经济应用数学 试卷
经济应用数学基础(一)微积分_试题及答案
;
; ; ;
3 2 6、函数 f ( x ) = x − x + 1 的极大点是
′ 7、设 f ( x ) = x ( x − 1)( x − 2)……(x − 2006) ,则 f (1) =
x 8、曲线 y = xe 的拐点是
; ; ;
9、
∫
2
0
x − 1dx
=
� � � � � � � � � � a = i + 3 j − 2 k , b = i − j + λ k 10、设 ,且 a ⊥ b ,则 λ =
;
⎧ 2x f ( x) = ⎨ ⎩a + x 2、设函数
x<0 x ≥ 0 在点 x = 0 连续,则 a =
; ;
4 3、曲线 y = x − 5 在(-1,-4)处的切线方程是
f ( x )dx = x 4、已知 ∫
1 x lim(1 − ) 2 x = 5、 x →∞
3
+C
,则 f ( x ) =
(A)极限不存在 (B)极限存在但不连续 (C)连续但不可导 (D)可导
9.设函数 f ( x ) 在 ( −∞, ∞) 上连续,且 f (0) = 0 , f ′(0) 存在,则函数 (A)在 x = 0 处左极限不存在 (B)有跳跃间断点 x = 0 (C)在 x = 0 处右极限不存在 (D)有可去间断点 x = 0
ln cos x dx 2 ∫ 3. cos x
4.
∫
x 2 dx
1 − x2
三、求解下列各题(每题 7 分,共 28 分) ⎧ e −2 x , x≤o ⎪ 2 f ( x) = ⎨ x 1 , x >0 ⎪ 2 ∫ f (t )dt ⎩1 + x
《经济应用数学》6套期末考试题AB卷带答案模拟测试题
《经济应用数学》试题 (1)(4)已知 y sin x ,则 y().A .sin xB .sin xC . cos xD .cos xxxxx 年x 月题 号一 二 三 四 五 六 总 分x(5)设 f (x, y) y , 则f x y ( )' ( , )xxA . y ln yB . x 1 xyC. xyD.x 1lnxyy题得 分 评分人得 分 评分人一、填空(每题 2 分,共 10 分)三、求下列函数的极限(每题 6 分,共 12 分)班级答12(1)y 4 x的定义域为__________________x 1 (2) 函数 2 2 1 y x x 的单调递增区间是 __________________(1)2xlim2x1xx 21(3) 设函数 z sin( x y) , 则 dz __________________要2(4) 已知 f (x)dx x sin x c, 则 f (x) ___________________学号不(5) 3 sin x 2 dx 1 cosx2 得 分评分人 _______ 二、选择题 ( 每题 2分,共 10分)(2) lim x2 x (x 2 cos sin x x) 21 姓 名内(1)若 lim f (x) Axx,则 f (x) 在点 x 0 处()线A .有定义,且 f ( x 0 ) AB .没有定义C .有定义,且 f ( ) 可为任意值D .可以有定义,也可以没有定义x得 分 评分人四、求导数或微分(每题 6 分,共 24 分)封(2)下列函数中()是奇函数A. 2 1y x B .xy e C.y x sin 3x D .y x c os 1xx cos(1)y 3e x x 求y'密(3)设f (x) 为可导函数,以下各式正确的是()A. f ( x)dx f (x) B. f ( x)dx f (x) x cos 求dy(2)y e xC . f ( x)dx f (x)D . f ( x)dx f (x) C《经济应用数学》试题(1)第1页《经济应用数学》试题(1)第2页(共4 页)得分评分人(3)yy 1 xe ,求d ydx六、应用题(每题9 分,共18 分)11.求由曲线 3 , y x3y x所围成的平面图形的面积.题x ey(4)设0xy e ,求d ydx答班级五、求下列积分和解微分方程(每题 6 分,解微分方程8 得分评分人分,共26分) 要学号不2x x cosx 2(1)dxx2.已知某产品的边际成本为 C '(q )4q ( 万元/百台) ,边际收入为R '(q) 60 2q( 万元/百台), 如果该产品的固定成本为10 万元,求:(1)产量为多少时总利润L(q) 最大?姓名内(2) 2sin x dx(2)从最大利润产量的基础上再增产200台,总利润会发生什么变化?线2x(3)xe dx封《经济应用数学》试题(1)参考答案一、填空(每题 2 分,共10分)密(4)xy ' y 3, y 0x 1 1, 2,1 1,2 ;2, 1, ;3,cos x y( ydx xdy );4, 2x cosx;5,0 二、选择题( 每题2 分,共10 分)1,D 2,D 3,C 4,B 5,A三、求下列函数的极限(每题分,共分)6 121,原式limx 1 x 2 x 1 3x 1 x 1 2,《经济应用数学》试题(1)第3页《经济应用数学》试题(1)第4页(共4 页)2,原式2cos x 112 2x xlim 12xsin x1x《经济应用数学》试题(2)xxxxx年月题号一二三四五六总分四、求导数或微分(每题 6 分,共24 分)班级题答x 11,4,y'=3e +sinx+2 xx x2, y' e (cos x sin x) dy e (cos x sin x) d xydy e' y y 'y e xe y y3,x xdx 1 xexdy e y' ' 0x yy xy e e y yx xdx x e五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)得分评分人一、填空(每题 2 分,共10 分)2 x g x x(1) 设函数 f (x) x 6 10, ( ) 3,则f g(x) =________________(2) 曲线 2 1y x 在点(1,0) 处的切线方程为______3 x(3) 函数y ( ) 3 1在定义域内单调___________(递增、减少)f x x要1, 原式2 12(x cos x)dx x sin x 2ln x cx 2(4) 若x s in x是f (x) 的一个原函数,则 f ( x) d x ________学号不2, 原式3, 原式22sin xdx sin xdx cosx cos 41 12 2 2xsin tdt(5)0lim ___________2x 0xxxe d x e c22姓 名内4, y 1 xy 3 x, P 1 x Q 3 x得 分 评分人二、选择题 ( 每题 2 分,共 10 分)线封 1 1 dx3 dxpdxPdxy eQedx cedx cexxx由 yx 1得 c 3特解y 33x六、应用题(每题 9 分,共 18 分) 1, 由对称性141 311 3433S 2 (xx )dx 2xx 1 4 41 x3x c(1)设 f (x) 的定义域为 0,1 , 则 f (x 1) 的定义域为()A . 0,1B . 1,2C . 1,0D . 0,2(2)下列函数中()是奇函数1x2D.y eC y x cos3xy sin.xA y f ( x)B lim f (x) .x.函数在的一个邻域内有定义xx21y xB .A .(3)函数 yf (x) 在点 x 0 处连续,则()存在;密2,(1) L(q) R(q ) C( q )L '(q ) R '(q) C '(q) 60 6qC .极限值等于x 处的函数值 f ( x 0 ) 即 lim f ( x)f (x 0 ) 0x xD . y f (x) 在x 点无定令 L '(q )0 得 q 10义驻点唯一, q 10 百台 1000台为最大值,此时利润最大x(4) f (x dx xe C ,则 f (x)( ))(2)12122A .x(x 2)eB .x(x 1)e C .xxeD .x(x 1)eL 60 6qdq 60q 3q 12(万元)120000(元)1010《经济应用数学》试题(1)第5页《经济应用数学》试题(1)第6页(共4 页)(5)微分方程y ' y 满足初始条件y(0) 1 的特解为()A.x x x x y e B.y e 1 C.y e 1 D.y 2 ex cos 3,求dy (3)设y e x得分评分人三、求下列函数的极限(每题 6 分,共12 分)(4) 3 3z x y y x,求z z' , 'x y题(1) 1limx3 x x 2 3答班级得分评分人要(2) limx 0 1 cos2x2x五、求下列积分和解微分方程(每题 6 分,解微分方程8分,共26 分)学号(1)4x(1 x )dx不得分评分人姓名内四、求导数或微分(每题 6 分,共24 分)(2)e sin x cosxdx线(1)设x 1f ( x) ,求 f '( x)x 1 (3) 11xexedx封密 5 x x x x4 3 2(2)y 2x 3 5 4 7 ,求y" (4)1y' y 02x《经济应用数学》试题(1)第7页《经济应用数学》试题(1)第8页(共4 页)得分评分人六、应用题(每题9分,共18 分)1 ,f '( x)1 1x 1 x 112 x 2 x2 2x 1 x x 11.求由曲线y x2 , y x 所围成的平面图形的面积. 4 3 2 3 22, y ' 10 x12 x15 x2x 4 y" 40 x36 x30 x 2xy e x x (cos3 3sin 3 )dy e x x dxx3, ' (cos3 3sin 3 )题' 3 2 3' 3 3 24,z x y yz x xyxy五、求下列积分和解微分方程(每题 6 分,解微分方程8 分,共26 分)班级答要1, 原式2, 原式3, 原式1342 140222 x xdx xx3 20 34xxsinsinsin e dx ec1111x xx d 1 e ln 1 e ln 1 e ln 2e 0学号不2.某企业分批生产某产品,每批产量为q吨,固定成本8万元,总成本函数为34,dyydy 1,dx2x2dxy x11xln y ln cxy ce,dy 1, dx2y x2C(q) 8 q , 其中 k 为待定系数,已知批量 q 9 吨时,总成本 C 62万元。
经济应用数学 试卷
四川农业大学网络教育专科考试经济应用数学 试卷(课程代码 391006)本试题一共五道大题,共2页,满分100分。
考试时间90分钟.注意:1、答案必须填写在答题纸上,题号不清或无题号的以零分计。
2、答题前,请在答题纸上准确、清楚地填写各项目;3、学号、考点名称、考室号、姓名、身份证号、课程代码、课程名称、培养层次等,不写、乱写及模糊不清者,答题纸作废;4、闭卷考试,若有雷同以零分计。
一、 是非题(每小题3分,共15分)1。
y =的间断点为1x =±。
错2。
22sin ()1xf x x =+是奇函数。
对 3。
若lim ()0x af x →=,lim ()0x ag x →=.则一定有()lim0()x af xg x →=。
错 4. 设)(x f 在a x =点处连续,则有()()f x f a '=。
对 5。
若()f x 为边际收益函数(x 为产量),则0()()x F x f x dx =⎰为总收益函数。
对二、填空题(每小题3分,共15分)6.函数1lg 1y x=- [3,1)- )。
7。
设211sin ,0,(),0.x x f x xk xx ⎧+≠⎪=⎨⎪+=⎩ 在0=x 连续,则k =( 1 ).8。
导数6(sin 1)4[]x d e dx dx+=⎰( 0 )。
9。
定积分22021xdxx =+⎰( ln5 ).10. )(x f 一个原函数为sin x ,则⎰=dx x f )('( cos x C -+ )。
三、选择题(每小题3分 ,共15分)11. 当2→x 时,2312x x x ++-是( B ).A .无穷小量B .无穷大量C .1D .—1 12。
极限0sin3lim3x xx→= ( A )A .1B .0C .不存在D .313.在下列函数中,在0=x 不可导的是( C )。
A .xe y = B .x y sin = C .21xy = D .x y arcsin = 14.设122=+y x ,则dxdy=( D ). A .21x x - B .xyC .y xD . y x -15。
经济应用数学习题及答案
经济应用数学习题第一章 极限和连续 填空题1. sin limx xx→∞=0 ;2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。
