人教版数学九年级上册《切线长定理》教案

合集下载

初中数学切线长定理教案

初中数学切线长定理教案

初中数学切线长定理教案教学目标:1. 理解切线长的概念,掌握切线长定理。

2. 通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。

3. 通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。

教学重点:理解并掌握切线长定理。

教学难点:应用切线长定理解决问题。

教学准备:多媒体计算机、黑板、粉笔。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的性质,如圆的轴对称性、圆的切线与半径的关系等。

2. 提问:从圆外一点可以引几条切线?它们的性质是什么?二、新课讲解(15分钟)1. 介绍切线长的概念:圆外一点引出的两条切线,它们的切线长相等。

2. 引导学生观察图形,猜想切线长定理。

3. 引导学生通过几何画图和度量,验证猜想。

4. 引导学生运用代数方法证明切线长定理。

三、例题分析(15分钟)1. 给出一个应用切线长定理的例题,引导学生分析解题思路。

2. 引导学生一起解答例题,注意引导学生运用切线长定理。

3. 总结解题方法,强调切线长定理在解题中的应用。

四、课堂练习(15分钟)1. 给出几道练习题,让学生独立完成。

2. 引导学生相互讨论,解答练习题。

3. 选取部分学生的作业进行点评,讲解正确解题思路。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结切线长定理的性质和应用。

2. 强调切线长定理在几何解题中的重要性。

六、课后作业(课后自主完成)1. 深化理解切线长定理,尝试解决更复杂的几何问题。

2. 撰写一篇关于切线长定理的学习心得,分享自己的学习体会。

教学反思:本节课通过引导学生观察、猜想、证明和应用,使学生掌握了切线长定理。

在教学过程中,注意调动学生的学习积极性,培养学生的几何思维和代数解题能力。

通过例题分析和课堂练习,让学生更好地理解和运用切线长定理。

在今后的教学中,要继续关注学生的学习情况,针对不同学生制定合适的教学策略,提高教学效果。

人教版九年级数学上册(教案)第3课时 切线长定理

人教版九年级数学上册(教案)第3课时 切线长定理

第3课时切线长定理教学目标1.了解切线长的概念.2.掌握切线长定理,理解三角形的内切圆和三角形的内心的概念.教学重点切线长定理及应用.教学难点切线长定理的导出及证明和综合应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.1.OB是⊙O的一条半径吗?2.PB是⊙O的切线吗?3.我们把经过圆外一点的圆的切线上,切点与圆外一点之间的线段叫做切线长,本节课主要研究切线长的有关性质.二、自主学习指向目标1.自读教材第99至100页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一切线长定理活动一:出示教材第99页“探究”.思考:在折叠的过程中,你发现了什么?【展示点评】1.经过圆外一点作圆的切线,这点和________之间的线段长叫做切线长.如右图,线段________和________的长就是切线长.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长________,这一点和圆心的连线平分两条切线的________.如上图,P为⊙O外一点,PA、PB是⊙O的切线,A、B为切点,于是由定理可得两个结论:________=________,∠________=∠________.【小组讨论】切线和切线长的区别是什么?教材是如何证明切线长定理的?【反思小结】切线与切线长是不同的概念,切线是直线,不可度量;切线长是切线上的一条线段的长,可以度量.切线长定理包括线段相等和角相等两个结论,解题时应有选择地应用,它是证明线段相等、角相等、弧相等以及垂直关系的重要依据.【针对训练】见学生用书“当堂练习”知识点一探究点二三角形的内切圆活动二:出示教材第99页“思考”问1:与△ABC三边距离相等的点在什么地方?你能作出这个点吗?问2:以这一点为圆心,以该点到三边距离为半径作圆,这个圆与三角形的三条边是什么关系?【展示点评】与三角形各边都相切的圆叫做三角形的内切圆,这个圆的圆心叫做三角形的内心.【小组讨论】内切圆与外接圆有什么区别?[综合运用]出示教材第100页例2.学生合作交流完成,老师点评.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标有关概念、定理,1.经过圆外一点作圆的切线,这点和______之间的______的长,叫做这点到圆的切线长.2.切线长定理:从圆外一点可以引圆的______条切线,它们的______相等,这一点和圆心的连线______两条切线的夹角.3.与三角形各边都相切的圆叫做三角形的________,内切圆的圆心是三角形________的交点,叫做三角形的________.方法、规律,,1.在运用切线长定理时,如左图作出辅助线,可以与等腰三角形的性质、垂径定理、勾股定理等知识产生联系.,2.三角形的内心已知时,连接顶点和内心的射线平分这个内角,从而要将内心条件和角平分线条件建立起对应关系.易错点,,如左图,若AB=AC,且AB与⊙O相切于点B,那么AC也是⊙O的切线.注意这只是真命题,而不是定理,不可当证明依据使用.五、达标检测反思目标1.如图,点O是△ABC的内切圆的圆心,若∠BAC=75°,则∠BOC的度数为( C )A.105°B.125°C.127.5°D.100°2.如图,△ABC的周长为18,其内切圆分别切三边于D、E、F三点,CE=3,BE=4,则AF的长为( A )A.2 B.3 C.4 D.5第1题图第2题图六、布置作业巩固目标1.上交作业教材第101页习题24.2第11,12题.2.课后作业见学生用书的“课后作业”部分.教学反思。

