人教版九年级数学上册切线长定理
人教版九年级数学上册24.2.2切线长定理教案
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。
九年级数学上册切线长定理PPT课件(人教版)
切 (线12)长过 切定任 线理意长的一 是基点 指本总 切图可 线形以 上的作 某研圆 一究的 点两 与条 切切 点线 间( 的线)段的长。
条过半圆径 外的一直点线可是以圆引的圆切的线几条. 切线?
必(须24)掌切写握线出并长图能是中灵指所活切有应线的用上等。某腰一三点角与形切点间的线段的长。
(过1圆2)外过写一任出点意图可一中以点与引总∠圆O可A的C以相几作等条圆的切的角线两?条切线( )
经过半径的外端并且垂直于这
(1)切线是一条与圆相切的直线;
(2)切线长是指切线上某一点与切点间的线段的长。
若从⊙O外的一点引两条切线PA,PB,切点分别
是A、B,连结OA、OB、OP,你能发现什么结论?
并证明你所发现的结论。
B
PA = PB
。
P
∠OPA=∠OPB
O
A 证明:∵PA,PB与⊙O相切,点A,B是切点
1、判断
(1)过任意一点总可以作圆的两条切线( )
(2)从圆外一点引圆的两条切线,它们的长相等。 2、填空
(1)如图PA、PB切圆于A、B两点,APB 50
连结PO,则 APO 25 度。
A O
P
B
(2)如图,PA、PB、DE分别切⊙O于A、B、C, DE分别交PA,PB于D、E,已知P到⊙O的切线长 为8CM,则Δ PDE的周长为________
AD
C
P
E B
课堂小结
切线长定理 从圆外一点引圆的两条切线,它 们的切线长相等,圆心和这一点的连线平分两
条切线的夹角。
∵PA、PB分别切⊙O于A、B
∴PA = PB ,∠OPA=∠OPB OP垂直平分AB
切线长定理为证明线段相等,角 相等,弧相等,垂直关系提供了理论 依据。必须掌握并能灵活应用。
最新人教版初中九年级上册数学《切线长定理》精品课件
E O CD
P
(1)写出图中所有的垂直关系;
OA⊥PA,OB ⊥PB,AB ⊥OP
B
(2)写出图中与∠OAC相等的角和图中相等的线段;
∠OAC=∠OBC=∠APC=∠BPC,
OA=OB=OD=OE,PA=PB,AC=BC.
(3)写出图中所有的全等三角形; △AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
D
C
因此,AF=4,BD=5,CE=9.
随堂演练
基础巩固
1.如图,△ABC的内切圆⊙O与BC,CA,AB 分别相切于点D,E,F,且AB=11cm, BC=14cm,CA=13cm,则AF的长为( C )
A.3cm
B.4cm
C.5cm
D.9cm
2.如图,点O是△ABC的内心,若∠BAC=86°, 则∠BOC=(C ) A.172° B.130° C.133° D.100°
5.如图,一个油桶靠在墙 边,量得WY =1.65m, 并且XY⊥WY,这个油桶 底面半径是多少?
解:设圆心为O,连接OW,OX. ∵YW,YX均是⊙O的切线, ∴OW⊥WY,OX⊥XY, 又∵XY⊥WY, ∴∠OWY=∠OXY=∠WYX=90°, ∴四边形OWYX是矩形,又∵OW=OX. ∴四边形OWYX是正方形. ∴OW=WY=1.65m. 即这个油桶底面半径是1.65m.
P.
A
B
. O
(1)知道什么是圆的切线长,能叙述并证明切线长定理. (2)会作三角形的内切圆,知道三角形内心的含义和性质. (3)能用切线长定理和三角形内心的性质来解决简单的问题.
推进新课
知识点1 切线长定理
画一画:1.如何过⊙O外一点P画出⊙O的切线?
人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)
三角形外心、内心的区别:
名称
外心
内心
图形
性质
三角形的外心到三角形三个 三角形的内心到三角形
顶点的距离相等
三条边的距离相等
位置 外心不一定在三角形内部 内心一定OC=90°+
1 2
∠A
例2 如图, △ABC的内切圆⊙O与BC,CA, AB
分别相交于点D , E , F ,且AB=9,BC =14,
CA =13,求AF,BD,CE的长.
