第6讲.中考第一轮复习二次函数.提高班.学生版
中考数学一轮复习精品讲义 二次函数 人教新课标版
中考数学一轮复习精品讲义 二次函数 人教新课标版本章小结小结1 本章概述本章从实际问题的情境入手引出基本概念,引导学生自主探索变量之间的关系及其规律,认识二次函数及其图象的一些基本性质,学习怎样寻找所给问题中隐含的数量关系,掌握其基本的解决方法.本章的主要内容有两大部分:一部分是二次函数及其图象的基本性质,另一部分是二次函数模型.通过分析实例,尝试着解决实际问题,逐步提高分析问题、解决问题的能力.二次函数综合了初中所学的函数知识,它把一元二次方程、三角形等知识综合起来,是初中各种知识的总结.二次函数作为一类重要的数学模型,将在解决有关实际问题的过程中发挥重要的作用. 小结2 本章学习重难点【本章重点】 通过对实际问题情境的分析,确定二次函数的表达式,体会二次函数的意义;会用描点法画二次函数的图象,能从图象中认识二次函数的性质;会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题;会利用二次函数的图象求一元二次方程的近似解.【本章难点】 会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题. 【学习本章应注意的问题】1.在学习本章的过程中,不要死记硬背,要运用观察、比较的方法及数形结合思想熟练地画出抛物线的草图,然后结合图象来研究二次函数的性质及不同图象之间的相互关系,由简单的二次函数y =ax 2(a ≠0)开始,总结、归纳其性质,然后逐步扩展,从y =ax 2+k ,y =a (x -h )2一直到y =ax 2+bx +c ,最后总结出一般规律,符合从特殊到一般、从易到难的认识规律,降低了学习难度.2.在研究抛物线的画法时,要特别注意抛物线的轴对称性,列表时,自变量x 的选取应以对称轴为界进行对称选取,要结合图象理解并掌握二次函数的主要特征.3.有关一元二次方程与一次函数的知识是学习二次函数内容的基础,通过观察、操作、思考、交流、探索,加深对教材的理解,在学习数学的过程中学会与他人交流,同时,在学习本章时,要深刻理解两种思想和两种方法,两种思想指的是函数思想和数形结合思想,两种方法指的是待定系数法和配方法,在学习过程中,对数学思想和方法要认真总结并积累经验小结3 中考透视近几年来,各地的中考试卷中还出现了设计新颖、贴近生活、反映时代特点的阅读理解题、开放性探索题和函数的应用题,尤其是全国各地中考试题中的压轴题,有三分之一以上是这一类题,试题考查的范围既有函数的基础知识、基本技能以及基本的数学方法,还越来越重视对学生灵活运用知识能力、探索能力和动手操作能力的考查,特别是二次函数与一元二次方程、三角形的面积、三角形边角关系、圆的切线以及圆的有关线段组成的综合题,主要考查综合运用数学思想和方法分析问题并解决问题的能力,同时也考查计算能力、逻辑推理能力、空间想象能力和创造能力.知识网络结构图二次函数的概念二次函数的图象开口方向对称轴顶点坐标增减性专题总结及应用二次函数 二次函数的性质 二次函数的应用 一元二次方程的近似解 一元二次不等式的解集 二次函数的最大(小)值 在实际问题中的应用一、知识性专题专题1 二次函数y =ax 2+bx +c 的图象和性质【专题解读】 对二次函数y =ax 2+bx +c 的图象与性质的考查一直是各地中考必考的重要知识点之一,一般以填空题、选择题为主,同时也是综合性解答题的基础,需牢固掌握.例1 二次函数y =ax 2+bx +c (a ≠0)的图象如图26-84所示,则下列结论:①a >0;②c >0;③b 2-4ac >0.其中正确的个数是 ( )A .0个B .1个C .2个D .3个分析 ∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半铀,∴c >0;∵抛物线与x 轴有两个交点,∴b 2-4ac >0.故②③正确.故选C .【解题策略】 解此类题时,要注意观察图象的开口方向、与y 轴交点的位置以及与x 轴交点的个数.例2 若y =ax 2+bx +c ,则由表格中的信息可知y 与x 之间的函数关系式是 ( )x -1 0 1 ax 2 1 ax 2+bx +c83A .y =x 2-4x +3B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +8分析 由表格中的信息可知,当x =1时,ax 2=1,所以a =1.当x =-1时,ax 2+bx +c =8,当x =0时,ax 2+bx +c =3,所以c =3,所以1×(-1)2+b ×(-1)+3=8,所以b =-4.故选A .【解题策略】 本题考查用待定系数法求二次函数的解析式,解决此题的突破口是x =1时,ax 2=1,x =0时,ax 2+bx +c =3和x =-1时,ax 2+bx +c =8.