4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25.2lim(1)x x x →∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )12.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1.求极限 20c o s 1l i m 2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。
2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D )(A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导(C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y y y dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。
经济数学试题及答案大全
经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。
A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。
A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。
A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。
A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。
A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。
A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。
A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。
A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。
A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。
答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。
大学专业试卷经济应用数学二考A
《经济应用数学二》试卷(A )适用专业: 考试日期:考试时间:120分钟; 考试方式:闭卷; 总分100分一.填空题(21020⨯=分分).1. 设5212,0113A B -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 则A B += , AB = . 2.排列3,2,5,1,4的逆序数为3. 设A 的列向量组为123,,ααα, 且3A =, 1332(2,,)B αααα=+, 则B = .4.行列式11aa aa= 5. 设3阶方阵A 的列向量组123,,ααα,若12,αα线性无关且0A =,则向量组123,,ααα的秩为 .6. 3阶方阵A 的特征值为1, 2, 3, 则A = . 7.向量12(1,1),(2,)T T p p a ==正交, 则a = . 8.设()1234α=,()4321β=, 则,αβ的内积为 .9.设1112344916D =,则212223A A A ++=二.选择题(21020⨯=分分)1.下列矩阵中,不是初等矩阵的是( )A.001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭ B.100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭ C. 100020001⎛⎫ ⎪⎪ ⎪⎝⎭ D. 100012001⎛⎫ ⎪- ⎪ ⎪⎝⎭2. 设,A B 为n 阶方阵, 则下列结论成立的是( )A. A A λλ=, R λ∈.B. 若0AB ≠, 则111()AB B A ---=.C. 若,A B 均为对称阵, 则AB 为对称阵D. 若0AB =,则0A =或0B =.3.设,1a b A ad bc c d ⎛⎫=-=⎪⎝⎭,则1A -=( )A.d b c a ⎛⎫⎪⎝⎭ B.d c b a ⎛⎫ ⎪⎝⎭ C.d b c a -⎛⎫ ⎪-⎝⎭ D.d c b a -⎛⎫ ⎪-⎝⎭4. 设矩阵20003101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与400020002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似, 则x =( ).A. 2B. 3C. 0D. 15. 设向量组123,,ααα线性无关,则下列向量组线性无关的是( )A.122331,,αααααα--- B.1213,,αααα+ C.1212,,23αααα- D.2323,,2αααα+6. 设A 为(2)n n ≥阶方阵,且0A α=≠,则*A =( )A. 1α- B.α C.1n α- D.n α7.若四阶方阵A的秩为3,则( )A .A 为可逆阵B .齐次方程组Ax =0有非零解C .齐次方程组Ax =0只有零解D .非齐次方程组Ax =b 必有解8.矩阵121200120000--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的秩是 ( ).(A) 1; (B) 2; (C) 3; (D) 4.9.设A为n 阶方阵,若行列式50I A -=,则A必有特征值( ) A.1 B.-1 C.5 D.0 10.下列矩阵不是正交矩阵的是( ) A .⎥⎥⎦⎤⎢⎢⎣⎡--100010001B .⎪⎪⎭⎫ ⎝⎛11001110121 C .cos sin sin cos θθθθ-⎛⎫⎪⎝⎭D.1212⎫-⎪⎝三. 计算题(60分)1.( 12分) 设120231340,240123A B ⎛⎫-⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪-⎝⎭,求(1)TAB ;(2)4A2.(9分) 设25461321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 求矩阵X .3. (15分) λ为何值时, 非齐次线性方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1) 有唯一解? (2) 无解? (3) 有无穷多解? 并求其全部解.4.(12分)求向量组123421234,1,3,52012αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的秩,并求一个极大无关组.5.(12分) 设110240421A -⎛⎫ ⎪= ⎪ ⎪⎝⎭(1) 求A 的特征值和特征向量(2) 矩阵A能否对角化?若能,求可逆阵P,使1P AP -为对角阵.。
经济应用数学试题及答案
经济应用数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:C2. 在线性规划问题中,目标函数的最优值可能在:A. 可行域的顶点B. 可行域的边界C. 可行域的内部D. 所有上述情况答案:D3. 假设某公司生产两种产品,产品1的利润为每单位10元,产品2的利润为每单位20元。
如果公司每天只能生产100单位的产品,且生产产品1需要2小时,产品2需要1小时,而公司每天有200小时的生产时间。
该公司应该如何分配生产时间以最大化利润?A. 只生产产品1B. 只生产产品2C. 生产50单位产品1和50单位产品2D. 生产100单位产品2答案:D4. 以下哪个选项不是边际成本的概念?A. 增加一单位产量的成本B. 总成本对产量的导数C. 固定成本D. 总成本的增加量除以产量的增加量答案:C5. 假设某公司的成本函数为C(x) = 3x^2 + 2x + 5,其中x是生产量。
该公司要生产多少单位的产品才能使平均成本最小?A. x = 0B. x = 1C. x = 2D. x = 3答案:B6. 在完全竞争市场中,长期均衡时,市场价格等于:A. 边际成本B. 平均成本C. 总成本D. 固定成本答案:B7. 以下哪个选项是关于消费者剩余的描述?A. 消费者支付的价格与他们愿意支付的价格之间的差额B. 消费者实际支付的价格C. 消费者购买的商品数量D. 消费者购买商品的总成本答案:A8. 如果一个市场的需求曲线是线性的,斜率为-2,那么需求的价格弹性是多少?A. 0.5B. -1C. -2D. 2答案:C9. 以下哪个选项不是经济利润的特点?A. 包括正常利润B. 考虑了机会成本C. 等于会计利润D. 可能为负值答案:C10. 在多阶段生产过程中,以下哪个选项不是生产者面临的决策类型?A. 投入品的选择B. 生产技术的选择C. 产品价格的确定D. 产出水平的确定答案:C二、简答题(每题10分,共20分)1. 解释什么是边际效用递减原理,并给出一个生活中的实例。
大专经济数学试题及答案
大专经济数学试题及答案一、单项选择题(每题2分,共20分)1. 以下哪个选项是边际成本的定义?A. 总成本除以产量B. 总成本的增量除以产量的增量C. 总产量的增量除以成本的增量D. 总产量除以总成本答案:B2. 在完全竞争市场中,企业在短期内会如何调整生产?A. 增加产量直到边际成本等于边际收益B. 减少产量直到边际成本等于边际收益C. 增加产量直到边际成本等于平均成本D. 减少产量直到边际成本等于平均成本答案:A3. 以下哪个函数是凹函数?A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = -x^3答案:B4. 如果一个商品的需求价格弹性是-2,那么价格上升10%会导致需求量变化多少?A. 下降20%B. 下降10%C. 上升20%D. 上升10%答案:A5. 以下哪个选项是机会成本的定义?A. 为了获得某种资源所放弃的最大价值B. 为了获得某种资源所支付的货币成本C. 为了获得某种资源所支付的非货币成本D. 为了获得某种资源所放弃的所有成本答案:A6. 以下哪个选项是帕累托效率的定义?A. 资源分配使得至少一个人变得更好而其他人不变差B. 资源分配使得至少一个人变得更差而其他人不变好C. 资源分配使得没有人能变得更好而不使其他人变得更差D. 资源分配使得没有人能变得更差而不使其他人变得更好答案:C7. 以下哪个选项是消费者剩余的定义?A. 消费者愿意支付的最高价格与实际支付价格之间的差额B. 消费者实际支付价格与最低愿意支付价格之间的差额C. 消费者愿意支付的最高价格与最低愿意支付价格之间的差额D. 消费者实际支付价格与市场价格之间的差额答案:A8. 以下哪个选项是生产者剩余的定义?A. 生产者愿意接受的最低价格与市场价格之间的差额B. 生产者实际接受价格与市场价格之间的差额C. 生产者愿意接受的最低价格与实际接受价格之间的差额D. 生产者实际接受价格与最低愿意接受价格之间的差额答案:A9. 以下哪个选项是无差异曲线的特点?A. 向下倾斜B. 向上倾斜C. 垂直于价格轴D. 水平于价格轴答案:B10. 以下哪个选项是边际替代率的定义?A. 消费者愿意放弃一种商品以换取另一种商品的数量B. 消费者愿意放弃一种商品以换取另一种商品的比率C. 消费者愿意接受一种商品以换取另一种商品的数量D. 消费者愿意接受一种商品以换取另一种商品的比率答案:B二、计算题(每题10分,共30分)1. 假设某企业的成本函数为C(Q) = 0.5Q^2 + 10Q + 100,求该企业在产量为100单位时的边际成本。
经济应用数学一下考试试题库