解:设AF=x,则AE=x,
A
CD=CE=AC-AE=13-x,
E
BD=BF=AB-AF=9-x.
F
由BD+CD=BC,可得
(13-x)+(9-x)=14.解得,x=4. B
D
C
因此,AF=4,BD=5,CE=9.
随堂练习 1.如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点D,E,F,且AB=11cm,BC=14cm, CA=13cm,则AF的长为( C ) A.3cm B.4cm C.5cm D.9cm
解:∵ 点O是△ABC的内心,
∴∠OBC= 1 ∠ABC= 1 ×50°=25°,
2
2
∴∠OCB= 1 ∠ACB = 1×75°=37.5° ,
2
2
∴∠BOC=180°-25°-37.5°=117.5° B
A O
C
【选自教材P100 练习 第2题】
5. △ABC的内切圆半径为r, △ABC的周长为l,求△ABC的
2.如图,点O是△ABC的内心,若∠BAC=86°, 则∠BOC=( C ) A.172° B.130° C.133° D.100°
3.如图,已知VP、VQ为⊙T的切线,P,Q为
切线长定理 初中九年级数学教学课件PPT 人教版
△ AOP≌ △ BOP, △ AOC≌ △ BOC,△ ACP≌ △ BCP
(4)写出图中所有的等腰三角形?
△ ABP,△ AOB
练习
1.如图, P 为⊙O 外一点,PA,PB 为⊙O的切线,A和B为切点. (1)若PA=3,则PB= _3__ (2)若PA=2x-1,PB=x+5,则x=_6__
中考链接
如图,PA,PB切⊙O于A,B,MN切
⊙O于C,交PA于M,交PB于N,
PA=7.5cm,则△PMN的周长是( C)
A.7.5cm
B.10cm
C.15cm
D.12.5cm
巩固练习
△ABC中,∠ ABC=50°, ∠ACB=70 °, 点O是⊙O的内心,求∠ BOC的度数.
解:∵点O是⊙O的内心 ∴BO平分∠ABC,CO平分∠ACB ∴∠1=1/2∠ABC=25° ∠3=1/2∠ACB=35° ∴∠BOC=180°-25°-35° =120°
解:连接AO,BO. ∵PA,PB是⊙O的两条切线, ∴OA⊥AP ,OB⊥BP.
又 OA=OB, OP=OP,
∴ Rt△AOP≌Rt△BOP (HL)
∴ PA=PB, ∠OPA=∠OPB.
切线长定理:
从圆外一点可以引圆的两 条切线,它们的切线长相等, 这一点和圆心的连线平分两 条切线的夹角.
符号语言
24.2.2 直线和圆的位置关系
第3课时 切线长定理
1.理解切线长的概念.理解并掌握切线长 定理.
2.知道三角形内切圆、内心的概念.
3.运用切线长定理和三角形内切圆知识 解题.
复习旧知
1、直线和圆有什么位置关系?
相交、相切、相离
九年级数学切线长定理课件人教版
OP垂直平分AB
O
。
M
P
A 证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB
∵OA=OB
∴OP垂直平分AB
例题讲解: 已知:如图,PA,PB是⊙O 的两条切线,A、B为切点。直线OP交⊙O 于点D、E,交AB于点C。 (1)写出图中所有的垂直关系; B OA⊥PA,OB⊥PB, OP⊥AB
:
.A 1.切线长:在经过 圆外一点的圆的切 F o. . P D 线上,这点和切点 .B 小 之间的线段的长, 结 叫做这点到圆的切 : 线长。 2.切线长定理:从圆外一点引圆的两条切 线,它们的切线长相等,圆心和这一点的 连线平分两条切线的夹角。
达 标 检 测
已知:如图,P为⊙ O外一点,PA、 PB 为⊙ O 的切线,A和B是切点, BC是直径 求证:AC∥OP
(2)写出图中所有的全 E 等三角形;
O
。
C D A
P
△OAP≌△OBP;△OCA≌△OCB △ACP≌△BCP
(3)图中有哪些线段相等(除半径外)、弧相 等? PB=PA;BC=AC 弧BD=弧AD; 弧EB=弧EA
A E P
O C B
D
(5)如果PA=4cm,
PD=2,①求半径OA的长。
②求弦AB的长。
切线长:在经过圆外一点的圆的切线上, 这点和切点之间的线段的长,叫做这 点到圆的切线长。
A P
思考: 切线长 和切线 的区别?