例3 已知二次函数y =ax 2+bx +1的大致图象如图26-85所示,则函数y =ax +b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 分析 由图象可知a <0,2ba-<0,则b <0,所以y =ax +b 的图象不经过第一象限.故选A .【解题策略】 抛物线的开口方向决定了a 的符号,b 的符号由抛物线的开口方向和对称轴共同决定.例4 已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.其中正确的个数为 ( )A .0个B .1个C .2个D .3个分析 由a >0,得抛物线开口向上,由2ba-<0,得对称轴在y 轴左侧,由c <0可知抛物线与y 轴交于负半轴上,可得其大致图象如图26—86所示,因此顶点在第三象限,故①③正确.故选C.【解题策略】 此题考查了二次函数的开口方向、对称轴、顶点等性质,解题时运用了数形结合思想.例5 若A 113,4y ⎛⎫- ⎪⎝⎭,B 25,4y ⎛⎫- ⎪⎝⎭,C 31,4y ⎛⎫ ⎪⎝⎭为二次函数y =x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( )A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2分析因为y=x2+4x+5的图象的对称轴为直线x=-2,所以x=134-与x=-34的函数值相同,因为抛物线开口向上,所以当54-<34-<14时,y2<y1<y3.故选B.【解题策略】此题考查了抛物线的增减性和对称轴,讨论抛物线的增减性需在对称轴的同侧考虑,因此将x=134-的函数值转化为x=-34的函数值.例6 在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是(如图26—87所示) ( )分析直线y=-x+1与y轴交于正半轴,抛物线y=-32(x-1)2的顶点为(1,0),且开口向下.故选D.专题2 抛物线的平移规律【专题解读】当二次函数的二次项系数a相同时,图象的形状相同,即开口方向、大小相同,只是位置不同,所以它们之间可以进行平行移动,移动时,其一,把解析式y=ax2+bx+c化成y=a(x-h)2+k的形式;其二,对称轴左、右变化,即沿x轴左、右平移,此时与k的值无关;顶点上、下变化,即沿y轴上、下平移,此时与h的值无关.其口诀是“左加右减,上加下减”.例7 把抛物线y=-2x2向上平移1个单位,得到的抛物线是 ( )A.y=-2(x+1)2 B.y=-2(x-1)2C.y=-2x2+1 D.y=-2x2-1分析原抛物线的顶点为(0,0),向上平移一个单位后,顶点为(0,1).故选C.【解题策略】解决此题时,可以用“左加右减,上加下减”的口诀来求解,也可以根据顶点坐标的变化来求解.例8 把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=x2-3x +5,则 ( )A.b=3,c=7 B.b=6,c=3C.b=-9,c=-5 D.b=-9,c=21分析y=x2-3x+5变形为y=232x⎛⎫-⎪⎝⎭+5-94,即y=232x⎛⎫-⎪⎝⎭+114,将其向左平移3个单位,再向上平移2个单位,可得抛物线y=2332x⎛⎫-+⎪⎝⎭+114+2,即y=x2+3x+7,所以b=3,c=7.故选A.【解题策略】此题运用逆向思维解决了平移问题,即抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到y=x2-3x+5,那么抛物线y=x2-3x+5则向左平移3个单位,再向上平移2个单位,可得到抛物线y =x 2+bx +c .专题3 抛物线的特殊位置与函数关系的应用【专题解读】若抛物线经过原点,则c =0,若抛物线的顶点坐标已知,则2ba-和244ac b a -的值也被确定等等,这些都体现了由抛物线的特殊位置可以确定系数a ,b ,c 以及与之有关的代数式的值.例9 如图26-88所示的抛物线是二次函数y =ax 2+3ax +a 2-1的图象,则a 的值是 .分析 因为图象经过原点,所以当x =0时,y =0,所以a 2-1=0,a =±1,因为抛物线开口向下,所以a =-1.故填-1:专题4 求二次函数的最值【专题解读】 在自变量x 的取值范围内,函数y =ax 2+bx +c 在顶点24,24b ac b a a ⎛⎫-- ⎪⎝⎭处取得最值.当a >0时,抛物线y =ax 2+bx +c 开口向上,顶点最低,当x =2ba-时,y 有最小值为244ac b a -;当a <0时,抛物线y =ax 2+bx +c 开口向下,顶点最高,当x =2ba-时,y 有最大值为244ac b a -.