《经济应用数学(一)》(下) 考试试题库适用专业: 怀德学院会计、营销、国贸、财务管理、人力、物流专业一、定积分及应用选择题(18题)1. 设)(x f 可导,下列式子正确的是( )A.()()tad f x dx f x dt =⎰ B. ()()xa d f x dx f x dx=⎰ C.)()(x f dx x f dx d ba=⎰ D. )()(x f dx x f ba='⎰2.1(2)f x dx '=⎰( ).A.2[(2)(0)]f f -B. 2[(1)(0)]f f -C.1[(2)(0)]2f f - D. 1[(1)(0)]2f f - 3. 下列定积分的值为负的是( ).A.20sin xdx π⎰B.2cos xdx π-⎰C.233x dx --⎰D.225x dx --⎰4. 设()f x 在[,]a b 上连续.⎰=>=aI a xx f x I 023)0(d )(,则 ( )⎰⎰⎰⎰aa a ax x xf D x x xf C xx xf B xx xf A 0d )(21.d )(21.d )(.d )(.225. 设等于)(则极限连续⎰-→x a ax x x f ax xx f d lim,)(( ) A. af (a ) B. 0C.1D. 不存在 6. 设⎰---aax x f a a x f 等于)(分上的连续函数,则定积为d ],[)(( )⎰⎰⎰---aaa aaxx f D xx f C x f B A d .d .2.0.0)()()(7.设()f x 在区间[,]a b 上连续,则下列各式中不成立的是( ).A.()()bbaaf x dx f t dt =⎰⎰ B.()()baabf x dx f x dx =-⎰⎰C. ()0aaf x dx =⎰D. 若()0b af x dx =⎰,则()0f x =8.=-+⎰-dx x f x f x a a)]()([( ).A. ⎰a dx x f 0)(4B. ⎰-+adx x f x f x 0)]()([2C. 0D.以上都不正确.9.设()43422222sin cos ,sin cos 1x M xdx N x x dx x ππππ--==++⎰⎰, 23422(sin cos )P x x x dx ππ-=-⎰,则有( )A.N <P <M;B.M <P <N;C.N <M <P ;D.P <M <N .10.下列积分可直接使用牛顿--莱布尼兹公式的有 ( ).A.35201x dx x +⎰;B.1-⎰;C.43022(5)x dx x -⎰; D.11ln eedx x x⎰. 11.下列广义积分收敛的是( ). A.x e dx +∞⎰B.1ln edx x x +∞⎰C.1+∞⎰D.1+∞⎰12.下列广义积分发散的是( ).A.211dx x+∞⎰ B. 0xe dx +∞⎰ C. 211ln dx x x+∞⎰ D. 0x e dx -+∞⎰ 13.下列积分不是广义积分的有( )A. 101dx x⎰ B. 121dx x ⎰C.1⎰D. 10sin xdx x⎰14.下列积分计算过程正确的有( )A. 440201[tan ]1cos dx x xππ==⎰; B. 1112111[]2dx x x --=-=-⎰; C.110[arcsin ]2x π==⎰; D. 因为1x 是奇函数,所以1110dx x -=⎰. 15.由曲线x y cos =和直线0=x ,π=x ,0=y 所围成的图形面积为( )A.cos xdx π⎰;B.0|cos |xdx π⎰;C.cos x dx π⎰;D.2cos xdx π⎰+2cos xdx ππ⎰.16.曲线ln y x =与直线ln ,ln ,0y a y b a b ==<<及y 轴所围成的面积值为( )A.ln ln byae dy ⎰;B.by a e dy ⎰;C.ln ln ln baxdx ⎰; D.ln baxdx ⎰.17.*在区间[,]a b 上0>(),f x 0<'(),f x 0>"(),f x 1=⎰()baS f x dx , 2=-()()S f b b a ,32+=-()()()f a f b S b a , 则由它们的几何意义可得( )A. 123S S S <<B. 213S S S <<C. 321S S S <<D. 231S S S <<18.曲线()y f x =、()y g x =(()()0)f x g x >>及直线,x a x b ==所围成图形绕x 轴旋转而成的旋转体的体积为( )A.120[()()]f x g x dx π-⎰;B.1220[()()]f x g x dx π-⎰;C.1201[()()]2f x g x dx π-⎰;D.1221[()()]2f x g x dx π-⎰. 填空题(17题) 1.比较积分值的大小:10x e dx ⎰___ ____1(1)x dx +⎰2. 比较积分值的大小:10x e dx ⎰____ ___21x e dx ⎰3.02sin limxt x e tdt x→=⎰______________.4.522cosxdx ππ-=⎰___________.5.设0(1)(2)xy t t dt =--⎰,则(0)y '= .6.已知函数20sin xy t dt =⎰,则2y '= .7.若2kx e dx +∞-=⎰,则k = .8. 20x d dx⎰=9. 22x d t dt dx =10 325425sin 81x x dx x x -=++⎰ . 11.42sin 1cos x xdx xππ-=+⎰ . 12.312111x x dx x -++=+⎰ .13.12=⎰.14. 如果()f x 在[],a b 上的最大值与最小值分别为M 与m ,则()abf x dx ⎰有如下估计式:________________________________. 15.由曲线xy 1=与直线x y =及2=x 所围成的图形的面积是 16. 椭圆t b y t a x sin ,cos ==,π20≤≤t 所围图形的面积是17.曲线(),(),(()()0)y f x y g x f x g x ==>>与x 轴及两直线)(,b a b x a x <==围成平面图形绕x 轴旋转产生的旋转体的体积为18. 曲线2y x =、1x =和x 轴所围成的图形绕y 轴旋转产生的旋转体的体积为 计算题(基本题38题)1. 设函数()y y x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求dydx. 2. 设函数()y y x =由方程2200cos 0y x t e dt t dt +=⎰⎰所确定,求dy dx.3.计算 322cos()x x d t dt dxπ⎰;4.计算 203ln(1)limxx t dt x→+⎰;5.求2limxx x →⎰.6* .计算 2220020()limxt xx t e dt te dt→⎰⎰.7. 计算 312x dx --⎰. 8. ⎰-511du u u ; 9.⎰-2ln 01dx e x ;10.⎰-1024dx x ;11.ax ⎰;12.21e ⎰13.22ππ-⎰;14.⎰+10222)1(dx x x ;15⎰-+10232)1(dx x ; 16.计算.sin sin 053⎰-πdx x x17.⎰230arccos xdx ;18.⎰20sin πxdx x ; 19*.⎰>-+aa dx xa x 022)0(.120.1arctan x xdx ⎰;21.⎰-+222sin )(ππxdx x x22.21⎰;23.41⎰;24.1ln e ex dx ⎰;25. 32224x xdx x -++⎰. 26. 0x xe dx +∞-⎰;27. 232cos sin x xdx π⎰28.20sin cos x x dx π-⎰29.12ln(1)(2)x dx x ++⎰30.520cos sin 2d πθθθ⎰31.221t te dt -⋅⎰32.211ln ln ex xdx x++⎰ 33.1201ln 1x x dx x +⎛⎫ ⎪-⎝⎭⎰34.1ln(1)e x x dx -+⎰35 判定dx x x⎰∞+∞-+21的敛散性. 36.求21()-⎰f x dx ,其中22000,(),x e x f x x -⎧≥=⎨<⎩.37.设2301()12x x f x x ⎧≤≤⎪=⎨<≤⎪⎩,,求20()f x dx ⎰.38.计算21()f x dx -⎰,其中0()00x e x f x x -⎧≥=⎨<⎩,,.综合题与应用题(27题)39.求由抛物线x y =,直线y =-x 及y =1围成的平面图形的面积.40. 求椭圆12222=+by a x 所围图形的面积.41.计算曲线x e y =,x e y -=与直线1=x 所围成的图形的面积。
1月浙江自考经济应用数学试题及答案解析
1浙江省2018年1月自考经济应用数学试题课程代码:06956一、单项选择题(本大题共9小题,每小题2分,共18分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.若221)1(x x x x f +=+,则f (x )=( )A.x 2B.x 2+2 C.x 2-2D.4421x x x ++2.极限113)2(3)2(lim ++∞→+-+-n n nn n =( )A.21-B.31C.3D.03.函数)1()(12-=-x x e x f x的可去间断点为( )A.0B.1C.0和1D.无可去间断点4.不定积分⎰+-x x x d 9132=( ) A.C xx +-+3arctan 31)9ln(232 B. x x arctan )9ln(2-+ C. 3arctan 31)9ln(232x x ++D. 3arctan)9ln(2x x -+ 5.⎰xt t x2d sind d =( )A.sin 2t B.cos 2x C.2x cos 2x D.sin 2x26.下列级数发散的是( ) A.∑∞=-+-11)1ln(1)1(n n nB.∑∞=-113n n nC.∑∞=--1131)1(n nn D.∑∞=13n nn7.设0≤a n <n1(n =1,2,…),则一定收敛的级数是( ) A.∑∞=1n n aB.∑∞=-1)1(n n n aC.∑∞=1n n aD.∑∞=-12)1(n n na8.设a 是正常数,则级数∑∞=-++-11)1(n n nna n ( )A.发散B.绝对收敛C.条件收敛D.敛散性与a 有关9.设函数)2ln(),(xyx y x f +=,则f y (1,0)=( ) A.1 B.21 C.2D.0二、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案。
经济应用数学》试卷
《经济应用数学》试卷(A )1、函数1arctan y x=的连续区间是( ) A. [1,3]- B. (3,)+∞ C. (,0)(0,3]-∞U D. (,3]-∞ 2、x 12sin lim 2sin x x x x→--=+( ) A. 0 B. 1 C. 13 D. 不存在 3、下列等式成立的是( )A.21lim()21x x x e x →∞-=+ B.21lim()21x x x e x →∞+=- C.10021lim()21x x e x →∞-=+ D.10021lim()21x x x e x -→∞+=- 4、当x→0时,变量12-x e 的等价无穷小是( )A. xB.2xC.x 2sinD.2sin x5、(lnd =( ) A 12x B 2dx x C D 6、设曲线22y x x =+-在点M 处的切线斜率为3,则点M 的坐标为( )A (0,1)B (1,0)C (0,0)D (1,1)7、函数2ln(1)y x =+的单调增加区间是( )A.(,)-∞+∞B.[0,)+∞C.(,0]-∞D. 以上都不对8、点(0,1)是曲线c bx ax y ++=23的拐点,则有( )A.1,3,1=-==c b aB. 1,0,==c b a 为任意值C. 为任意值c b a ,0,1==D. 1,=c b a 为任意值、9、设函数()f x 的一个原函数是1x 则()f x '=( ) A1x B ln x C 32x D 21x - 10、如果x e -是()f x 的一个原函数,则()x f x dx =⎰( )A (1)x e x c --+B (1)x e x c --+C (1)x e x c -++D (1)x e x c --++二、填空(每空3分共30分)1、sin 3x y e =是由 复合而成的。
2、设⎩⎨⎧>+≤+=001)(x bax x e x f x ,如果)(x f 在0=x 处可导,则=a ,=b 。
经济应用数学复习题(1)
