存在一个元素$e$,使 得对于任意$a$在群中,有 $e cdot a = a cdot e = a$。

逆元
对于任意$a$在群中,存在 一个元素$b$,使得$a cdot b = b cdot a = e$,其中 $e$是单位元。

近世代数课件子群

近世代数课件子群

§3 子 群
事实上,首先,由于 G 上的代数运算“ ”适合 结合律,因此 H 上的代数运算“ ”也适合结合律. 其次任取 a H .由于 H 满足条件(1)和(2),因此 a1 H , e aa1 H .最后,对于任意的 a H , 我们有
ae ea a ; aa1 a1a e . 所以 H 关于 H 上的代数运算“ ”构成一个群.□
§3 子 群
定义 3.1 设 G 是一个群,集合 H 是集合 G 的一个非空子集.我们称 H 是 G 的一个子群,是 指 H 满足如下条件:
Ⅰ. ab H , a, b H ,即 H 关于群 G 的乘 法“ ”封闭;
Ⅱ. H 关于“ ”构成一个群.
§3 子 群
设 G 是一个群. 显然,{e} 和 G 都是 G 的子群.{e} 和 G 都称为 G 的平凡子群. 若 H 是 G 的子群并且集合 H 是集合 G 的真子 集,则称 H 为 G 的真子群.
假设 S 关于代数运算“ ”封闭.于是,将 “ ”限制在 S 上, 我们便可得到 S 上一个代 数运算“ '”.也就是说,我们可以定义 S 上的
§3 子 群
代数运算“ '”如下: a'b ab , a, b S .
我们约定,将“ ”在 S 上的限制“ '”也记作 “ ”.显而易见,当 A 上的代数运算“ ”适 合结合律时, S 上的代数运算“ ”也适合结 合律.
注意 若 G 是一个群, H 和 K 都是 G 的子群, 并且 K H ,则由子群的定义可知, K 也是 H 的 子群.
§3 子 群
命题 3.2 设 G 是一个群, H 是 G 的一个子 群.那么,
(1) H 的单位元就是 G 的单位元; (2)对于任意的 a H , a 在群 H 中的逆元就 是 a 在群 G 中的逆元. 证明 (1)设 e 是群 G 的单位元, e' 是子群 H 的单位元.由于 e 是 G 的单位元,我们有 ee' e' .

近世代数课件 第3节 群的定义及性质

近世代数课件  第3节 群的定义及性质

(1) 证明2: 设 |a| = r,则有
(b1ab)r (b1ab)(b1ab)...(b1ab)
r个
b1a rb b1eb e
可知b1ab的阶为有限. 令|b1ab| = t,从而有t | r.
另一方面,由 (b1ab)t=e可知
(b1ab)t = b1atb1 = e
at = e,从而有 r | t.
近世 代数
群论
主要内容:
群的定义与性质 有限群、子群 变换群 置换群 循环群 子群的陪集、正规子群与商群 群的同态基本定理
1/30
近世 代数
第3节 群的定义与性质
主要内容:
群的定义 群的基本性质 群的实例 群中的术语
2/30
近世 代数
群的三个等价定义
定义0 (1) 设(S, ∘)是一个代数系统,如果运算∘满足结合 律,则称(S, ∘)为一个半群. (2) 设(S, ∘)是半群,若e∈S是关于∘运算的单位元, 则称(S, ∘)是一个幺半群,也叫做独异点.
性质7 G为群,a∈G且 |a| = r. 设k是整数,则 (1) ak = e 当且仅当 r | k . (2 )|a1| = |a|.
证明: (2) 由 (a1)r = (ar)1 = e1 = e 可知 a1 的阶为有限. 令|a1| = t,从而有t | r. 同时,at = ((a-1)-1)t = (a-1)-t = ((a-1)t)-1 = e-1 = e , 所以 r | t. 从而证明了r = t,即|a1| = |a| .
22/30
近世 代数
例题
例5 设G是群,a, b∈G是有限阶元. 证明
(1) |b1ab| = |a|
(2) |ab| = |ba|