例10 已知实数x ,y 满足x 2+2x +4y =5,则x +2y 的最大值为 .分析 x 2+2x +4y =5,4y =5-x 2-2x ,2y =12(5-x 2-2x ),x +2y =12(5-x 2-2x )+x ,整理得x +2y =-12x 2+52.当x =0时,x +2y 取得最大值,为52.故填52. 专题 5 二次函数与一元二次方程、一元二次不等式的关系【专题解读】 二次函数与一元二次方程、一元二次不等式之间有着密切的联系,可以用函数的观点来理解方程的解和不等式的解集.已知函数值,求自变量的对应值,就是解方程,已知函数值的范围,求对应的自变量的取值范围,就是解不等式.例11 已知二次函数y =ax 2+bx 的图象经过点(2,0),(-1,6). (1)求二次函数的解析式;(2)不用列表,画出函数的图象,观察图象,写出当y >0时x 的取值范围.分析 (1)列出关于a ,b 的方程组,求a ,b 的值即可.(2)观察图象求出y >0的解集.解:(1)由题意可知,当x =2时,y =0,当x =-1时,y =6,则420,6,a b a b +=⎧⎨-=⎩解得2,4.a b =⎧⎨=-⎩∴二次函数的解析式为y =2x 2-4x .(2)图象如图26—89所示,由图象可知,当y >0时,x <0或x >2.【解题策略】 求二次函数的解析式,其实质就是先根据题意寻求方程组,并解方程组,从而使问题得到解决.二、规律方法专题专题6 二次函数解析式的求法【专题解读】 用待定系数法可求出二次函数的解析式,确定二次函数的解析式一般需要三个独立的条件,根据不同的条件,选择不同的设法.(1)设一般式:y =ax 2+bx +c (a ≠0).若已知条件是图象经过三个点,则可设所求的二次函数解析式为y=ax2+bx+c,将已知条件代入,即可求出a,b,c的值.(2)设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数的图象与x轴的两个交点的坐标分别为(x1,0),(x2,0),则可设所求的二次函数解析式为y=a(x-x1)(x-x2),将第三点(m,n)的坐标(其中m,n为已知数)代入,求出待定系数a,最后将解析式化为一般式.(3)设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),则可设所求的二次函数解析式为y=a(x-h)2+k,将已知条件代入,求出待定系数a,最后将解析式化为一般式.(4)设对称点式:y=a(x-x1)(x-x2)+m(a≠0).若已知二次函数图象上的对称点(x1,m),(x2,m),则可设所求的二次函数解析式为y=a(x-x1)(x-x2)+m(a≠0),将已知条件代入,求得待定系数a,m,最后将解析式化为一般式.例12 根据下列条件求函数解析式.(1)已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式;(2)已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),求此抛物线的解析式;(3)已知抛物线与x轴交于A(-1,0),B(1,0)两点,且经过点M(0,1),求此抛物线的解析式;(4)已知抛物线经过(-3,4),(1,4)和(0,7)三点,求此抛物线的解析式.分析 (1)已知图象上任意三点的坐标,可选用一般式,从而得到关于a,b,c的方程组,求出a,b,c的值,即可得到二次函数的解析式.(2)已知抛物线的顶点坐标,应选用顶点式.(3)由于A(-l,0),B(1,0)是抛物线与x轴的两个交点,因此应选用交点式.(4)显然已知条件是抛物线经过三点,故可用一般式,但由于(-3,4),(1,4)是抛物线上两个对称点,因此选用对称点式更简便.解:(1)设二次函数的解析式为y=ax2+bx+c将(-1,-6),(1,-2)和(2,3)分别代入,得6,2,423,a b ca b ca b c-+=-⎧⎪++=-⎨⎪++=⎩解得1,2,5.abc=⎧⎪=⎨⎪=-⎩∴所求的二次函数的解析式为y=x2+2x-5.(2)∵抛物线的顶点为(-1,-3),∴设其解析式为y=a(x+1)2-3,将点(0,-5)代入,得-5=a-3,∴a=-2,∴所求抛物线的解析式为y=-2(x+1)2-3.即y=-2x2-4x-5.(3)∵点A(-1,0),B(1,0)是抛物线与x轴的两个交点,∴设抛物线的解析式为y=a(x+1)(x-1),将点M(0,1)代入,得1=-a,∴a=-1,∴所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1(4)∵抛物线经过(-3,4),(1,4)两点,∴设抛物线的解析式为y=a(x+3)(x-1)+4,将点(0,7)代入,得7=a·3·(-1)+4,∴a=-1,∴所求抛物线的解析式为y=-(x+3)(x-1)+4,即y=-x2-2x+7.