一 单选题1. 设函数y=f(x)的定义域[4,4-],则)的定义域是 ( A )A. [0,16]B. (0,16)C. [0,16)D. (0,16] 2. 函数211x y x -=+的反函数是 ( C ) A. 11()212x y x x -=≠-+ B. 11()212x y x x +=≠-C. 1(2)2x y x x +=≠-D. 1(2)2x y x x+=≠-+3. 153lim251n n n x +→∞-=⨯+ ( B ) A.35 B. 12 C. 35- D. 12-4. 当x →+∞时,是 (A ) A. 同阶无穷小 B.等价无穷小 C. 高阶无穷小 D.低阶无穷小 5. 设函数f(x)在0x 处可导,则000()()lim x f x x f x x∆→-∆-=∆ ( B )A. 0()f x 'B. 0-()f x 'C. 0-()f xD. 0()f x6. 设某商产品单价为500元时,需求价格弹性0.2η=,它说明在价格500元的基础上上涨1℅,需求将下降 ( C ) A. 0.2B. 20℅C. 0.2℅D. 207. 在区间[]-1,1上满足罗尔定理条件的函数是 ( D )A. sin x yx=B. 2(1)y x =+ C. y x = D. 21y x =+8. 已知函数sin xy e x =,则dy = ( C )A. sin x e xdx +B. cos xe xdx + C. (sin cos )xe x x dx + D. (sin cos )xe x x dx - 9. 已知y=f(x)的一个原函数为sin 2x ,则()f x dx '⎰= ( D )A. sin 2x C +B. 2sin 2x C +C. cos2x C +D. 2cos2x C + 10. 设2,0(),0x x f x x x >⎧=⎨≤⎩,则11()f x dx -=⎰ ( D ) A. 012xdx -⎰B. 1202x dx ⎰C.10201x dx xdx -+⎰⎰ D.10201xdx x dx -+⎰⎰11. 以下各组函数中表示同一函数的一组是( C )A. f(x)= x xC. f(x)=xlg x g(x)= 2lg x12. 设2()arcsin3x f X -=,则函数的定义域是 ( B ) A. (1,5-) B. [1,5-] C. [1,5-) D. (1,5-]13. 设sinx 2()2 x 2x f x x πππ⎧≥⎪⎪=⎨⎪<⎪⎩.则2lim ()x f x π→是( A )A. 1B. 0C. 1-D. 不存在14. 当0x →时,下列变量中是无穷小量的是 ( B )A.sin xx B. sin x x C. 11sin x x D. 1(1)xx+15. 抛物线2x y =上的点)41,21(-处切线的斜率K= ( D )A. 1B. 2C. -2D. -116. 下列各函数在给定区间上满足罗尔定理条件的是 ( A )A.[]23(),1,121f x x =-+ B. [](),0,1x f x xe =C.[](),1,1f x x =- D. []1(),1,ln f x e x=17. 函数xy x e =-在区间(,0)-∞内 ( B )A. 单调递减B. 单调递增C. 不增不减D. 有增有减18.cos xd x =⎰( A )A. cos sin x x x C -+B. cos sin x x x C ++C. cos cos x x x C -+D. cos cos x x x C ++19. 1arcsin xd tdt dx =⎰( C )A. 0C. arcsin xD. arcsin arcsin b a -20. 下列广义积分收敛的是 ( D )A.1+∞⎰B.+∞⎰C.+∞⎰D.211dx x +∞⎰21.函数21log y =+ ( D )A.12-=x y B.122-=x yC.14-=x yD.14x y -=22.1lim(1)1nn n →∞+=+ ( A ) A. e B. 1e - C. 2eD. 123.函数()212y x =+间断点的个数是 ( B )A. 0B. 1C. 2D. 324.关于函数连续与可导的关系,下列叙述正确的是 ( B )A.连续必可导B. 可导必连续C.可导不一定连续D. 连续与可导没有直接关系25.设2()y f x =.则=dy( ) ( D )A. 2()xf x dx 'B. 22()f x dxC. 2(2)xf x dx 'D. 22()xf x dx '26.设函数ln y x =在闭区间[1,]e 上满足拉格朗日定理.则定理中的ξ= ( A )A. 1e -B. 1e +C. eD. e -27. 函数2xy e=在2x =时的弹性是( D )A. 2B. 42e C. 44eD. 428.经过第二换元积分法,设tan x t =.则= ( B )A.sec tdt ⎰B. 3sec tdt ⎰C.2sec 1tdt t +⎰D. 3sectdt -⎰29.203sin lim13xx t dt x →=⎰( A )A. 1B. 0C. 12D.1330.2011dx x +∞=+⎰ ( C ) A. 0 B. πC. 2πD. ∞31.函数y =( A ) A.]( 1 , 1- B. ( 1 , 1)-C. ]( 1 , 0-D.(),1(1,)-∞--+∞32. 函数ln(12),(,0]y x x =-∈-∞的反函数是 ( A )A. 12xe y -=B. 12xe y +=C. 12x e y -=D. 12xe y +=-33. 若3222lim1221x an bn n n →∞++=++,则a,b 的值分别是 ( B ) A. 0,1a b == B. 0,2a b == C. 1,2a b == D. 1,0a b ==34. 2201cos lim x xx→-= ( B ) A. 0 B. 1 C. 2 D. 1235. 函数()f x x =在0x =处 ( C )A. 既连续又可导B. 不连续但可导C. 连续但不可导D. 既不连续也不可导36. 函数ln cos y x =,则dydx= ( B ) A. tan x B. tan x - C. cot x D. cot x -37. 函数()f x =[0,1]使罗尔定理成立ξ= ( C ) A. 0 B. 12C.23D. 1 38. 函数ln(1)y x x =-+的单调减区间是 ( A ) A. ()1,0- B. ()1,-+∞ C.()1,1- D. []1,1-39. 设()()F x G x ''=,则下列结论中正确的是 ( D ) A. ()()F x G x = B. ()()1F x G x =+ C. ()()F x dx G x dx ''⎡⎤⎡⎤=⎣⎦⎣⎦⎰⎰ D. ()()dF x dG x =⎰⎰ 40.21(1)dxx x +∞=+⎰( D )A. 0B. ∞C. ln 2D.1ln 2241. 设函数y =的定义域是 ( C )A. (),1(1,)-∞--+∞B. (),1(1,4)-∞--C.(),1(1,4)-∞- D. ()4,1(1,4)--42. 函数2,11xyx x -=≠-+的反函数是 ( A ) A. 21x y x -=+ B. 21xy x +=+C. 21x y x +=-D. 21xy x -=-43. 11(2)3lim(2)3n nn n x ++→∞-+=-+ ( A ) A.13 B. 12 C. 13- D. 12-44. 当0x →时,sin x 与x 是 ( B )A. 同阶无穷小B.等价无穷小C. 高阶无穷小D.低阶无穷小 45. 设()f a '存在且为1,则0(2)()limh f a h f a h→+-= ( D )A. 0B. 1C. 1-D. 246. 设某商产品单价为100元时,需求价格弹性0.1η=,它说明在价格100元的基础上上涨1℅,需求将下降 ( C ) A. 0.1B. 10℅C. 0.1℅D. 1047. 函数lnsin y x =在5,66ππ⎡⎤⎢⎥⎣⎦上满足罗尔定理条件的ξ= ( D ) A. 0 B.4π C. 3π D. 2π48. 已知函数sin 3xy e x =,则dy = ( A )A. []sin33cos3xe x x dx + B. []sin33cos3x e x x dx - C. []sin33cos3xe x x dx -+ D. []sin33cos3x e x x dx -+49.ln xdx ⎰= ( A )A. (ln 1)x x C ++B. (ln 1)x x C -++C. (ln 1)x x C -+D. (1ln )x x C -+ 50.cos x dx π=⎰( C )A. 0B. 1C. 2D. 2-二 填空题1. 设f(x)=11x x +-,则f(x+1)= 2xx-+。
经济应用数学(习题参考答案)
习题参考答案第1章 函数、极限与连续习题1.11.(1)不同,因为它们的定义域不同;(2)不同,因为它们的定义域和对应法则都不同. 2.(1)[2,1)(1,2]-U ;(2)(3,3)-.3.2,41,1. 4.(1)12,,ln 2+===x v v u u y ; (2)13,sin ,2+===x v v u u y ;(3)x u u y ln 1,5+==; (4)52,sin ,,2+==-==x t t v v u e y u. 5.(100)2000C =,(100)20C =. 6.2214)(x x x R -=. 7.(1)25000;(2)13000;(3)1000. 8.()1052p Q p =+⨯. 9.130,(0700)9100117,(7001000)x x y x x ≤≤⎧=⎨+<≤⎩. 习题1.21.(1)0; (2)0; (3)1; (4)0; (5)24; (6)41; (7)1; (8)41; (9)0; (10)∞. 2.(1)无穷大; (2)无穷大; (3)无穷小; (4)无穷小;经济应用数学(5)无穷小; (6)无穷大; (7)无穷大; (8)无穷大.3.(1)2;(2)1;(3)53;(4)4e ;(5)e1;(6)21e ;(7)4;(8)0.4.0lim ()lim ()lim ()1x x x f x f x f x +-→→→===-.习题1.31.(1)32;(2)2sin 2;(3)0;(4)2;(5)21;(6)∞. 2.不连续;图形略. 3.2=k .因为函数()f x 在其定义域内连续,即在0=x 也联系,则()0lim (0)x f x f →=,即()()0lim lim x x f x f x k ++→→==,0lim ()2x f x -→=,所以2=k . 4.略.习题1.41.本利和1186.3元,利息186.3元;本利和1164.92元,利息164.92元. 2.1173.51元;xey ⋅-=1.06000,4912.39元,4444.91元,3639.19元,2979.51元.第1章 复习题1.(-2,2),图形略. 2.(1)13,-==x u u y ;(2)x u u y 21,3+==; (3)x u u y ln 2,10+==;(4)2,,x v e u e y vu===-;(5)x v v u u y ===,ln ,;(6)x t t w w v v u u y 2,cos ,,lg ,22=====. 3.(1)()1200010C q q =+;(2)()30R q q =;(3)()2012000L q q =-. 4.280,(0900)22450400,(9002000)q q R q q ⎧=⎨+<⎩≤≤≤.习题参考答案5.1,(04)1.5,(410)2,(1020)s P s p <<⎧⎪=⎨⎪<⎩≤≤≤,图形略.6.1-.7.(1)9-; (2)∞; (3)0; (4)0; (5)2; (6)0; (7)5; (8)2; (9)5e ; (10)8-e . 8.1k =. 9.a π=.10.221R Q Q =++.11.150,(0300)142.52250,(300800)1358250,(8001000)q q R q q q q ⎧⎪=+<⎨⎪+<⎩≤≤≤≤.12.800001000Q P =-.13.3000100Q P =+;平衡状态时,70,10000P Q ==. 14.(600)1000400L =;.第2章 导数与微分习题2.11.(1)1-;(2)51. 2.(1)3ln 1x y =';(2)3132-='x y ;(3)32x y -=';(4)2523--='x y ;(5)2121-='x y ;(6)3734--='x y ; (7)2ln 1x y =';(8)x y sin -='.3.033633=--+πy x .4.切线方程:02=-+y x ;法线方程:x y =.经济应用数学5.切线方程:01-=+y x ;法线方程:03=-+y x .习题2.21.