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。

2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。

3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。

二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。

2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。

四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。

2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。

3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。

五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。

2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。

(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。

3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。

(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。

4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。

(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。

5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。

6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。

(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。

7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。

2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。

人教版九年级数学上册24.2.2切线长定理教案

人教版九年级数学上册24.2.2切线长定理教案
此外,小组讨论的环节中,我发现学生们在讨论切线长定理的实际应用时,思路不够开阔。这可能是因为他们在日常生活中对几何图形的观察不够细致,或者是缺乏将理论知识应用到实际中的经验。我打算在之后的课程中,增加一些观察和分析实际几何图形的练习,帮助学生培养从生活中发现数学的能力。
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。

最新人教版九年级数学上册《切线长定理》优质教案

最新人教版九年级数学上册《切线长定理》优质教案

第3课时 切线长定理1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC)+(CF +PF)=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD.由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD=30°,OD⊥BC,所以CD=12BC,OC=2OD.又由BC=2,则CD=1.在Rt△OCD中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD)2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC.又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN+NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C.三、板书设计教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。

切线长定理教案(优秀教案)

切线长定理教案(优秀教案)

《切线长定理》教案课题:§6.10 切线长定理1 、教学目标:(1))、知识目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。

(2))、能力目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。

(3))、素质目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。

在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。

(4))、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

2 、教学重点:理解切线长定理3 、教学难点:应用切线长定理解决问题4 、教学方法:教学方法采用引导发现法,辅之以讨论法。

利用“问题情境——建立数学模型——解释、应用、拓展”的模式进行教学。

本节课是概念、定理、解题的教学,因此,要利用概念模式元、定理教学模式元、解题教学模式元的有机组合,完成本节课的教学。

5、课型:综合课6 、教具:多媒体计算机、自制圆半径测量仪、悠悠球7 、学具:刻度尺 2 把、量角器、圆规、水杯、强力胶8、教学实施过程:教学教学内容师生相互交往设计意图过程同学们,请看这是什么玩具?(悠悠球)对,这是大家非常喜爱的一种玩具。

(教师演示一次)可是,大家在玩悠悠球时是否想到过它的转动过程中还包含教师出示同学们熟悉并且喜爱的玩具之后着数学知识呢?是什么知识呢?我们来看一下它的构连续几问转入正题。

一、造。

(拆开球,出示球的剖面)这是悠悠球在转动的一学生看到玩具眼睛吸引学瞬间的剖面,从中你能抽象出什么样的数学图形?(球一亮,注意力被吸引,生的注意激发的整体和中心轴可分别抽象成圆形,被拉直的线绳可想到老师为什么会在课力,激发学情趣抽象成线段。