【解题策略】 (1)求二次函数解析式的4种不同的设法是指根据不同的已知条件寻求最简的求解方法,它们之间是相互联系的,不是孤立的.(2)在选用不同的设法时,应具体问题具体分析,特别是当已知条件不是上述所列举的4种情形时,应灵活地运用不同的方法来求解,以达到事半功倍的效果.(3)求,函数解析式的问题,如果采用交点式、顶点式或对称点式,最后要将解析式化为一般形式.三、思想方法专题 专题7 数形结合思想【专题解读】 把问题的数量关系和空间形式结合起来考查,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题来讨论,也可以把图形的性质问题转化为数量关系的问题来研究.例13 二次函数y =ax 2+bx +c 的图象如图26-90所示,则点A (a ,b )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 分析 由图象开口方向向下可知a <0,由对称轴的位置可知x =2ba->0,所以b >0,故点A 在第二象限.故选B .【解题策略】 解决此题的关键是观察图象的开口方向以及对称轴的位置. 专题8 分类讨论思想【专题解读】 分类讨论是对问题的条件逐一进行讨论,从而求得满足题意的结果.例14 已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴交于B (1,0),C (5,0)两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,F 的坐标,并求出这个最短总路径的长.分析 (1)用待定系数法求a ,b ,c 的值.(2)用分类讨论法求直线CD 的解析式.(3)根据轴对称解决最短路径问题.解:(1)根据题意,得c =3,所以30,25530,a b a b ++=⎧⎨++=⎩解得3,518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为y =35x 2-185x +3.(2)依题意可知,OA 的三等分点分别为(0,1),(0,2), 设直线CD 的解析式为y =k x +b ,当点D 的坐标为(0,1)时,直线CD 的解析式为y =-15x +1,当点D 的坐标为(0,2)时,直线CD 的解析式为y =-25x +2. (3)由题意可知M 30,2⎛⎫⎪⎝⎭,如甲26-91所示,点M 关于x 轴的对称点为M ′30,2⎛⎫- ⎪⎝⎭,点A 关于抛物线对称轴x =3的对称点为A ′(6,3),连接A ′M ′,根据轴对称性及两点间线段最短可知,A ′M ′的长就是点P 运动的最短总路径的长.所以A ′M ′与x 轴的交点为所求的E 点,与直线x =3的交点为所求的F 点. 可求得直线A ′M ,的解析式为y =34x -32. 所以E 点坐标为(2,0),F 点坐标为33,4⎛⎫⎪⎝⎭,由勾股定理可求出A ′M ′=152. 所以点P 运动的最短总路径(ME +EF +FA )的长为152. 【解题策略】 (2)中点D 的位置不确定,需要分类讨论,体现了分类讨论的数学思想.(3)中的关键是利用轴对称性找到E ,F 两点的位置,从而求出其坐标,进而解决问题.专题9 方程思想【专题解读】 求抛物线与坐标轴的交点坐标时,可转化为二次函数y =0或x =0,通过解方程解决交点的坐标问题.求抛物线与x 轴的交点个数问题也可以转化为求一元二次方程根的情况.例15 抛物线y =x 2-2x +1与x 轴交点的个数是 ( ) A .0个 B .1个 C .2个 D .3个分析 可设x 2-2x +1=0,Δ=(-2)2-4×1×1=0,可得抛物线y =x 2-2x +1与x 轴只有一个交点.故选B .【解题策略】 抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的个数可由一元二次方程ax 2+bx +c =o(a ≠0)的根的个数来确定.专题10 建模思想【专题解读】 根据实际问题中的数量关系建立二次函数关系式,再用二次函教的性质来解决实际问题. 例16 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天的销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W (元)与销售价x (元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?分析 (1)原来每箱售价50元,价格每提高1元,平均每天少销售3箱,若提高(x -50)元,则平均每天少销售3(x -50)箱,所以提价后每天销售[90-3(x -50)]箱,即y =90-3(x -50).(2)每天的销售利润可用(x -40)[90-3(x -50)]来表示.