(1)4|2='=x y ; (2)1sin 2|0='=x y ; (3)32|1-='=x y ; (4)213|-=='e y x ; (5)2|21-='=x y ; (6)92|1-='=x y . 2.(1)x x y 2cos 432+='; (2)xe y x 122+='; (3)2)cos 1(sin cos 1t t t y +++=';(4)xx y ln 121+=';(5)xx x x y 3)12(-+=';(6))63cos(6+='x y ;(7)x x x x x y tan sec sec 3tan 32++='; (8)x x y 2sin cos 22-='; (9)x e x y x 52cos 42sin 2+⋅=';(10))sin 2(sec cos 22x x y ⋅='; (11)xx ex x y 221)2ln 1(2⋅++=';(12)xe xe y x e 11++⋅='-. 3.(1)yx y x dx dy 22+-=; (2))2cos(sin )2cos(2cos y x y x y x y dx dy +++-=. 4.0222=-+y x .5.(1)x y x y x y x y cos ,sin ,cos ,sin )4(=='''-=''-='; (2)x x x y cos sin 2--=''.6.切线方程:022=--y x ;法线方程:012=-+y x .习题2.31.(1)dx x x dy )26(2-=; (2)dx x x dy )sin (cos -=;(3)dx xx xdy 2ln 2-=; (4)dx x e x dy x2)1(-=;习题参考答案(5)dx e dy x 2.04.0=; (6)dx x x dy )32(sec )32tan(42++=. 2.(1)221x ; (2)x sin ; (3)||ln x ; (4)x 2.3.11.75.习题2.41.(1)2;(2)1;(3)a cos ;(4)n m ;(5)3;(6)21-;(7)21;(8)∞+.2.(1)1; (2)0.习题2.51.(1)在)2,(-∞内单调增加,在),2(∞+内单调减少,有极大值为7)2(=f ; (2)在),(∞+-∞内单调增加,无极值; (3)在),(∞+-∞内单调增加,无极值;(4)在),1()0,(∞+-∞Y 内单调减少,在)1,0(内单调增加,有极小值为0)0(=f ,有极大值为1)1(-=e f .2.(1)最大值为69)4(=f ,最小值为61)6(-=-f ; (2)最大值为2)1(=f ,最小值为26)3(-=f ; (3)最大值为2)2(ππ=-f ,最小值为2)2(ππ-=f .3.当销售量80=x 时,平均成本最低为40)80(=C 元.4.当学费降低15次,即学费降为325元时,这个培训班可获得最大收益,最大收益为422500元.5.当每周泵的销售量33=x 个时,每周取得利润最大约为662.31元.习题2.61.(1)凹区间为)1,(-∞,凸区间为),1(∞+,拐点为)2,1(; (2)凹区间为),2(∞+,凸区间为)2,(-∞,拐点为)3,2(; (3)凹区间为),1(∞+,凸区间为)1,(-∞,拐点为)6,1(;(4)凹区间为)1,1(-,凸区间为),1()1,(∞+--∞Y ,拐点为)2ln ,1(-和)2ln ,1(; (5)凸区间为),0()0,(∞+-∞Y ,无拐点;(6)凹区间为)2,(-∞,凸区间为),2(∞+,无拐点.2.平均成本函数在)80,0(内单调减少,在),80(∞+内单调增加,有极小值为经济应用数学40)80(=C ,在),0(∞+内是凹的.3.收益函数曲线在)6,0[内单调增加,在]80,6(内单调减少,有极大值为44.73)6(=R ,在)80,0(内是凸的.习题2.71.(20)160L =元,(20)8L =元,(20)6L '=元.2.(1)2()0.092S t t t '=++;(2)(5)29.25S =(百万元),(5)9.25S '=(百万元);(3)(5)29.25S =表明5个月的销售总量为29.58百万元;(5)9.25S '=表明若再多销售1个月,将多销售9.25百万元.3.(1)23780()N x x'=;(2)(10)37.837N '=≈(只),表明当广告费用为1万美元时,若多投入1千美元的广告费,将再多销售船只37只;(20)9.459N '=≈(只),表明当广告费用为2万美元时,若再多投入1千美元的广告费,将多销售船只9只.4.(1)179.9美元;(2)180美元. 5.约108.27元. 6.(1)13EQ P EP =-;(2)11|3P EQ EP ==-,3|1P EQ EP ==-,55|3P EQ EP ==-.7.3EQ P EP P =+,31|2P EQ EP ==.8.(1)24EQ P EP P =--; (2)61|3P EQ EP ==-;(3)因为62|03P ER EP ==>,所以在6P =时,若价格上涨1%,总收益增加0.67%. (4)12P =时,总收益最大,最大总收益是(12)72R =. 第2章 复习题1.(1)212sin(31)y x x '=-+;(2)41y x '=+; (3)34)1(2xx y -='; (4)2222(1)x x y x -+'=-;(5)222sec tan (1)2sec (1)x x x x xy x +-'=+;(6)sin 22cos 2x y e x '=;习题参考答案(7)2(1)[2cot (1)csc ]y x x x x '=+-+;(8)22ln(1)1x x y x --=-.2.222(24)x d yx x e dx=++.3.(1)21xx y e y ye '=-+;(2)32x y y'=-. 4.求下列函数的微分. (1)2(622)dy x x dx =+-; (2)(sin 22cos2)dy x x x dx =+;(3)222(1)x dy x x edx -=-; (4)2332(1)x dy dx x =-.5.切线方程:870x y --=;法线方程:890x y +-=.6.在(,0)(1,)-∞+∞U 内单调增加,在(0,1)内单调减少,有极大值为(0)0f =,有极小值为3(1)2f =-.7.在(0,24)内单调增加,在(24,)+∞内单调减少,有极大值为(24)6916f =;凹区间为(0,12),凸区间为(12,)+∞,拐点为(12,3460).8.生产50000个单位时,获得的利润最大,最大利润为30000)50000(=L . 9.455100dP x Pdx x P+=-+,其实际含义为:当需求量为x 时,若需求量再增加一个单位,则价格将减少455100dP x Pdx x P+=-+元. 10.280()(2)N t t '=+,其实际意义是:当对一个新工人进行t 天培训后,若再多培训一天,该工人就能多装配280()(2)N t t '=+个元件. 11.(1)生产量3Q =时,平均成本最小为(3)6C =元. (2)边际成本2()15123C Q Q Q '=-+,显然(3)(3)6C C '==元. (3)1Q ECEQ ==0.6,其经济意义为:当生产量1Q =时,若生产量增加1%,则成本将增加0.6%.经济应用数学第3章 不定积分与定积分习题3.11.(1)C x +661; (2)C x x ++2717; (3)C x+22ln 1;(4)C x x ++-sin cos ; (5)C x +22ln 81;(6)C x x ++3||ln ;(7)C x +2774;(8)C x x ++23223;(9)C x x +-232931092;(10)C x x x ++-838522325;(11)C x x +-sin 3||ln 2;(12)C x x e x +-+sin 32;(13)C x x x +++65225;(14)C x x x +++-3271344; (15)C x x x++--||ln 21;(16)C x x x x +--+23327323172.2.()f x 2)21(2x e x --=. 3.2ln +=x y (21ex ≥). 4.2125Q Q R -=. 5.20005212++=x x C . 习题3.21.(1)41(53)20x C ++; (2)31(32)6x C --+;(3)1sin(31)3x C ++;(4)1cos(12)2x C -+;习题参考答案(5)2313x e C ++;(6)2x e C --+;(7)212x e C +;(8)2214x e C --+;(9)21cos(2)2x C -++;(10)322(sin )3x C +;(11)2xeC + ;(12)2xe C --+.2.(1)532224(2)(2)53x x C +-++;(2)26ln(3)x x C ++;(3)5322210(35)(35)4527x x C -+-+; (4)3ln 322x x C --;(5)322(3)633x x C -+-;(623ln(123)x x C --+.3.(1)3311ln 39x x x C -+;(2)221124x x xe e C -+;(3)ln3x x x C -+;(4)1(cos sin )2x x x e C ++.习题3.31.(1)32; (2)52; (3)214a π; (4)0. 2.(1)⎰102dx x ≥⎰13dx x ;(2)⎰10dx e x ≥⎰12dx e x ;(3)⎰10dx e x ≥⎰+1)1(dx x ;(4)⎰20πxdx ≥⎰2sin πxdx .习题3.41.(1)2243; (2)0; (3)2183740--; (4)e e -3;(5)331-; (6)3340; (7)34; (8)487. 2.245.3.⎰-=503001.030201dx e p x .经济应用数学 4.146250元.习题3.51.(1)313; (2)431121121)(π--; (3)32---e e ; (4))1(211--e ; (5))1(23-e ; (6))2cos 1(cos 21-.2.(1)52ln 8-; (2)2ln )1ln(1++-e ; (3)35; (4)15216532+-.3.(1)0; (2)0; (3)332π; (4)22π-. 4.(1)121--e ;(2))(251+-πe . 习题3.61.(1)31; (2)2; (3)21; (4)0.2.1.习题3.71.50424.0)(2++=x x x C .2.4200)(2x x x R -=,17500)100(=R 元,175)100(=R 元/单位.3.t e t S 08.05050)(--=,18.3)6(≈S 辆. 4.约8.97万元. 5.(1)40;(2)总收益为5200美元,平均单位收益为130美元/kg ,总成本为4200美元,总利润是1000美元.习题3.81.(1)一阶; (2)二阶; (3)五阶; (4)四阶.2.(1)C x y +=221; (2)C x y +-=21;(3))ln(C e y x +=; (4)1-⋅=x C xy ;(5)22332x e C y -⋅+=; (6))21(122C e x y x +-=-.3.(1)xe e y =; (2))1(212x y --=.第3章 复习题1.(1)C x ++-)1(cos 212;(2)C x +-4)53(121;(3)C x x +++-+)22ln(422; (4)C x x +-)41(ln 44.2.(1)21; (2)24; (3))25(6-; (4))3132(313+e .3.1. 4.40000. 5.约1.53美元.6.10ln0.216-≈,在[0,16]内的全部利润约87.82百元. 7.总成本函数为2()215200C x x x =++; 总利润函数为2()442200L x x x =--;11=x 个单位时,获得最大利润,最大利润是42)11(=L .8.(1)C x y =+-)1)(1(; (2))(2C e e y x x +-=-; (3)4)1(21+=x y ,. 第4章 矩 阵习题4.1略.习题4.21.11,3,2,7,5-====-=z u w y x .2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=111325325310373432316317383Z . 3.5211114208235-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦4.15461021⎡⎤⎢⎥-⎣⎦5.