人教版数学九年级上册第24章圆《切线长定理》教学设计

人教版数学九年级上册第24章圆《切线长定理》教学设计
2.结合信息技术,利用多媒体和动态几何软件辅助教学,提高学生的学习兴趣和效率。
-使用动态图形展示切线与圆的关系,帮助学生形成直观的认识。
-利用信息技术手段,制作互层次的学生设计不同难度的练习和任务,使每个学生都能在原有基础上得到提高。
-设计探究活动,鼓励学生提出假设,通过实际操作验证假设。
-组织小组讨论,培养学生的合作意识和交流能力。
2.逻辑推理:运用几何知识和逻辑推理方法证明切线长定理。
-引导学生运用已学的几何知识,如圆的性质、直角三角形的性质等,进行逻辑推理。
-培养学生的逻辑思维和分析问题的能力。
3.应用与实践:将切线长定理应用于解决实际问题,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对新知识的兴趣和好奇心。首先,我会提出一个问题:“在日常生活中,你们有没有见过或听说过道路或铁路在接近圆形交叉路口时,为什么会设计成曲线而非直线呢?”通过这个问题,引导学生思考圆与直线的关系,从而自然过渡到切线的概念。
-注意:要求学生在解题过程中注重逻辑推理的严密性和步骤的完整性。
2.实践应用题:选择一个生活中的实际问题,如道路设计、园林规划等,运用切线长定理进行解决,并将解题过程和结果写成小报告。通过这项作业,学生可以更好地理解数学与实际生活的联系,提高解决实际问题的能力。
-提示:鼓励学生使用图形和图表来辅助说明解题思路,使报告更加清晰易懂。
1.切线与半径的垂直关系:通过动态演示切线与半径的垂直关系,引导学生观察和思考,从而得出切线与半径垂直的结论。
2.切线长定理的证明:利用直角三角形的性质,分步骤引导学生完成切线长定理的证明。在此过程中,强调每一步的逻辑推理和几何依据。

切线长定理_九年级数学教案_模板

切线长定理_九年级数学教案_模板

切线长定理_九年级数学教案_模板1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握切线长定理;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:切线长定理是教学重点教学难点:切线长定理的灵活运用是教学难点教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB.PA=PB.4、证明猜想,形成定理.猜想是否正确。

需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP 于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,B∴PA=PB∠APO=∠BPO∴OP ⊥AB又∵BC为⊙O直径∴AC⊥AB∴AC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO∴AD=BD又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴OP ⊥AB∴=∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z 的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材P131习题7.4A组1.(1),2,3,4.B组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a= P1A= P1P3+P3A= P1P3+ c①c= P3C= P2P3+P3A= P2P3+ b②a= P1B= P1P2+P2B= P1P2+ b③将②代人①式得a = P1P3+(P2P3+ b)= P1P3+P2P3+ b,∴a-b= P1P3+P2P3由③得a-b= P1P2得∴P1P2= P2P3+ P1P3∴P1、P 2 、P3应重合,故图2是错误的.不等式和它的基本性质(1)教学目标:1.了解不等式的意义,掌握不等式的基本性质,并能正确运用它们将不等式变形;2.提高学生观察、比较、归纳的能力,渗透类比的思维方法;重、难点:掌握不等式的基本性质并能正确运用它们将不等式变形。

九年级数学上册《切线长定理》教案、教学设计

九年级数学上册《切线长定理》教案、教学设计
5.注重培养学生的合作交流意识,引导学生学会倾听、尊重他人意见,形成良好的团队合作氛围。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握切线长定理的定义及其证明过程。
2.能够运用切线长定理解决实际问题,如求切线长度、判断点到圆的距离等。
3.掌握切线长定理与其他数学知识(如相似三角形、勾股定理等)的联系与运用。
6.总结反思,提炼方法:在教学结束后,组织学生进行总结反思,提炼切线长定理的学习方法和解题技巧,培养学生的自主学习能力。
7.评价反馈,调整教学:通过课堂提问、课后作业、小组讨论等形式,了解学生的学习情况,给予及时反馈。根据学生的反馈,调整教学策略,以提高教学效果。
8.关注情感,培养态度:在教学过程中,关注学生的情感态度,鼓励学生积极参与,勇于克服困难。培养学生的团队合作意识,形成良好的学习氛围。
3.情感态度:强调数学在现实生活中的应用,激发学生对数学学科的兴趣和热爱。
4.课后作业:布置课后作业,巩固所学知识。要求学生按时完成,教师及时批改并给予反馈。
五、作业布置
为了巩固学生对切线长定理的理解和应用,布置以下作业:
1.基础巩固题:设计一些基础的切线长定理题目,要求学生熟练掌握定理的基本应用,如求解切线长度、判断点到圆的距离等。此类题目旨在帮助学生巩固课堂所学知识,提高解题速度和准确性。
(三)情感态度与价值观
1.培养学生主动探索、积极思考的学习态度,激发学生对数学学科的兴趣。
2.引导学生体会数学的严谨性和逻辑性,培养学生的理性思维和科学精神。
3.通过数学史的了解,让学生感受数学文化的魅力,增强民族自豪感。
4.培养学生的团队协作意识,学会倾听、尊重他人意见,形成良好的人际关系。
教学设计:

人教版初三数学上册24.2.2切线长定理教案

人教版初三数学上册24.2.2切线长定理教案

《切线长定理》教案茂南中学 陈佳莹【教学目标】1)知识目标:1.理解切线长的概念。

2.掌握切线长定理,并能解决一些简单问题。

2)能力目标:通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3)情感目标:激发学生发现数学探究数学的兴趣,发扬既合作又竞争的精神,养成认真细致、独立思考、严谨开放的学习习惯,树立科学的学习态度。

【教学重点】 切线长定理及其应用是教学重点【教学难点】 切线长定理的灵活运用是教学难点教学过程设计:一、复习提问1.如图,已知⊙O 的半径O A ⊥直线l 于点A ,则直线l 是⊙O 的2.OA 是⊙O 半径,直线l 切⊙O 于点A ,则OA 与 直线l 的位置关系是3.判断:(1)过半径的外端的直线是圆的切线 ( )(2)与半径垂直的直线是圆的切线 ( )(3)过半径的端点与半径垂直的直线是圆的切线 ( )利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1) 直线经过半径的外端;(2)直线与这半径垂直。

二、探究新知【一】经过平面上一个已知点,作已知圆的切线会有怎样的情形?【二】观察、猜想、证明,形成定理1、切线长的概念:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB的距离叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是切线上一条线段的长,即圆外一点与切点之间的距离,可以度量.即时训练:①过任意一点总可以作圆的两条切线()②从圆外一点引圆的两条切线,它们的长相等。

()如图,已知AB,BC, AC分别与圆O相切于点D, E, F,则点A到圆O的切线长是线段的长;点B到圆O的切线长是线段的长;点C到圆O的切线是线段的长。

2、观察由学生动手实验和利用PPT来展示点P 位置的变化,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA 与PB ,∠OPA 与∠OPB 有什么关系?4、证明猜想,形成定理.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

第24章圆-《切线长定理》教案

第24章圆-《切线长定理》教案
3.切线长定理的应用:解决与圆的切线长度相关的问题,如求切线长、半径等;
4.实际案例:引入实际生活中与切线长定理相关的例子,如建筑设计、道路规划等。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,通过切线长定理的理解和应用,提升对圆的性质和图形关系的认识;
2.发展学生的逻辑思维和推理能力,通过切线长定理的证明过程,学会运用数学语言和符号进行严谨的ห้องสมุดไป่ตู้证;
(3)提供典型例题,如给定圆的半径和圆外一点,求解切线长度,或给定切线长度和圆外一点,求解圆的半径。
2.教学难点
-几何图形的构建和想象:对于一些空间想象能力较弱的学生,构建切线和圆的关系可能会是一个难点。
-证明过程的逻辑推理:切线长定理的证明涉及到多个几何概念和逻辑推理,学生可能难以理解。
-实际问题的数学建模:将切线长定理应用于解决实际问题时,学生可能不知道如何将现实问题转化为数学模型。
五、教学反思
在本次教学过程中,我发现学生们对切线长定理的概念和应用表现出较大的兴趣。通过引入日常生活中的实例,他们能够更好地理解抽象的几何定理。然而,我也注意到在教学中存在一些需要改进的地方。
首先,学生在理解切线长定理的证明过程中,对相似三角形的运用仍存在困难。在今后的教学中,我应更加注重引导学生逐步推导和解释证明步骤,使他们真正理解几何原理。此外,可以适当增加一些变式题目,让学生在不同情境下运用相似三角形的性质,提高他们的灵活运用能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