(3)建立W 和x 之间的二次函数关系式,利用二次函数的最值求利润的最值. 解:(1)y =90-3(x -50),即y =-3x +240.(2)W =(x -40)(-3x +240)=-3x 2+360x -9600,(3)∵a =-3<0,∴当x =2ba-=60时,W 有最大值, 又∵当x <60时,y 随x 的增大而增大, ∴当x =55时,W 取得最大值为1125元,即每箱苹果的销售价为55元时,可获得1125元的最大利润.【解题策略】 求实际问题的最值时,可通过建立二次函数关系式,根据二次函数的最值来求解. 例17 某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a 元. (1)试求a 的值;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元),则产品的年销售量将是原销售量的y倍,且y与x之间的关系如图26—92所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并计算广告费x(万元)在什么范围内时,公司获得的年利润S(万元)随广告费的增多而增多.(注:年利润S=年销售总额-成本费-广告费) 解:(1)由题意得a(1+25%)=250,解得a=200(元).(2)①依题意可设y与x之间的函数关系式为y=ax2+bx+1,则421 1.36,1641 1.64,a ba b++=⎧⎨++=⎩,解得0.01,0.2,ab=-⎧⎨=⎩∴y=-0.01x2+0.2x+1.②S=(-0.01x2+0.2x+1)×10×250-10×200-x,即S=-25x2+499x+500,整理得S=-25(x-9.98)2+2990.01.∴当0≤x≤9.98时,公司获得的年利润随广告费的增多而增多.例18 某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是元;(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是;(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元.分析本题是用二次函数解决有关利润最大的问题,由浅入深地设置了三个问题.解:(1)18000(2)y=12-x2+10x+18000(3)当y=17600时,-12x2+10x+400=0,即x2-20x-800=0.解得x=-20(舍去)或x=40.180+40=220,所以这天每间客房的价格是220元.例19 (09·泰安)如图26-93(1)所示,△OAB是边长为2的等边三角形,过点A的直线y=3-x+m与x轴交于点E.(1)求点E的坐标;(2)求过A,O,E三点的抛物线的解析式.解:(1)如图26-93(2)所示,过A作AF⊥x轴于F,则OF=OA cos 60°=1,AF=OF tan 60°=3,∴点A(1,3).代入直线解析式,得3-×1+m=3,∴m=43,∴y=3-x+43.当y=0时,3-x+43=0,解得x=4,∴点E(4,0).(2)设过A,O,E三点的抛物线的解析式为y=ax2+bx+c,∵抛物线过原点,∴c=0,∴3,1640,a ba b⎧+=⎪⎨+=⎪⎩解得3,43.ab⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=3-x2+43x.例20 如图26-94所示,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).(1)求点B的坐标;(2)求过点A,O,B的抛物线的表达式.解:(1)如图26-95所示,过点A作AF⊥x轴,垂足为点F,过点B作BE⊥x轴,垂足为点E,则AF=2,OF=1.∵OA⊥OB,∴∠AOF+∠BOE=90°.又∵∠BOE+∠OBE=90°,∴∠AOF=∠OBE.∴Rt△AFO∽Rt△OEB.∴BE OE OBOF AF OA===2∴BE=2,OE=4.∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线的表达式为y=ax2+bx+c.则2,1642,0.a b ca b cc-+=⎧⎪++=⎨⎪=⎩解得1,23,20.abc⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求抛物线的表达式为y=12x2-32x.例21如图26-96所示,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,∴01,200,b cc=++⎧⎨=++⎩解得3,2,bc=-⎧⎨=⎩∴所求抛物线的解析式为y=x2-3x+2.