O
B
小结:切线是直线,不可以度量;切线长 是指切线上的一条线段的长,可以度量。
探索!
o.
.BA
B B A B
.P
OB是⊙O的一条半径吗?PB是 线段PA与PB, ∠ APO 与∠BPO ⊙O的切线吗? 有什么关系?
初中数学:切线长定理
切线长相等,这一点和圆心的连线平分两条切
线的夹角. ∵ PA、PB分别与⊙O相切于点A、B ∴ PA=PB, ∠APO=∠BPO
人教版《数学》九年级(上)
应用延伸
例 如图,PA、PB分别与⊙O相切于点A、B. 连接AB,若∠ APO =30°,PA=2,求AB的长.
人教版《数学》九年级(上)
应用延伸
人教版《数学》九年级(上)
小结提升
这节课你学到了什么知识? 在解题的过程中你有什么解题的心得? 在和同学交流的过程中,你有什么体会?
人教版《数学》九年级(上)
分层作业
必做题
1.教材101页第6题. 2.第102页第11题. 选做题 1.在教材101页第6题的图中,连接OB、OP,图中有哪些角与 ∠OAB、∠AOP相等? 2.如图,PA、PB、QC分别与⊙O相切于点A、 B、C,CQ、BP的延长线交于点M ,当点A
例 如图,PA、PB分别与⊙O相切于点A、B. (1)连接AB,若∠ APO =30°,PA=2,求AB的长. (2) 延长BO,交⊙O于点C,过点C作⊙O的 切线交PA的延长线于点Q ,
②QO与AB的位置关系,并证明.
人教版《数学》九年级(上)
应用延伸
在弧BC上运动时,△MQP的周长会发生变
化吗?请说明理由.
人教版《数学》九年级(上)
情境引入
人教版《数学》九年级(上)
情境引入
人教版《数学》九年级(上)
情境引入
经过圆外一点的圆的切线上,这点和切点之间 的线段的长,叫切线长.
人教版九年级上册24.2.2
人教版《数学》九年级(上)
自主探索
经过圆外一点的圆的切线上,这点和切点之间 的线段的长,叫切线长. 切线长定理: 从圆外一点可以引圆的两条切线,它们的
人教版九年级数学上册24.2.2切线长定理及三角形的内切圆(教案)
(1)对于切线长定理的证明,教师可以采用构造辅助线、利用相似三角形等方法,逐步引导学生理解证明过程,降低难度。
(2)在讲解内切圆半径计算时,可以针对不同类型的三角形,给出具体的计算步骤和方法,让学生通过练习逐步掌握。
(3)针对解决实际问题时思路的拓展,教师可以设置一些具有挑战性的题目,引导学生运用所学知识,培养学生的问题分析和解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理及内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题的能力培养:通过典型例题,重点训练学生运用切线长定理和内切圆性质解决实际问题的能力。
举例解释:
(1)在讲解切线长定理时,可以通过图形演示和实际测量,让学生直观地理解切线长的概念,并掌握切线长的计算方法。
(2)对于三角形内切圆的性质,通过构造具体的三角形模型,让学生观察内切圆与三角形各边的关系,理解并掌握内切圆半径的计算方法。
2.教学难点
-切线长定理的证明:对于定理的证明过程,学生可能难以理解,需要教师通过直观演示和逐步引导,帮助学生突破这一难点。
-内切圆半径的计算:学生在计算内切圆半径时,可能会对涉及到的几何关系和代数运算感到困惑,需要教师详细讲解并举例说明。
-解决实际问题时思路的拓展:学生在面对复杂的几何问题时,可能会缺乏解题思路,教师需要指导学生如何将问题转化为切线长定理和内切圆性质的应用。
四、教学流程
人教版九年级数学上册2切线长定理
证明:由切线长定理得
D
∴AL=AP,LB=MB,NC=MC,
O
DN=DP
P
∴AL+LB+NC+DN=AP+MB+MC+DP
AL
即 AB+CD=AD+BC
补充:圆的外切四边形的两组对边的和相等.