(1)505176213-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)1235-⎡⎤⎢⎥⎣⎦;(3)[]13161922; (4)20742769-⎡⎤⎢⎥---⎣⎦;(5)123246369⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(6)[]70. 8.(1)12190544-⎡⎤⎢⎥-⎣⎦;(2)26751110614-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦;(3)1111580391241424201225218--⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥-⎣⎦; (4)5303128⎡⎤⎢⎥-⎣⎦;(5)5313028⎡⎤⎢⎥-⎣⎦.运费 耗费 9.420000130000382000119000320001000001122000349000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦一班二班三班总计 10.[]64601600010540钾氨磷习题4.31.(1)113-1-200-7470000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,2R =; (2)120001130024000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =; (3)12390236596410022⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦,3R =;(4)1312074800210000--⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,3R =. 2.(1)2;(2)2;(3)4;(4)3.3.(1)8=k ;(2)8≠k ,(3)k 不存在.习题4.41.因为AB =BA =E ,所以B 是A 的逆矩阵.2.11,510x y =-=.3.(1)2550291111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;(2)414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)2015215911-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦414457568⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 4.(1)1-A143153164--⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦;(2)1-A 不存在,(3)15111444411112222111144441111A -⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦;(4)1-A 1153222421731222⎡⎤--⎢⎥⎢⎥=-⎢⎥⎢⎥-⎢⎥⎣⎦. 5.A =18315511115511055⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦. 6.1200020002B AB -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.第4章 复习题一、1.().,,2,1;,,2,1,,n j m i b a t n s m ij ij ΛΛ=====2.t l m k s n ===,,. 3.()TA 1-. 4.B ,A . 5.非零行的行数.二、1.(d); 2.(b)(d); 3.(a); 4.(c)(d).三、1.3071845232⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦.2.()3R A =,()1R B =.3.38172777122221935222Z ⎡⎤---⎢⎥⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦.第5章 线性方程组习题5.21.(1)123783x x x =⎧⎪=⎨⎪=-⎩;(2)无解;(3)123000x x x =⎧⎪=⎨⎪=⎩;(4)1233252x k x k x k ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(5)1123212331425351622623x k k k x k k k x k x k x k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩;(6)12342,3,1,0.x x x x =⎧⎪=-⎪⎨=⎪⎪=⎩.2. (1)4m =,1233x k x k x k =-⎧⎪=⎨⎪=⎩; (2)3m =,1233525x k x k x k ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩.3.(1)5m ≠; (2)5,2m k =≠-; (3)5,2m k ==-. 4.(1)02p q ≠≠或时方程组无解;(2)02p q ==且时有解,解为11232123314253522263x k k k x k k k x k x kx k =++-⎧⎪=---+⎪⎪=⎨⎪=⎪⎪=⎩5.5=m ,1122123142164555373555x k k x k k x k x k ⎧=--+⎪⎪⎪=-+⎨⎪=⎪⎪=⎩.6.(1)7349121714Z ⎡⎤--⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦;(2)22308Z -⎡⎤=⎢⎥⎣⎦. 第5章 复习题一、1.111111111,n n m mn m mn m a a a a b aa a ab ⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭LL MM MM M LL,无解,有唯一解,有无穷多组解,无解,未知数个数,小于2.(1)无解(2)有无穷多组解(3)有唯一解 3.3124121,2.x x x x x x =++⎧⎨=+⎩二、1. (d);2. (c). 三、04122112Z ⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎣⎦四、1.11221331427188373x k k x k k x k x k =-+⎧⎪=-+-⎪⎨=⎪⎪=⎩;2.1234,321.2x x x ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩;3.1231,1,1.x x x =⎧⎪=-⎨⎪=-⎩;4. 1230,0,0.x x x =⎧⎪=⎨⎪=⎩; 5.112321324332x k k k x k x k x k =-+⎧⎪=⎪⎨=⎪⎪=⎩.五、11221231422223x k k x k k x k x k =++⎧⎪=--+⎪⎨=⎪⎪=⎩.第6章 线性规划初步习题6.11.设生产1A 产品1x 万瓶,生产2A 产品2x 万瓶,获得利润L 美元. 则该问题的数学模型为:12max 80003000L x x =+12121212535003008020000..1249000,0x x x x s t x x x x +⎧⎪+⎪⎨+⎪⎪⎩≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =≤⎧⎨≥⎩其中:[]80003000C =,12x X x ⎡⎤=⎢⎥⎣⎦,5330080124A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,50020000900B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设A 需要1x 个单位,B 需要2x 个单位,总费用为F . 则该问题的数学模型为:121212min 20030024.0,0F x x x x s t x x =++⎧⎨⎩≥≥≥其矩阵形式为:min ..0F CX AX B s t X =⎧⎨⎩≥≥ 其中:[]200300C =,12x X x ⎡⎤=⎢⎥⎣⎦,[]12A =,[4]B =.3.设第i 月的进货量为1i x 千件,售货量为2i x 千件(3,2,1=i ),利润为L 美元.则该问题的数学模型为:111221223132max 8969910L x x x x x x =-+-+-+111112211112212231300300..3000(1,2,3;1,2)ij x x x x s t x x x x x x i j ⎧⎪-+⎪⎨-+-+⎪⎪==⎩≤≤≤≥ 其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]8969910C =---,111221223132x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,100000111000111110A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,300300300B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.习题6.21.(1)最优解为12032x x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为min 3S =-.(2)无最优解.(3)无穷多组最优解为满足8221=+x x 且介于点(2,3)和(4,2)件的线段上的所有点,最优值为16max =S .第6章 复习题1.设生产A 产品1x 个单位,生产B 产品2x 个单位,获得利润L 元. 则该问题的数学模型为:12max 800010000L x x =+ 12121212128940058320..642804123500,0x x x x s t x x x x x x +⎧⎪+⎪⎪+⎨⎪+⎪⎪⎩≤≤≤≤≥≥其矩阵形式为:max ..0L CX AX B s t X =⎧⎨⎩≤≥其中:[]800010000C =,12x X x ⎡⎤=⎢⎥⎣⎦,895864412A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,400320280350B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 2.设工厂i 给工地j 的砖量为ij x 万块(其中:1,2i =分别表示工厂A 、B ,1,2,3j =分别表示工地甲、乙、丙),总运费为F 元.则该问题的数学模型为:111213212223min 5060706011027F x x x x x x =+++++112112221323111213212223171815..23270(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++=⎪⎪++=⎪≥==⎪⎩ 其矩阵形式为:min ..0F CX AX B s t X ==⎧⎨≥⎩其中:[5060706011027]C =,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=232221131211x x x x x x X ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111000000111100100010*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2723151817B3.设第i 个煤矿运往第j 个城市的煤量为ij x 千吨(其中:1,2,3i =分别表示甲、乙、丙三个煤矿,1,2,3,4j =分别表示A 、B 、C 、D 四个城市),总运费为F 元.