(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1).当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2).∴将原抛物线沿y轴向下平移1个单位后过点C∴平移后的抛物线的解析式为y=x2-3x+1.例22 如图26-97所示,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x 轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.解:(1)∵抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,∴40,4 4.a b aa--=⎧⎨-=⎩解得1,3. ab=-⎧⎨=⎩∴抛物线的解析式为y=-x2+3x+4.(2)如图26-98所示,点D(m,m+1)在抛物线上,∴m+1=-m2+3m+4,即m2-2m-3=0,∴m=-1或m=3.∵点D在第一象限,∴点D的坐标为(3,4).由(1)得B点的坐标为(4,0),∴OC=OB,∴∠CBA=45°.设点D关于直线BC的对称点为点E.∵C(0,4),∴CD∥AB,且CD=3,∴∠ECB=∠DCB=45°,∴E点在y轴上,且CE=CD=3.∴OE=1,∴E(0,1).即点D关于直线BC对称的点的坐标为(0,1).2011中考真题精选一、选择题1.(2011内蒙古呼和浩特,8,3)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上点评:本题考查了二次函数图象上点的坐标特点,一元二次方程解的意义.关键是求二次函数解析式,根据二次函数的对称轴,开口方向判断函数值的大小.2.(2011黑龙江牡丹江,18,3分)抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A、﹣2B、2C、15D、﹣15考点:二次函数图象上点的坐标特征;代数式求值。
第6讲 “将军饮马”最值问题—提高班
【巩固】已知⊙ O 的直径 CD 为 4 , AOD 的度数为 60 °,点 B 是的中点,在直径 CD 上找 一点 P ,使 BP AP 的值最小,并求 BP AP 的最小值.
O C
A B D
【变式】如图,菱形 ABCD 中,对角线 AC=8,BD=6,点 E,F 分别是边 AB,BC 的中点, 点 P 在 AC 上运动,在运动过程中,存在 PE+PF 的最小值,则这个最小值是
和 AB 上的动点,则 BM+MN 的最小值是( )
A.
B.4
C.
D.6
【题 3】如图所示,已知 Rt△ ABC 中,∠B=90°,AB=3,BC=4,D、F 分别为 AB、AC 的中点,E 是 BC
上动点,则△ DEF 周长的最小值为( )
A.2+
B.2+
C.
D.6
【题 4】如图,在 Rt△ ABC 中,∠ ACB=90°,∠ ABC=60°,BC=4,E 是 AB 边的中点,F 是 AC 边的中点,
八年级数学
成长手册
第 1 页 共 12 页
让进步看得见
最值问题
模块一 温故知新
【题 1】如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点 E,过点 E 作 MN∥BC 交
AB 于 M,交 AC 于 N,若 BM+CN=9,则线段 MN 的长为
.
【题 2】已知在等边三角形 ABC 中,D、E 分别为 AB、AC 上的点,且 BD=AE,EB 与 CD 相交于点 O,EF⊥CD 于点 F.求证:OE=2OF.
则(1)EF=
;
(2)若 D 是 BC 边上一动点,则△ EFD 的周长最小值是.
二次函数中考复习专题教案
二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。
专题二次函数-中考数学第一轮总复习课件(全国通用)
真 (2)写出该抛物线关于x轴,y轴和原点对称的抛物线解析式:
题
一般式
顶点式
精
关于x轴对称:__y_=_-_x_2_-_2_x_+_3__;__y_=_-_(_x_+_1_)_2_+_4__。
练
关于y轴对称:__y_=__x_2_-_2_x_-_3__;__y_=__(_x_-_1_)_2_-_4__。
提
升
关于原点对称:_y_=_-_x_2_+_2_x_+_3__;__y_=_-_(_x_-_1_)_2_+_4__。
考点4 二次函数的图象的变换
检 1.如图,在平面直角坐标系中,抛物线y=0.5x2经过平移得到抛
考 交于点A(-1,5),点A与y1的顶点B的距离是4.
点 (1)求y1的解析式;
真 (2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,
题
求y2的解析式.