切线长定理教案

切线长定理教案

切线长定理教案【教案】主题:切线长定理教学目标:1. 了解切线长定理的概念和意义;2. 掌握切线长定理的计算方法;3. 能够应用切线长定理解决实际问题。

教学重难点:1. 理解切线长定理的概念和意义;2. 掌握切线长定理的计算方法;3. 运用切线长定理解决实际问题的能力。

教学准备:教师:黑板、粉笔、课件;学生:笔记本、铅笔、尺子。

教学过程:一、导入(5分钟)1. 导入前一节课的知识,回顾角的概念和性质,并复习角的度量方式。

2. 引入本节课的主题:切线长定理。

二、引入(10分钟)1. 通过课件展示一个圆和一条切线的示意图,引发学生对切线的理解和认识。

2. 引导学生观察、发现并讨论切线与圆之间的性质和关系,引入切线长定理的概念。

三、讲授(15分钟)1. 清晰地介绍切线长定理的定义和公式,即“切线长的平方等于切线外部弦长和弦所对的圆心角的乘积”。

2. 通过示意图和具体的计算实例,讲解切线长定理的计算方法。

四、练习(20分钟)1. 由简单到复杂,给学生提供一些切线长定理的计算题目,让他们在课堂上进行个人或小组练习。

2. 引导学生分析和解决问题的思路,并鼓励他们应用切线长定理解决不同类型的问题。

五、拓展(10分钟)1. 引导学生思考和讨论如何应用切线长定理求解更复杂的问题,如圆内接四边形的边长、圆弧的长度等。

2. 提出一些拓展问题,让学生进一步思考和探索切线长定理在实际问题中的应用。

六、归纳总结(5分钟)1. 让学生回顾所学的知识点,加深对切线长定理的理解和记忆。

2. 强调切线长定理的重要性和应用价值。

七、课堂小结(5分钟)1. 总结本节课的重点内容和要点,强调学生需要复习和巩固切线长定理的计算方法。

2. 布置课后作业,要求学生进一步练习和应用切线长定理解决问题。

教学反思:本节课通过引导学生观察和思考切线的性质和关系,引入切线长定理的概念,并通过具体实例讲解切线长定理的计算方法,达到了预期的教学目标。

课堂上给学生提供了足够的练习机会,让他们能够独立思考和解决问题。

人教版九年级数学上册《切线长定理》比赛教案

人教版九年级数学上册《切线长定理》比赛教案

24.2.2直线和圆的位置关系第3课时切线长定理教学目标:1.了解切线长的概念.2.掌握切线长定理,初步学会运用切线长定理进行计算与证明.3.学会利用方程思想解决几何问题,体验数形结合思想.教学重点:切线长定理及其运用.教学难点:切线长定理的导出及其证明和运用切线长定理解决一些实际问题.教学过程设计:(一)情景引入老师买了一个新锅,想给它配个锅盖,需要测量锅盖的直径,而老师家只有一把长20cm 的直尺,根本不够长,怎么办呢?【设计意图】吸引学生的注意力,激发学生的求知欲,同时也使学生意识到数学知识广泛存在于日常生活之中.(二)合作探究1、合作探究1(1)画一画1.如何过⊙O外一点P画出⊙O的切线?2.这样的切线能画出几条?学生回答:从圆外一点可以做圆的两条切线.切线长定义:过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长.(2)比一比你能说出切线长和切线的关系?切线是直线,不能度量;切线长是线段的长,可以度量.【设计意图】使学生了解切线长定义,并能在具体的图形中把它们识别出来,同时能理解切线长与切线的关系.2、合作探究2(1)议一议思考:已知⊙O切线PA,PB,A,B为切点,你能发现PA与PB有什么关系?你还发现∠APO与∠BPO有什么关系?学生回答:PA=PB,∠APO=∠BPO.(2)证一证(展示学生证明过程)证明:∠PA,PB与∠O相切,点A,B是切点,∠ OA∠PA,OB∠P B.即∠OAP=∠OBP=90°,∠ OA=OB,OP=OP,∠ Rt∠AOP∠Rt∠BOP(HL)∠ PA=PB,∠OPA=∠OP B.(3)说一说切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.几何语言:∵PA,PB分别切⊙O于A,B,∴PA=PB,OP平分∠APB【设计意图】证明定理是为了培养学生的数学思维能力“知其然并知其所以然”.(三)小试身手1、如图,PA,PB切圆于A,B两点,∠APB=50 ,连结PO,则有∠1=度,∠2=度,∠AOB=度.【设计意图】让学生充分理解切线长定理的运用。