C M B
练一练
1.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则 ∠BOC的度数为( ) A.130° B.120° C.110° D.100°
【答案】C 【详解】 解:∵PA、PB分别与⊙O相切于点A、B, ⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上, ∴AE=CE,FB=CF,PA=PB=4, ∴△PEF的周长=PE+EF+PF=PA+PB=20. 故选:C.
课后回顾
课后回顾
01
02
03
【答案】C 【详解】 ∵AB、AC是⊙O的两条切线,B、C是切点, ∴∠B=∠C=90°,∠BOC=180°-∠A=110°. 故选C.
练一练
2.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点, 分别交PA、PB于E、F,且PA=10.则△PEF的周长为( ) A.10 B.15 C.20 D.25
知识回顾
圆的切线的判定定理和性质定理各是什么?
判定定理: 经过半径的外端且垂直于这条半径的直线是圆的切线。
性质定理: 圆的切线垂直于经过切点的半径。
问题1:如何过⊙O外一点P画出⊙O的切线?
连接OP,以OP为直径作圆,与⊙O 交于A、B两点。 连接PA、PB, 则PA、PB即为⊙O切线。
A
O
人教版数学九年级上册24.2.2.3《切线长定理》教学设计
人教版数学九年级上册24.2.2.3《切线长定理》教学设计一. 教材分析人教版数学九年级上册24.2.2.3《切线长定理》是九年级数学中的一个重要知识点。
切线长定理是指:圆的切线长等于半径的长度。
这个定理在几何学中有着广泛的应用,对于培养学生的逻辑思维能力和空间想象力有重要作用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的相关概念和性质有所了解。
但是,对于切线长定理的证明和应用,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解切线长定理的证明过程,并通过例题让学生掌握切线长定理的应用。
三. 教学目标1.让学生理解切线长定理的定义和证明过程。
2.培养学生运用切线长定理解决实际问题的能力。
3.提高学生的逻辑思维能力和空间想象力。
四. 教学重难点1.切线长定理的证明过程。
2.切线长定理在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生通过探究问题来理解切线长定理。
2.使用多媒体课件,直观展示切线长定理的证明过程。
3.通过例题和练习题,让学生巩固切线长定理的应用。
六. 教学准备1.多媒体课件。
2.练习题和测试题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与圆和切线有关的图片,引发学生的兴趣。
然后提出问题:“圆的切线长和半径有什么关系?”让学生思考。
2.呈现(10分钟)讲解切线长定理的定义和证明过程。
首先,解释切线的概念,然后说明切线与半径的关系,最后证明切线长等于半径的长度。
3.操练(10分钟)让学生分组讨论,每组尝试证明一个圆的切线长等于半径的长度。
每组派代表进行讲解,老师点评并给予指导。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖切线长定理的证明和应用。
5.拓展(10分钟)让学生思考:切线长定理在实际生活中有哪些应用?可以举例说明。
鼓励学生发表自己的观点和想法。
6.小结(5分钟)对本节课的内容进行简要回顾,强调切线长定理的定义和证明过程,以及其在实际问题中的应用。
九年级数学上册24《切线长定理》PPT课件(23张)(人教版)
O
P
C
B
如图:从⊙O外的定点P作⊙O的两条切线,分别切⊙O 于点A和B,在弧AB上任取一点C,过点C作⊙O的切线, 分别交PA、PB于点D、E.且PA=6. 求:△PDE的周长.
温馨提示:
在这个图形中,你看出来
D
几组相等的线段呢?
解: 直线PA,PB,DE分别与圆相切于 C
DOO
点A, B,C
∴PA=PB, DA=DC, EB=EC
B
相OP等于点的C.线你又段能,得出相什等么新的的角结论??
并给出证明.