精
练
提 升
考点2 求二次函数的解析式
检 1.已知抛物线y=ax2+bx+c与x轴的交点是A(-1,0),B(3,0),与y 测
轴的交点是C,顶点是D.若四边形ABDC的面积是18,求抛物线的 考 点 解析式. y=-2x2+4x+6 或 y=2x2-4x-6
精 练
成立的x的取值范围是( A
)
提 A.x<-4或x>2 B.-4<x<2 C.x<0或x>2 D.0<x<2
升
考点3 二次函数与一元二次方程
检 1.二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0)(x1 测 <x2),方程ax2+bx+c-a=0的两根为m、n(m<n),则下列判断正
初中数学春季班-人教版-初二(学生版)第6讲 中位线定理--提高班
第6讲中位线定理知识点1:三角形的中位线1.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形共有三条中位线.2.三角形中位线的性质:(1)三角形中位线平行于第三边,并且等于第三边的一半.(2)三角形的中位线将三角形分成两部分的面积之比为1:3.3.三角形中位线逆定理:(1)在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线.(2)在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线.【典例】例1 (2020春•船营区校级月考)如图,ABC∆周长20,D,E在边BC上,BN和CM分别是ABC⊥,若8BC=,则MN的长为()∠的平分线,BN AE∠和ACB⊥,CM ADA.1B.2C.3D.例2 (2020秋•万州区校级期中)如图,等边ABC∆的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使12CF BC=,连接CD和EF.(1)求证:DE CF=;(2)求EF的长.【随堂练习】1.(2020春•历城区校级月考)如图,在Rt ABC∆中,90B∠=︒,5BC=,12AB=,点D,E分别是AB,AC的中点,CF平分Rt ABC∆的一个外角ACM∠,交DE的延长线于点F,则DF的长为()A.5B.8.5C.9D.122.(2020秋•肇源县期末)在ABC⊥,∆中,点M是边BC的中点,AD平分BAC∠,BD ADAB=,20BD的延长线交AC于点E,12AC=.(1)求证:BD DE=;(2)求DM的长.3.(2020•浙江自主招生)已知:如图,四边形ABCD中,对角线AC BD=,E,F为AB、=.CD中点,连EF交BD、AC于P、Q求证:OP OQ知识点2:中点四边形不同的四边形的中点四边形如下:(1)任意四边形的中点四边形是平行四边形;(2)平行四边形的中点四边形是平行四边形;(3)菱形的中点四边形是矩形;(4)矩形的中点四边形是菱形;(5)正方形的中点四边形是正方形;当原四边形的对角线不相等且不垂直时,中点四边形是平行四边形;当原四边形的对角线互相垂直时,中点四边形是矩形;当原四边形的对角线相等时,中点四边形是菱形;当原四边形的对角线相等且互相垂直时,中点四边形是正方形.四边形的中点四边形的周长等于四边形对角线长度之和,面积等于原四边形面积的一半.【典例】例1 (2020秋•南沙区期中)如图,点D 为Rt ABC ∆中的一点,90BAC ∠=︒,AD BD ⊥,3AD =,4BD =,12AC =,E 、F 、G 、H 分别是线段AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长为( )A .7B .9C .16D .17例2 (2020秋•岐山县期中)如图,任意四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,连接AC ,BD ,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A .若AC BD =,则四边形EFGH 为菱形B .若AC BD ⊥,则四边形EFGH 为矩形C .若AC BD =,且AC BD ⊥,则四边形EFGH 为正方形D .若AC 与BD 互相平分,且AC BD =,则四边形EFGH 是正方形例3 (2020春•秦淮区期末)如图,四边形ABCD是菱形,E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.求证:四边形EFGH是矩形.【随堂练习】1.(2020春•孝义市期末)如图,菱形ABCD的对角线AC,BD相交于点O,依次连接AO,BO,CO,DO的中点E,F,C,H,得到四边形EFGH,点M是EF的中点,连接OM,若10AB=,则OM的长为.2.(2020春•海陵区校级期中)如图,O为BAC∠内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB AC∠时,求证:四边形EFGH为矩形.=,AO平分BAC3.(2020春•青云谱区校级期中)如图,四边形ABCD 中,//AB CD ,AB CD ≠,AC DB =.(1)求证:AD BC =;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,求证:线段EF 与线段GH 互相平分.综合运用1.(2020春•海安市月考)如图,四边形ABCD 中,1AB =,4CD =,M 、N 分别是AD 、BC 的中点,则线段MN 的取值范围是( )A .35MN <<B .35MN <C .3522MN <<D .3522MN < 2.