人教版数学九年级上册24.2.2.3《切线长定理》教学设计

人教版数学九年级上册24.2.2.3《切线长定理》教学设计

人教版数学九年级上册24.2.2.3《切线长定理》教学设计一. 教材分析人教版数学九年级上册24.2.2.3《切线长定理》是九年级数学中的一个重要知识点。

切线长定理是指:圆的切线长等于半径的长度。

这个定理在几何学中有着广泛的应用,对于培养学生的逻辑思维能力和空间想象力有重要作用。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的相关概念和性质有所了解。

但是,对于切线长定理的证明和应用,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解切线长定理的证明过程,并通过例题让学生掌握切线长定理的应用。

三. 教学目标1.让学生理解切线长定理的定义和证明过程。

2.培养学生运用切线长定理解决实际问题的能力。

3.提高学生的逻辑思维能力和空间想象力。

四. 教学重难点1.切线长定理的证明过程。

2.切线长定理在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生通过探究问题来理解切线长定理。

2.使用多媒体课件,直观展示切线长定理的证明过程。

3.通过例题和练习题,让学生巩固切线长定理的应用。

六. 教学准备1.多媒体课件。

2.练习题和测试题。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与圆和切线有关的图片,引发学生的兴趣。

然后提出问题:“圆的切线长和半径有什么关系?”让学生思考。

2.呈现(10分钟)讲解切线长定理的定义和证明过程。

首先,解释切线的概念,然后说明切线与半径的关系,最后证明切线长等于半径的长度。

3.操练(10分钟)让学生分组讨论,每组尝试证明一个圆的切线长等于半径的长度。

每组派代表进行讲解,老师点评并给予指导。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目包括判断题、选择题和解答题,涵盖切线长定理的证明和应用。

5.拓展(10分钟)让学生思考:切线长定理在实际生活中有哪些应用?可以举例说明。

鼓励学生发表自己的观点和想法。

6.小结(5分钟)对本节课的内容进行简要回顾,强调切线长定理的定义和证明过程,以及其在实际问题中的应用。

人教版数学九年级上册《切线长定理》教学案

人教版数学九年级上册《切线长定理》教学案

第3课时切线长定理教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。

2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。

教学重点:理解切线长定理。

教学难点:灵活应用切线长定理解决问题。

教学过程:一、复习引入:1.切线的判定定理和性质定理.2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?二、合作探究1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理(1)操作:纸上一个⊙O,PA是⊙O的切线,•连结PO,•沿着直线PO将纸对折,设与点A重合的点为B。

OB是⊙O 的半径吗?PB是⊙O的切线吗?猜一猜PA与PB的关系?∠APO与∠BPO呢?从上面的操作及圆的对称性可得:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.(2)几何证明.如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠APO=∠BPO.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.3、三角形的内切圆思考:如图是一张三角形的铁皮,如何在它上面截下一块圆形的铁片,并且使圆的面积尽可能大呢?三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆三角形的内心:三角形内切圆的圆心即三角形三条角平分线的交点叫做——(1)图中共有几对相等的线段(2)若AF=4、BD=5、CE=9,则△ABC周长为____例如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F, 且AB=9cm=1810,求⊙O的半径。

BC=14cm,CA=13cm,求AF,BD,CE的长。

若S△ABC三、巩固练习1、如图1,PA、PB是⊙O的两条切线、A、B为切点。

PO交⊙O于E点(1)若PB=12,PO=13,则AO=____(2)若PO=10,AO=6,则PB=____(3)若PA=4,AO=3,则PO=____;PE=_____.(4)若PA=4,PE=2,则AO=____.2、如图2,PA、PB是⊙O的两条切线、 A、B为切点,CD切⊙O于E交PA、PB 于C、D两点。