O. C
P
A
证明:∵PA,PB是⊙O的切线,
∴PA = PB ,∠OPA=∠OPB
∴OP⊥AB,AC=BC ∴OP垂直平分AB.
OP垂直平分AB.
证明2:∵PA,PB是⊙O的切线, ∴PA = PB ∴点P在AB的垂直平分线上. ∵OA=OB ∴点O在AB的垂直平分线上 ∴OP垂直平分AB.
E
∴CΔPDE = PD+ DE + PE = PD+ DC +CE + PE
= PD+ DA+ EB+ PE
= PA+ PB
= 2PA= 2×6 =12
二 三角形的内切圆及作法
互动探究
小明在一家木料厂上班,工作之余想对厂里的
三角形废料进行加工:裁下一块圆形用料,怎样才
能使裁下的圆的面积尽可能大呢? 问题 如果最大圆存在,它与三角形 三边应有怎样的位置关系?
释疑——推理论证
已知:如图PA、PB是☉O的两条切线,A、B为切点. 求证:PA=PB,∠APO=∠BPO. A
证明:连接OA,OB
O.
人教版九年级数学课件-切线长定理
即 1AC•BC1AC•r1BC•r1AB•r ,所以 r 1 AC BC AB ,代入數據
2
222
2
得r=1cm.
方法小結:直角三角形的外接圓半徑等於斜邊長的一半,
內接圓半徑
r abc 2
.
(2)若移動點O的位置,使⊙O保持與
A
△ABC的邊AC、BC都相切,求⊙O的半徑r
的取值範圍.
D
24.2 直線和圓的位置關係
第3課時 切線長定理
學習目標
1.掌握切線長定理,初步學會運用切線長定理進行計算 與證明.(重點)
2.瞭解有關三角形的內切圓和三角形的內心的概念. 3.學會利用方程思想解決幾何問題,體驗數形結合思想. (難點)
問題1 上節課我們學習了過圓上一點作已知圓的切線(如
左圖所示),如果點C是圓外一點,又怎麼作該圓的切線
⑵ ∠DOE= 70°. P
DA
C
O
E B
例2 △ABC的內切圓⊙O與BC、CA、AB分別相切於點D、
E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE
的長. A
想一想:圖中你能找出哪些相等的線段?
理由是什麼?
F
解:設AF=xcm,則AE=xcm.
E O
∴CE=CD=AC-AE=9-x(cm),
2
總結歸納
設Rt△ABC的直角邊為a、b,斜邊為c,則Rt△ABC
的內切圓的半徑 r= a+b-c 2
ab
或r= a+b+c
當堂練習
1.如圖,PA、PB是⊙O的兩條切線,切點分別是A、B,如
果AP=4, ∠APB= 40 ° ,則∠APO=20 ° ,PB=4 .
数学人教版九年级上册切线长性质定理
A O B
切线长定理 从圆外一点引圆的两条切线,它们的切线 长相等,这一点与圆心的连线平分这两条 切线的夹角。
切线长定理的基本图形的研究
PA、PB是⊙O的两条切线, A、B为切点,直线OP交于 E ⊙O于点D、E,交AB于C。
(1)写出图中所有的垂直关系 OA⊥PA,OB ⊥PB,AB ⊥OP (2)写出图中与∠OAC相等的角 ∠OAC=∠OBC=∠APC=∠BPC (3)写出图中所有的全等三角形
切线的判定定理
经过半径的外端并且 垂直于这条半径的直线是圆的切线
切线的性质定理
圆的切线垂直于过切点的半径
切线长:经过圆外一点作圆的切线,这点和切点之
间的线段的长,叫做这点到圆的切线长。
已知:如图,P是⊙O外一点 ,PA,PB都是⊙O的切线,A,B 是切点. P 求证:①PA=PB
②PO平分∠APB
papb是o的两条切线ab为切点直线op交于1写出图中所有的垂直关系oapaobpbabop3写出图中所有的全等三角形aopbopaocbocacpbcp4写出图中所有的等腰三角形abpaob2写出图中与oac相等的角oacobcapcbpcpapbbcacop如图
直线与圆的位置关系(3)
——切线长定理
方法二.连结AB,交OP于 D PA,PB分别切⊙O于A、B ∴PA=PB∠APO= ∠BPO ∴AD=BD 又∵BO=DO ∴OD是△ABC的中位线 ∴AC∥OP
切线长定理:
从圆外一点引圆的两条切线,它们的切线 长相等,这一点与圆心的连线平分这两条切线
的夹角。
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP A
O
ቤተ መጻሕፍቲ ባይዱ
C D B
人教版九年级数学上册切线长定理课件
若从⊙O外的一点引两条切线PA,PB,切点分别
是A、B,连结OA、OB、OP,你能发现什么结论?