则该问题的数学模型为:111213142122232431323334min 1211181191111131014137F x x x x x x x x x x x x =+++++++++++习题参考答案·21·41142143131132133134149115..4780)1,2,3;1,2,3,4)j j j j j j i i i i i i i i ij x x x x s t x x x x i j =======⎧=⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪=⎪⎨⎪⎪=⎪⎪⎪=⎪⎪⎪=⎪⎪≥==⎪⎩∑∑∑∑∑∑∑ 其矩阵形式为:min ..0F CXAX B s t X ==⎧⎨≥⎩ 其中:[1211181191111131014137]C =,111213142122232431323334x x x x x x X x x x x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,111100000000000011110000000000001111100010001000010001000100001000100010000100010001A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,49115478B ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 4.设i A 机床生产j B 工件的数量为ij x (1,2;1,2,3i j ==),总加工费为S 元. 则该问题的数学模型为:经济应用数学·22·111213212223min 139********S x x x x x x =+++++ 1121122213231112132122230.40.54001.1 1.26001.3500..0.41018000.5 1.2 1.39000(1,2;1,2,3)ij x x x x x x s t x x x x x x x i j +=⎧⎪+=⎪⎪+=⎪⎨++≤⎪⎪++≤⎪≥==⎪⎩ 其矩阵形式为:min ..0F CXAX B s t AeqX BeqX =⎧⎪=⎨⎪⎩≤≥ 其中:[1391011128]C =,111213212223x x x X x x x ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,0.4 1.110000000.5 1.2 1.3A ⎡⎤=⎢⎥⎣⎦,800900B ⎡⎤=⎢⎥⎣⎦, 0.4000.5000 1.100 1.2000100 1.3Aeq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,400600500Beq ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5.用图解法求下列各题.(1)最优解为1220x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,最优值为max 4S =. (2)无最优解为.(3)无穷多组最优解为满足121x x +=且介于点(1,0)和点(0,1)间的线段上的所有点.习题参考答案 ·23·第7章 随机事件与概率习题7.11.(1){}0t t Ω=≥;(2)设}{个次品取到正品前抽取了i A i =(0,1,2,3,4i =),则01234{,,,,}A A A A A Ω=;(3)设}{次中得一等奖第i A i =(1,2,i =L ),则12{,,}A A Ω=L .2.(1)AB ; (2)A ;(3)ABC ABC ABC ⋃⋃; (4)ABC ; (5)A B C ⋃⋃;(6)A B C ⋃⋃或ABC ; (7)ABC 或A B C ⋃⋃;(8)ABC ABC ABC ABC ⋃⋃⋃. 3.(1)321A A A ;(2)321A A A ⋃⋃;(3)321321321A A A A A A A A A ⋃⋃;(4)321321321321A A A A A A A A A A A A ⋃⋃⋃.4.(1)[0,3); (2)[0,2); (3)(,0)[2,)-∞⋃+∞; (4)φ. 习题7.21.14. 2.(1)13; (2)215; (3)815. 3.(1)61; (2)b ; (3)0.84; (4)1511; (5)0.7; (6)0.6. 4.(1)61; (2)65. 5.(1)158; (2)97. 6.(|)0.3P B S =.7.0.64.8.(1)0.42;(2)0.88;(3)0.46.9.(1)89110;(2)81100.经济应用数学 ·24· 10.35. 11.0.592.12.0.4,0.5,0.6,0.6,0.75.13.0.93.第7章 复习题1.12B A A =;12C A A =;1212()()D A A A A =⋃;12E A A =⋃.其中B C D 、、两两互不相容,C 与E 为对立事件.2.因为B A ⊂,所以()()P B P A <.3.(1)2845; (2)145; (3)15; (4)1645; (5)1745; (6)4445. 4.0.97;0.03.5.0.75;0.25.6.(1)0.988;(2)0.012;(3)0.83.7.(1)44%;(2)15%;(3)2.25%;(4)0.25%;(5)13.6%;(6)13.3%.8.(1)0.27;(2)0.15.9.(1)0.45,0.24,0.14;(2)0.83;(3)0.54.10.0.78.11.0.72.12.(1)0.74;(2)0.56.第8章 随机变量分布及其数字特征习题8.11.设随机变量0,()1,()X ⎧=⎨⎩没投中投中,则(0)0.6P X ==,(1)0.4P X ==. 2.设取出产品的等级为随机变量X , X 取1、2、3分别表示产品等级为一、二、三级,则4(1)7P X ==,2(2)7P X ==,1(3)7P X ==.习题参考答案 ·25·习题8.21.(1)是概率分布.因为满足离散型随机变量分布律的性质;(2)25.0)30(==X P ;(3)35.0)25(=≤X P ;(4)4.0)30(=>X P .2.(1)P (X=100) =0.25;(2)7.0)0(=>X P ;(3)4.0)100(=≥X P . 3X -12 6 )(X P0.1 0.3 0.6 4. X 01 2 P (X )2138 1538 119 5.(1) X 01 2 )(X P19 49 49 (2) X 01 2 )(X P115 815 25 6.0.14;0.95.7.0.009;0.998;7,0.617.8.(1)25.0=C ;(2)0.25,0.75;(3)F (X )=0,10.25,130.5,3 4.51,4.5x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥. 9.0.000008.习题8.31.(1)a =3;(2)95. 2.(1)0.2325;(2)0.5479.经济应用数学·26·3.(1)常数k=4;(2)0.5392.4.(1)c=61;(2)127;(3)()F x =20,211,241231,4x x x x <⎧⎪⎪-<⎨⎪⎪⎩≤≥. 5.(1)0.4773;(2)0.0227;(3)0.9545.6. 1.96λ=.7.(1)0.475;(2)0.025.8.(1)0.09176;(2)12475支/周.习题8.41.47. 2.(1)31; (2)32; (3)2435. 3.(1)c =6; (2)61; (3)67. 4.0.3.5.2.6.k =4;α=3.7.(1)445;(2)盈利57500元. 习题8.51.163. 2.数学期望为0.3;方差为0.319.3.E (X )=9元;D (X )=3.4.4.(1)31;(2)454;(3)4516. 5.(1)12-;(2)20.6.(1)4.1;(2)3.93,1.98.7.7.8.(1)5;(2)17;(3)0.9.a =0.6,b=1.2, D ( X )=0.08.习题参考答案 ·27·第8章 复习题1.1()(1,2,3,4,5,6)6P X k k ===; 0,(1)1,(12)61,(23)31(),(34)22,(45)35,(56)61,(6)x x x F x x x x x <⎧⎪⎪≤<⎪⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎪⎩2.(1)0.11;(2)0.96.3.(1)不是;(2)是.4.0.9324.5.0.3935.6.(1)61;(2)21625. 7.(1)K =0.5;(2)1.414.8.(1)0.483;(2)0.983.9.50.85.10.(1)0.1056;(2)0.1056.11.(1)0.5;(2)0.25;(3)43;(4)29. 12.(1)0;(2)1.13.开发该软件.14.(1)()145,()140E X E Y ==,选择中型扩建.(2)()2725,()12400D X D Y ==,选择中型扩建.15.(1) X1 2 3 4 5 P 4% 39% 29% 21% 7%经济应用数学·28·(2)() 2.88E X =;(3)() 1.0256,() 1.013D X D X =≈.16.(1) X1 2 3 4 5 P 7/29 6/29 3/29 6/29 7/29 (2)()3E X =,()11.34D X ≈;(3)略.第9章 数理统计初步习题9.1略.习题9.21.(1290,1304).2.(1271,1323).3.(2.08, 2.42).4.(18,20).5.(17.9,91.1).习题9.31.产品合格.2.产品合格.3.不正常.4.广告不真实.5.有变化.习题9.41.(1)略;(2)ˆ 6.45 1.58y x =-;(3)变量x 与y 存在显著线性相关关系.2.x 与y 存在显著线性相关关系;ˆ41.320.53yx =+.习题参考答案 ·29· 第9章 复习题1.(1)(93.54,136.72);(26.4,46.84);(2)略.2.该校3年级男生平均身高与全国一致,身高差异程度没有拉大.3.该生产线不正常.4.这两种药品对血压影响是相同的.5.该基金的风险没有增大.6.(71.15, 80.45).7.(1)ˆ66.6 1.36y x =+;(2)y 与xx 存在显著线性相关关系.8.(1)y 与x 存在显著线性相关关系;(2)ˆ 4.950.18y x =-+.目录习题参考答案 (1)第1章函数、极限与连续 (1)第1章复习题 (2)第2章导数与微分 (3)第3章不定积分与定积分 (8)第4章矩阵 (11)第4章复习题 (14)第5章线性方程组 (15)第6章线性规划初步 (17)第7章随机事件与概率 (23)第8章随机变量分布及其数字特征 (24)第9章数理统计初步 (28)·I·。
经济应用数学(习题参考答案解析)
其矩阵形式为:
其中: , , , .
2.设工厂 给工地 的砖量为 万块(其中: 分别表示工厂A、B, 分别表示工地甲、乙、丙),总运费为 元.则该问题的数学模型为:
其矩阵形式为:
其中: ,
, ,
3.设第 个煤矿运往第j个城市的煤量为 千吨(其中: 分别表示甲、乙、丙三个煤矿, 分别表示A、B、C、D四个城市),总运费为F元.则该问题的数学模型为:
习题参考答案
第
习题
1.(1)不同,因为它们的定义域不同;
(2)不同,因为它们的定义域和对应法则都不同.
2.(1) ;(2) .
3. .
4.(1) ;(2) ;
(3) ;(4) .
5. , .
6. .
7.(1)25000;(2)13000;(3)1000.
8. .
9. .
习题
1.(1)0;(2)0;(3)1;(4)0;(5)24;
习题
1.(1)2;(2)1;(3) ;(4) ;(5)3;(6) ;(7) ;(8) .
2.(1)1;(2)0.
习题
1.(1)在 内单调增加,在 内单调减少,有极大值为 ;
(2)在 内单调增加,无极值;
(3)在 内单调增加,无极值;
(4)在 内单调减少,在 内单调增加,有极小值为 ,
有极大值为 .
2.(1)最大值为 ,最小值为 ;
(2)最大值为 ,最小值为 ;
(3)最大值为 ,最小值为 .
3.当销售量 时,平均成本最低为 元.
4.当学费降低15次,即学费降为325元时,这个培训班可获得最大收益,最大收益为422500元.
5.当每周泵的销售量 个时,每周取得利润最大约为662.31元.