切线长定理教案

切线长定理教案

切线长定理教案一、教学目标1. 让学生掌握切线长定理,并能利用该定理进行简单的证明和计算。

2. 通过教学,让学生感受数学之美,培养学生对数学的兴趣。

3. 培养学生的逻辑推理能力和解决问题的能力。

二、教学重难点重点:切线长定理的推导和应用。

难点:切线长定理的理解和应用。

三、教具准备黑板、粉笔、圆规、直尺、多媒体课件等。

四、教学过程1. 导入新课(1)回顾旧知:复习圆的切线性质,为引入切线长定理打下基础。

(2)创设情境:通过生活中的实例,引出切线长定理。

2. 探究新知(1)让学生观察、思考,尝试自己推导切线长定理。

(2)教师引导学生进行逻辑推理,得出结论。

(3)教师讲解切线长定理的证明过程,强调定理的适用条件。

(4)学生思考:切线长定理与圆的切线性质有什么联系和区别?(5)教师总结:切线长定理是圆的切线性质的延伸和拓展,为说明线段相等提供了新的方法。

3. 巩固练习(1)判断题:检验学生对切线长定理的理解情况。

(2)填空题:运用切线长定理进行计算。

(3) 解答题:运用切线长定理进行证明。

4. 课堂小结(1)回顾本节课的主要内容,强调切线长定理的重要性和应用方法。

(2)鼓励学生提出问题和疑惑,进行互动交流。

(3)布置课后作业:运用切线长定理进行证明和计算。

五、教学反思本节课通过创设情境、引导探究、讲解证明和运用巩固等环节,让学生掌握了切线长定理,并能利用该定理进行简单的证明和计算。

在教学过程中,注重培养学生的逻辑推理能力和解决问题的能力,让学生通过思考、探究和交流来掌握知识,提高能力。

同时,也注重培养学生的数学兴趣和审美能力,让学生感受数学之美,培养学生对数学的热爱之情。

数学人教版九年级上册切线长定理.2.2.3切线长定理教案人教版

数学人教版九年级上册切线长定理.2.2.3切线长定理教案人教版

教学过程设计的切线长相等,这点和圆心的连线平分两条切线的夹角.
如图,三角形的三条角平分线交于一点,设交点为I,那么到AB、AC、BC的距离相等,因此以点I为圆心,点I到
的距离ID为半径作圆,则⊙I与△ABC的三条边都相切.与三角形各边都相切的圆叫做三角形的内切圆,•内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.
典型例题:
1、△ABC的内切圆⊙O与BC、CA、
AB分别相切于点D、E、F,且AB=9,
BC=14,CA=13,
求AF、BD、CE的长.
分析:1、切线长定理可知:
BF=AB-AF
(9-x)=14
提升训练
3、已知:两个同心圆PA、PB 是大圆的两条切线,PC、PD是小
圆的两条切线,A、B、C、D为切点。

求证:AC=BD
·
P
A
B
O
C
D



(。

人教版数学九年级上册《切线长定理、三角形的内切圆、内心》教案1

人教版数学九年级上册《切线长定理、三角形的内切圆、内心》教案1

人教版数学九年级上册《切线长定理、三角形的内切圆、内心》教案1一. 教材分析人教版数学九年级上册《切线长定理、三角形的内切圆、内心》这一节主要介绍了切线长定理以及三角形的内切圆和内心的性质。

通过学习这一节内容,学生能够了解并掌握切线长定理,以及如何运用该定理求解三角形的问题。

同时,学生还能够了解三角形的内切圆和内心的性质,以及如何运用这些性质解决实际问题。

二. 学情分析学生在学习这一节内容之前,已经学习了相似三角形的性质,对三角形的基本概念和性质有一定的了解。

但是,对于切线长定理以及三角形的内切圆和内心的性质可能还比较陌生,需要通过本节课的学习来掌握。

此外,学生可能对于如何运用这些性质解决实际问题还比较困惑,需要通过教师的引导和实例的讲解来进行理解和掌握。

三. 教学目标1.了解并掌握切线长定理,能够运用切线长定理求解三角形的问题。

2.了解三角形的内切圆和内心的性质,能够运用这些性质解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.切线长定理的理解和运用。

2.三角形的内切圆和内心的性质的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握切线长定理和三角形的内切圆、内心的性质。