并证明你所发现的结论。
B
PA = PB
。
P
∠OPA=∠OPB
O
A 证明:∵PA,PB与⊙O相切,点A,B是切点
∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90°
∵ OA=OB,OP=OP ∴Rt△AOP≌Rt△BOP(HL) ∴ PA = PB ∠OPA=∠OPB
复习旧课 导入新课
1、切线的判定定理
经过半径的外端并且垂直于这 条半径的直线是圆的切线.
1.经过半径的外端; 2.与半径垂直.
几何应用:
OA是⊙O的半径 OA⊥l于A
.O
L A
l是⊙O的切线.
2、切线的性质定理
圆的切线垂直于过切 点的半径
几何应用:
∵L是⊙O的切线 , ∴OA⊥L
.O
L A
过圆外一点可以引圆的几条切线?
(2)切线长是指切线上某一点与切点间的线段的长。
A
∵ OA=OB,OP=OP
3、通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两 条切线的夹角。
切线长定理的基本图形的研究
1、理解切线长的概念,掌握切线长定理。
切点,直线OP交于⊙O于点D、E, E 交AB于C。
O CD
P
(1)写出图中所有的垂直关系 OA⊥PA,OB ⊥PB,AB ⊥OP
B
(2)写出图中与∠OAC相等的角 ∠OAC=∠OBC=∠APC=∠BPC
(3)写出图中所有的全等三角 形△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
上册切线长定理人教版九年级数学全一册课件
第10课时 切线长定理
学习目标
1.清楚认识切线长的概念以及切线长定理. 2.灵活应用切线长定理来解决相关问题. 3.了解内切圆的有关概念.
知识要点
知识点一:切线长定理 从圆外一点可以引圆的两条切线,它们的 切线长相等,这一 点和圆心的连线 平分 两条切线的夹角.
对点训练
1.如图,PA,PB都是⊙O的切线, ∵PA,PB是⊙O的切线, ∴PA= PB , ∠APO=∠ BPO.
上册切线长定理人教版九年级数学全 一册课 件
上册切线长定理人教版九年级数学全 一册课 件
上册切线长定理人教版九年级数学全 一册课 件
(2)解:如图,作MF⊥BC于F,ME⊥AC于E,MH⊥AB于
H, ∵DM=5 2,∴BC= 2DM=10, 而AB=8,∴AC= BC2-AB2=6.
上册切线长定理人教版九年级数学全 一册课 件
上册切线长定理人教版九年级数学全 一册课 件
13.如图,直尺、三角尺都和⊙O相切,AB=8 cm,则⊙O的 直径为 16 3 cm .
上册切线长定理人教版九年级数学全 一册课 件
上册切线长定理人教版九年级数学全 一册课 件
8.【例 5】如图,⊙O 是△ABC 的内切圆,且∠ABC=60°, ∠ACB=80°,则∠BOC 的度数为 110° .
上册切线长定理人教版九年级数学全 一册课 件
上册切线长定理人教版九年级数学全 一册 件(1)证明:∵点I是△ABC的内心, ∴∠2=∠7, ∵DG平分∠ADF,∴∠1=21∠ADF, ∵∠ADF+∠ADC=180°,∠ABC+∠ADC=180°, ∴∠ADF=∠ABC,∴∠1=∠2, ∵∠3=∠2,∴∠1=∠3,∴DG∥CA.
解:如图,设DC与⊙O的切点为E. ∵PA,PB分别是⊙O的切线,且切点为A,B,