《经济应用数学》试题(6)
《经济应用数学》试题(6)第1页《经济应用数学》试题(6)第2页(共4页)《经济应用数学》试题(6)月一、填空(每题2分,共10分)(1) 函数210()0141x x f x e x x x -∞〈〈⎧⎪=≤〈⎨⎪-≤〈+∞⎩,则(1)f =__________________(2) 函数26()412x f x x x -=--的连续区间为 ____________(3)已知曲线()y f x =在点x 处切线的斜率为21x +,且曲线过点(1,1),则曲线的方程是 ___________________(4) 10d dx =⎰_________ (5)函数()sin 2f x x =的一个原函数是二、选择题(每题2分,共10分)(1)设()f x 的定义域为[]0,1,则(1)f x -的定义域为( )A .[]0,1B .[]1,2C .[]1,0- D .[]0,2(2)函数3121y x x =++在定义域内( )A .单调递增B .单调递减C .图形上凹D .图形上凸 (3)设22(,)f x y x y x y +-=-,则''x y f f +=( )A .22x y -B .22x y +C .x y +D .x y - (4)若()22x f x dx x e c =+⎰,则()f x =( ).A .22x xeB .222x x eC .2x xeD .22(1)x xe x +(5)()110,xdx f x y dy -=⎰⎰( )A .()dx y x f dy x⎰⎰-101, B .()dx y x f dy x⎰⎰-110, C .()dx y x f dy ⎰⎰101, D .()dx y x f dy y⎰⎰-110,三、求下列函数的极限(每题6分,共12分)(1) 131lim 21---+→x xx x(2) ()xx x 1021lim +→四、求导数或微分(每题6分,共24分)(1)x y arctan =,求'y(2)cos(3)x y e x -=-,求dy《经济应用数学》试题(6)第3页《经济应用数学》试题(6)第4页(共4页)(3)arctan x y y +=,求 'y(4)23ln(1)z x y =++,求dz五、求下列积分和解微分方程(每题6分,解微分方程8分,共26分)(1)⎰⎪⎭⎫⎝⎛-dx x x 21(2) ⎰πcos xdx x(3)⎰+dx x2361(4) x e y y 23=+'六、应用题(每题9分,共18分)1.求曲线2y x =-与22y x =-,所围成的平面图形的面积。
经济数学试题及答案
经济数学试题及答案一、选择题1. 某公司的年利润以每年10%的速度增长,如果去年的年利润为100万元,那么两年后的年利润预计为多少?A. 121万元B. 110万元C. 120万元D. 111万元答案:A2. 假设银行的年利率为5%,如果小明存入10000元,一年后他将获得多少利息?A. 500元B. 550元C. 505元D. 450元答案:C3. 某商品的原价为200元,现在打8折出售,打折后的价格是多少?A. 160元B. 180元C. 240元D. 200元答案:A4. 一个投资项目,初始投资为10000元,预计每年可获得2000元的收益,不考虑其他因素,该项目的回收期是多少年?A. 3年B. 4年C. 5年D. 6年答案:B5. 以下哪个公式用于计算复利?A. A = P(1 + r/n)^(nt)B. A = P(1 + r)^tC. A = P + r^tD. A = P(1 - r)^t答案:A二、填空题1. 如果一个贷款的月利率为0.5%,那么年利率为________%。
答案:62. 某公司的股票价格从年初的10元上涨到年末的12元,该股票的年收益率为________%。
答案:203. 某人计划在5年内攒够100000元用于购房首付,如果他每月存入相同的金额,假设年利率为5%,他每月需要存入________元。
答案:1666.67三、计算题1. 张先生向银行贷款150000元,年利率为6%,贷款期限为10年,采用等额本息还款方式,请问张先生每月需要还款多少元?解:根据等额本息还款公式计算,每月还款额 = 贷款本金× 月利率× (1+月利率)^还款期数 / [(1+月利率)^还款期数 - 1]。
月利率为6%/12 = 0.5%,还款期数为10×12=120期。
代入公式得每月还款额 = 150000 × 0.005 × (1+0.005)^120 / [(1+0.005)^120 - 1] ≈ 1572.22元。
经济应用数学基础(一)微积分-试题与答案
。
二、计算下列各题(每题 5 分,共 20 分)
11 lim( − ) 1、 x→1 ln x x −1
2、 y = arcsin 1− 3x ,求 y' ;
3、设函数 y = y(x) 由方程 exy = x − y 所确定,求 dy x=0 ;
4、已知
⎧
⎨ ⎩
y
=
x= cos
sin t t + t sin
高等数学(上)模拟试卷一
一、 填空题(每空 3 分,共 42 分)
1、函数 y = 4 − x + lg(x − 1) 的定义域是
;
⎧2x
x<0
f (x) = ⎨
2、设函数
⎩a + x x ≥ 0在点 x = 0 连续,则 a =
;
3、曲线 y = x4 − 5 在(-1,-4)处的切线方程是
;
∫ 4、已知 f (x)dx = x3 + C ,则 f (x) =
;
∫ 4、已知 f (x)dx = x2 + C ,则 f (x) =
;
ห้องสมุดไป่ตู้
lim (1 +
1
x
)3
5、 x→∞ x =
;
6、函数 f (x) = x3 − x2 +1的极大点是
;
7、设 f (x) = x(x −1)(x − 2)……(x −1000) ,则 f '(0) =
;
8、曲线 y = xex 的拐点是
→
a
=
{3,
−4,
0}
,
→
b
=
{k
,
−1,1}
经济应用数学习题及答案
经济应用数学习题第一章 极限和连续 填空题1. sin limx xx→∞=0 ;2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的;3当0x →时,1cos x -是比x 高阶的无穷小量。
4. 当0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25.2lim(1)x x x →∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在(C )25(D )12.()f x 在点0x x =处有定义,是()f x 在0x x =处连续的(A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x2.x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x→--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在x 处可导,则])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(l i m000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e -。
2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设)(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →--存在 (B ) 000()()lim x x f x f x x x →--不存在(C )00()()limx x f x f x x →+-存在 (D )00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D )–2 3. 3设()y f x =可导,则 (2)()f x h f x -- = ( B )(A )()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x →存在,则0()lim x f x x→等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D ) (A ))(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x7函数xx x f =)( 在 0=x 处( D )(A )连续但不可导(B ) 连续且可导(C )极限存在但不连续(D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xy xy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定y 是 x 的函数,求dx dy 解:''ln (ln )y y y dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求13cos x y e x -=的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --==22(21)x e x dy dx x -=5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川农业大学网络教育专科考试
经济应用数学 试卷
(课程代码 391006)
本试题一共五道大题,共2页,满分100分.考试时间90分钟.
注意:1、答案必须填写在答题纸上,题号不清或无题号的以零分计. 2、答题前,请在答题纸上准确、清楚地填写各项目;
3、学号、考点名称、考室号、姓名、身份证号、课程代码、课程名称、培养层次等,不写、乱写及模糊不清者,答题纸作废;
4、闭卷考试,若有雷同以零分计。
一、 是非题(每小题3分,共15分)
1. y =
的间断点为1x =±. 错
2. 2
2sin ()1
x
f x x =
+是奇函数. 对 3. 若lim ()0x a
f x →=,lim ()0x a
g x →=.则一定有()
lim
0()
x a
f x
g x →=. 错 4. 设)(x f 在a x =点处连续,则有()()f x f a '=. 对 5. 若()f x 为边际收益函数(x 为产量),则0
()()x F x f x dx =
⎰
为总收益函数. 对
二、填空题(每小题3分,共15分)
6.
函数1
lg
1y x
=+- [3,1)- ). 7. 设211sin ,0,(),0.
x x f x x
k x x ⎧
+≠⎪
=⎨⎪+=⎩
在0=x 连续,则k =( 1 ).
8. 导数
6(sin 1)
4
[]x d e dx dx +=⎰( 0 ).
9. 定积分
2
2021xdx
x =+⎰( ln5 ).
10. )(x f 一个原函数为sin x ,则
⎰=dx x f )('( cos x C -+ ).
三、选择题(每小题3分 ,共15分)
11. 当2→x 时,231
2
x x x ++-是( B ).
A .无穷小量
B .无穷大量
C .1
D .-1 12. 极限0sin3lim
3x x
x
→= ( A )
A .1
B .0
C .不存在
D .3 13.在下列函数中,在0=x 不可导的是( C ). A .x
e y = B .x y sin = C .2
1
x y = D .x y arcsin = 14.设122
=+y x ,则dx
dy
=( D ). A .
2
1x x - B .
x
y
C .y x
D . y x -
15. 下列积分不是广义积分的是( B ). A .
dx x
⎰
--11
2
11 B .dx e x
⎰1
C .⎰
∞+-4
3
1dx x D .dx x x e ⎰1ln 1
四、计算题(每小题10分,共40分)
16.求极限
lim 3x t x te dt x
→⎰.
解:“
”型,用罗比达法则,得 原式0
()lim
(3)x
t x te dt x →'
='
⎰
0lim 03
x
x xe →==
17.设2sin 43x
y x e
=++,求二阶导数"y .
解:x
e x y 224cos 4'+= ,则,"y = 2416sin 4x e x -
18.不定积分
dx x
x ⎰
-2
1arcsin .
解:arcsin (arcsin )xd x ⎰
21
(arcsin )2
x C =+ 19.计算定积分2
1
(1)x x dx -+-⎰
.
解:原式0
1
(1)x x dx -=
-+-⎰
1
0(1)x x dx ++-⎰
2
1
(1)5x x dx +-+=⎰
五、应用题(共15分)
20.某厂生产某种产品,每日生产的产品总成本y 的变化率(即边际成本)是日产量
x 的函数2
3x +
,其中固定成本为300元. 求:(1) 总成本与日产量x 之间的关系;(2 )日产量x =100时的总成本.
解:(1) 总成本
C x x dx x
x y ++=+=⎰3223
23)2
3( 由已知0=x 时300=y ,解得C=300.
则总成本与日产量x 之间的关系为:30033
23++=x x y (2)日产量x =100时的总成本为:30010031003
23++=y。