人教版数学九年级上册《切线长定理》教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时切线长定理

学习目标:

1. 理解切线长的定义;

2. 掌握切线长定理,并能灵活运用切线长定理解题。

学习重点:切线长定理的理解

学习难点:切线长定理的应用

学习过程:

一、知识准备:

1. 直线与圆的位置关系有哪些?怎样判定?

2. 切线的判定和性质是什么?

3. 角的平分线的判定和性质是是什么?

二、引入新课:

过圆上一点可以作圆的几条切线?那么过圆外一点可以作圆的几条切线呢?三、课内探究:

(一)探究切线长的定义:

如下图,过⊙O外一点P,画出⊙O的所有切线。

P

引出定义:过圆外一点,可以作圆的______条切线,这点与其中一个切点之

间的线段的长,叫做这点到圆的切线长。

跟踪训练:判断

1. 圆的切线长就圆的切线的长度。()

2. 过任意一点总可以作圆的两条切线。()

(三)探究切线长定理:

O B

A

P

如图,已知PA 、PB 是⊙O 的两条切线,试指出图中相等的量,并证明。

切线长定理:过圆外一点所画的圆的_____条切线长相等。 该定理用数学符号语言叙述为:

∵ ∴

跟踪训练:

1. 如图,⊙O 与△ABC 的边BC 相切,切点为点D , 与AB 、AC 的延长线相切,切点分别为店E 、F ,则 图中相等的线段有__________________________ _____________________________。

2. 从圆外一点向半径为9的圆作切线,已知切线长为18,则从这点到圆的最短距离为________。

3. 如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠ACB=70°。则∠P=________。

四、典例解析:

例:如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B 两点,PA=PB=4cm ,∠P=40°,C 是劣弧AB 上任意一点,过点C 作⊙O 的切线,分别交PA 、PB 与点D 、E ,试求: (1)△PDE 的周长; (2)∠DOE 的度数。

巩固训练:1.如图,PC 是⊙O 的切线,C 是切点,PO 交⊙O 于点 A ,过点A 的切线交 PC 于点D ,CD ∶DP = 1∶2,AD=2cm , 求⊙O 的半径。

A

E

D

F

C B O

2. 如图,P 为⊙O 外一点,PA 、PB 是⊙O 的两条切线,A 、B 是切点,BC 是直径。 (1)求证:AC ∥OP

(2)如果∠APC=70°,求 AC 的度数

五、当堂检测:

1. 如图, P 是⊙O 外一点,PA 、PB 分别与⊙O 相切于点A 、B ,C 是AB 上任一点,过C 作⊙O 的切线分别交 PA 、PB 于点 D 、E 。若△PDE 的周长为12,求PA 的长。

2. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点, ∠OAB=30°。

(1)求∠APB 的度数;

(2)当OA=3时,求AP 的长。

六、课堂小结:畅所欲言,查漏补缺 七、课后提升:

1.如图所示,PA 、PB 是⊙O 的两条切线,A 、B 为切点,求证:∠ABO=2

1

∠APB 。

2.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点, A 、D 是⊙O 上两点,如果∠E=46°,

A P O

∠DCF=32°,求∠A 的度数。

3. 如图,以 Rt △ ABC 的直角边 AC 为直径作⊙O ,交斜边AB 于点D , DE 切⊙O 于点 D ,交 BC 于点 E 。若BC=10,求DE 的长。

4. 如图,直线1l 、2l 分别切圆O 于A 、B ,且1l ∥2l ,3l 切圆O 于E ,交1l 、2l 于点C 、D ,求证:∠COD=90°

变式:若OC=6,OD=8,则CD= 。

L3

L2

L1D E

C

O B

A

相关文档
最新文档