2.通过实例讲解和练习,让学生能够运用所学的知识解决实际问题。

3.采用分组合作的学习方式,培养学生的团队合作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备相关的练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,引导学生思考和讨论如何解决这个问题,激发学生的学习兴趣和动力。

2.呈现(10分钟)教师通过PPT呈现切线长定理和三角形的内切圆、内心的性质,并用相关的图示和实例进行讲解,让学生理解和掌握这些概念和性质。

3.操练(10分钟)学生分组进行练习,教师给予指导和解答疑问。

每组选择一道练习题,运用切线长定理和三角形的内切圆、内心的性质进行求解,并将结果进行展示和讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时切线长定理
学习目标:
1. 理解切线长的定义;
2. 掌握切线长定理,并能灵活运用切线长定理解题。

学习重点:切线长定理的理解
学习难点:切线长定理的应用
学习过程:
一、知识准备:
1. 直线与圆的位置关系有哪些?怎样判定?
2. 切线的判定和性质是什么?
3. 角的平分线的判定和性质是是什么?
二、引入新课:
过圆上一点可以作圆的几条切线?那么过圆外一点可以作圆的几条切线呢?三、课内探究:
(一)探究切线长的定义:
如下图,过⊙O外一点P,画出⊙O的所有切线。

P
引出定义:过圆外一点,可以作圆的______条切线,这点与其中一个切点之
间的线段的长,叫做这点到圆的切线长。

跟踪训练:判断
1. 圆的切线长就圆的切线的长度。

()
2. 过任意一点总可以作圆的两条切线。

()
(三)探究切线长定理:
O B
A
P
如图,已知PA 、PB 是⊙O 的两条切线,试指出图中相等的量,并证明。

切线长定理:过圆外一点所画的圆的_____条切线长相等。

该定理用数学符号语言叙述为:
∵ ∴
跟踪训练:
1. 如图,⊙O 与△ABC 的边BC 相切,切点为点D , 与AB 、AC 的延长线相切,切点分别为店E 、F ,则 图中相等的线段有__________________________ _____________________________。

2. 从圆外一点向半径为9的圆作切线,已知切线长为18,则从这点到圆的最短距离为________。

3. 如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠ACB=70°。

则∠P=________。

四、典例解析:
例:如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B 两点,PA=PB=4cm ,∠P=40°,C 是劣弧AB 上任意一点,过点C 作⊙O 的切线,分别交PA 、PB 与点D 、E ,试求: (1)△PDE 的周长; (2)∠DOE 的度数。

巩固训练:1.如图,PC 是⊙O 的切线,C 是切点,PO 交⊙O 于点 A ,过点A 的切线交 PC 于点D ,CD ∶DP = 1∶2,AD=2cm , 求⊙O 的半径。

A
E
D
F
C B O
2. 如图,P 为⊙O 外一点,PA 、PB 是⊙O 的两条切线,A 、B 是切点,BC 是直径。

(1)求证:AC ∥OP

(2)如果∠APC=70°,求 AC 的度数
五、当堂检测:
1. 如图, P 是⊙O 外一点,PA 、PB 分别与⊙O 相切于点A 、B ,C 是AB 上任一点,过C 作⊙O 的切线分别交 PA 、PB 于点 D 、E 。

若△PDE 的周长为12,求PA 的长。

2. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点, ∠OAB=30°。

(1)求∠APB 的度数;
(2)当OA=3时,求AP 的长。

六、课堂小结:畅所欲言,查漏补缺 七、课后提升:
1.如图所示,PA 、PB 是⊙O 的两条切线,A 、B 为切点,求证:∠ABO=2
1
∠APB 。

2.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点, A 、D 是⊙O 上两点,如果∠E=46°,
A P O
∠DCF=32°,求∠A 的度数。

3. 如图,以 Rt △ ABC 的直角边 AC 为直径作⊙O ,交斜边AB 于点D , DE 切⊙O 于点 D ,交 BC 于点 E 。

若BC=10,求DE 的长。

4. 如图,直线1l 、2l 分别切圆O 于A 、B ,且1l ∥2l ,3l 切圆O 于E ,交1l 、2l 于点C 、D ,求证:∠COD=90°
变式:若OC=6,OD=8,则CD= 。

L3
L2
L1D E
C
O B
A。

相关文档
最新文档