近世代数课件(全)--2-10 群对集合的作用、伯恩赛德引理

近世代数课件(全)--2-10 群对集合的作用、伯恩赛德引理
H { g ( H ) | g G } { gH g { g | g G , gH g
1
1
| g G}
S tabG H { g | g G , g ( H ) H } H}
{ g | g G , gH H g }
2012-9-19
稳定子群和轨道的关系: (1)轨道公式: a [ G : G a ] 证明: a { g ( a ) | g G }
2012-9-19
定义1 设 G 是一个群, 是一个非空集合 (称为目标集),若 g G 对应 上的一个变换 g ( x ) 满足
(1) e ( x ) x , x ;
( 2 ) g 1 g 2 ( x ) g 1 ( g 2 ( x )), x .
g1 ( g 2 H g 2 ) g1 , H .
此作用称为群 G 对其子群集的共轭作用.
2012-9-19
二、轨道与稳定子群 定义2 设 为目标集,群 G 作用于 a 上, ,则集合 称为 在 G 作用下的一个轨道,a 称为 此轨道的一个代表元. 例4 设 {1, 2, 3, 4 , 5 },

fg
g G
其中
fg
为元素 g 在 上的不动点数目
,求和是对群中每个元素求和.
2012-9-19
例4 设 {1, 2, 3, 4 , 5 },
G {(1), (12 ), ( 345 ), ( 354 ), (12 )( 345 ), (12 )( 354 )}
(3)求 G 的每个元素在 上的不动点数目. (4)求 在 G 作用下的轨道数目. f ( 1 2 ) 3, 解: f ( 1 ) 5 ,

近世代数(抽象代数)课件

近世代数(抽象代数)课件

9
Logo
§1 代数运算
· a1 a2 … an a1 a11 a12 … a1n a2 a21 a22 … a2n an an1 an2 … ann
其中, aia j aij A , i, j 1, 2, , n .

10
Logo
§1 代数运算
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.

23
Logo
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成

13
Logo
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“”适合 结合律、交换律和消去律; R 上的乘法“”适合结 合律和交换律,不适合消去律; R 上减法“-”不适 合结合律和交换律,但适合消去律.
注意: R \{0}上的乘法“”适合结合律、交换 律和消去律.
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .

3
Logo
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.

近世代数教学PPT课件

近世代数教学PPT课件

拟枚举: 自然数的集合可以记作 1,2,3,4,5....n..... , 拟枚
举可以用来表示能够排列出来的的集合, 像 自然数、整数…
描述法:
如果一个集A是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
第18页/共187页
A {x | 1 x 1, x R } 表示一切大于-1且小于1
第14页/共187页
第一章 基本概念
§1 集 合 §2 映射与变换 §3 代数运算 §4 运算率 §5 同态与同构 §6 等价关系与集合的分类
第15页/共187页
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素.
我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的
第6页/共187页
阿贝尔
加罗华
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研 究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽 罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被 公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的 解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何 图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的 问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计 算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运 算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生 了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义 哲学的产生和发展都发生了巨大的影响。

近世代数第二章课件

近世代数第二章课件

第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。

第13讲 第2章第10节 不变子群和商群

第13讲 第2章第10节 不变子群和商群

S 问:H G ,L {aH | a G} 关于子集乘法做成群吗?
定理: N
G ,G / N {aN | a G}
关于乘法
aN bN ( ab) N 做成群.
且称 G / N {aN | a G} 为 G 关于 N 的商群.
证明: ① N =eN G / N ,故非空;
B4
B4 {(1), (12)(34)} K 4 , K4 S 4 , B4 不是 S4 的不变子群.
注: N
H, H
G ,但 N 未必是 G 的不变子
群,即无传递性.
性质4
N H G ,且 N G,则 N H .
则hnh1 N 因此N 是H的不变子群.
证明: n N , h H h G,由N 是G的不变子群,
补例1
设 G 为整数加群, N 5 g g G
(1)证明 N
G ;(2)求 G / N .
5 g1 , 5 g2 N
5 g1 5 g2 5( g1 g2 ) N N G
5 g N , a G, a 5 g ( a) 5 g N N
G
G / N [0],[1],[2],[3],[4]
引理 H G ,则 a, b G , aH bH 仍是左陪集 x G , xH Hx
证明 " " aHbH a( Hb) H a(bH ) H ab( HH ) abH
" " x G, y G , yx yexe yHxH yxH yHxH xH HxH ,
解: 因为 H (13) {(13),(123)}
(13) H {(13), (132)} 所以 H 不是 G 的不变子群.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aN N a
这个不变子群
C
叫做 G 的中心.
例3 一个交换群 G 的每一个子群 H 都是不变子群.因
为 G 的每一个元 a 可以和任意一元 x 交换,xa a x , 所以对于一个子群 H 来说,
H a aH
例4 G S .那么
3
,(1 2 3) ,(1 3 2 )} 是一个不变子群.
我们看一个群 G 的一个不变子群 N 的所有 陪集作成一个集合
G / N { a N , b N , cN } { a N a G }
(1) (2) (3)
相对 G / N :是一个元素, 个子集.
aN
aN
G
aN
相对 G :是一
有不同的表示方式.
xN
的子集的乘积,计算两个陪集 成绩 ( xN )( yN ) ( xy ) N
,A ( B C ) ( A B ) ( A C )
(A
1
B
1
A ,
1
)
1
A
由于结合律成立, 来表示.
S1S 2 S m
S S 1 ,S 2,…, m
的乘积用符号
定理1 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是:
aN a
1
N
对于 G 的任意一个元 a 都对.
10.2 例子
例1 一个任意群 G 的子群 G 和 e 总是不变子群,因 为对于任意 G 的元 a 来说,
G a aG G
ea a e a
例2 C 刚好包含群 G 的所有有以下性质的元 不管 a 是 G 的哪一个元 证明: C 是 G 的一个不变子群.
n
n ,a a n ,
证明:
N
注9. a
na N
等价于‥‥‥??
小结:
群 G 的一个子群 N , 1. a N N a 2. a N a N 3. a n a N 4. a N a N
1
1
aG
n , N .下面条件等价:
1
注意: 不变子群不具有传递性.
10.4 商群
不变子群所以重要,是因为这种子群的陪 集,对于某种与原来的群有密切关系的代数 运算来说,也作成一个群.
证明 注5. …………证完
aN a
1
N
可以换成
a
1
Na N
?
定理2 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是: n a G , N ana N
1
证明 这个条件的必要性是显然的,是定理1 的直接结果.我们证明它也是充分的. 条件 a n a
1
1
§10.不变子群、商群
• • • • 10.1 定义 10.2 例子 10.3 等价条件 10.4 商群
10.1 定义
这一节里要讲到一种重要的子群,就是不变子群.
给了一个群 G ,一个子群 H ,那么 H 的一个右陪 集 H a 未必等于 H 的左陪集 a H ,这一点我们在上一节 的例2里已经看到.
定义 一个群 G 的一个子群 N 叫做一个不变子 群,假如对于 G 的每一个元 a 来说,都有
aN N a
注1. 一个不变子群 N 的一个左(或右)陪集叫做 N 的一个陪集. 注2. a N N a 意味着: a n n a 吗? 反过来呢? 注3. a N N a 在元素间意味着什么? 注4. 不变子群又称为正规子群
和 yN 的
定理3 一个不变子群的陪集对于上边 规定的乘法来说作成一个群.
证明
我们证明群定义的条件Ⅰ,Ⅱ,Ⅳ,Ⅴ 能被满足. Ⅰ.显然. Ⅱ. ( xN yN ) zN
[( xy ) N ] zN ( xyz ) N
x N ( y N zN ) x N [( y z ) N ] ( x y z ) N
N
意味着
1
aN a
N
(*)
1
因为 a 也是 …………证完
G
的元,在(*)中以 a
代a ,
注6. 要测验一个子群是不是不变子群,用 定理2的条件一般比较方便. 注7. 用定理2的条件可以改写成 a G , N a na N n
1
注8.
ana
1
1
N
等价于 a N a
1
(1)
C
是子群.因为 e N ,所以 N 是非空的.
n1 a a n 1

,n
2
a a n 2 n1 n 2 a a n1 n 2
1 1
nan nan
1
1
an
1
这就是说,N 是一个子群. (2) . G 的每一个元 a 可以同 N 的每一个元 n 交换,所以 N a a N,即 N 是不变子群.
Ⅳ. e N 是单位元,因为
eN xN ( ex ) N xN

xN
有逆元 x
x
1
1
N
,因为
1
N xN ( x
x ) N eN
证完
定义 一个群 G 的一个不变子群 N 的陪集所 作成的群叫做一个商群.这个群我们用符号 G N 来表示. 因为 N 的指数就是 N 的陪集的个数,我们显 然有,商群 G N 的元的个数等于 N 的指数.当 G 是有限群的时候,
G的 阶 N的 阶 G N 的阶
从商群的角度重新认识剩余类加群 Z n
第一,回忆剩余类加群。
第二,重新认识 Z n 。设
G Z (整 数 加 群 )
N ( n ) { kn k Z } (由 n 生 成 的 循 环 群 )
• 作业: • P74: 2,3,4
N { (1)
注5. 从这个例子可以总结出一般性结论吗?
10.3 等价条件
现在复习一下群 G 的子集的乘积: 设A,B是群 G 的两个非空子集,规定
A B {a b a A , b B }

A
1
{a
1
a A}
容易证明:
( A B )C A ( B C )
( AB)
1
相关文档
最新文档