(2020春•碑林区校级期中)如图,ABC ∆中,90ACB ∠=︒,点D ,E 分别在BC ,AC 边上,且4AE =,6BD =,分别连接AD ,BF ,点M ,N 分别是AD ,BE 的中点,连接MN ,则线段MN 的长( )AB .3C .D3.(2020春•渝中区校级期中)如图,在四边形ABCD中,6∠=︒,AAB=,10BC=,130 =.若点E,F分别是边AD,CD的中点,则EF的长是()∠=︒,AD CD100DA.3B.4C.2D4.(2020•浙江自主招生)如图,四边形ABCD中,AB CD=,E、F分别为AD、BC中点,延长BA、FE交于M,延长FE,CD交于N.求证:AME N∠=∠.5.(2020春•西华县期末)如图所示,AC、BD是四边形ABCD的两条对角线,且AC BD⊥,已知10BD=,E,F,G,H分别是AB,BC,CD,DA的中点,则EG=.AC=,86.(2020春•龙岩期末)如图,已知四边形ABCD是矩形,点E,F,G,H分别是AB,BC,CD,DA的中点.(1)求证四边形EFGH是菱形;(2)若3BC=,求四边形EFGH的面积.AB=,47.(2020春•兰州期末)如图,ABCD的对角线AC、BD相交于点O,且E、F、G、H 分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若36∆的周长.AB=,求OEFAC BD+=,108.(2020春•工业园区期末)已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件AB CD=时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.9.(2020春•相城区期末)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.10.(2020春•崇川区校级月考)如图,在四边形ABCD中,E、F分别是AD、BC的中?请点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF GH说明你的理由.。
二次函数-2023年中考数学第一轮总复习课件(全国通用)
A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0
第06讲分式方程(讲义)(原卷版)-2024年中考数学一轮复习讲义
第06讲 分式方程目 录一、考情分析 二、知识建构考点一 解分式方程题型01 判断分式方程 题型02 分式方程的一般解法 题型03 分式方程的特殊解法 类型一 分组通分法 类型二 分离分式法 类型三 列项相消法 类型四 消元法题型04 错看或错解分式方程问题 题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值题型07 根据分式方程有解或无解求参数题型08 已知分式方程有增根求参数 题型09 已知分式方程有整数解求参数考点二 分式方程的应用题型01 列分式方程题型02 利用分式方程解决实际问题 类型一 行程问题 类型二 工程问题 类型三 和差倍分问题 类型四 销售利润问题考点一解分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.增根的概念:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.1.分式方程与整式方程的根本区别:分母中含有未知数,也是判断分式方程的依据.2. 去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项.3. 分式方程的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.4. 分式方程的增根是去分母后的整式方程的根,也是使分式方程的公分母为0的根,它不是原分式方程的根.5. 解分式方程可能产生使分式方程无意义的根,检验是解分式方程的必要步骤.6. 分式方程有增根与无解并非是同一个概念.分式方程无解,需分类讨论:可能是解为增根,也可能是去分母后的整式方程无解.题型01 判断分式方程题型02 分式方程的一般解法解分式方程方法:先通过方程两边同乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.题型03 分式方程的特殊解法类型一分组通分法方法简介:如果整个方程一起通分,计算量大又易出错,观察方程中分母的特点可联想分组通分求解.类型二分离分式法方法简介:每个分式的分母与分子相差1,利用这个特点可采用分类分式法求解类型三列项相消法方法简介:根据分式方程的结果特点,依据公式“1n(n+1)=1n−1n+1”化积为差,裂项相消,简化难度.类型四消元法方法简介:当方程中的分式互为倒数,或不同分式中的分母互为相反式,或方程中分子、分母的二次项与一次项分别相同时,可考虑用换元法.题型04 错看或错解分式方程问题+1,其中x=先化简,再求值:3−xx−4⋅(x−4)+(x−4)解:原式=3−xx−4=3−x+x−4=−1题型05 解分式方程的运用(新定义运算)题型06 根据分式方程解的情况求值由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.题型07 根据分式方程有解或无解求参数已知分式方程的解确定字母参数,首先将分式方程化为整式方程,用含字母参数的代数式表x,再根据解的情况确定字母参数的取值. 同时要注意原分式方程的最简公分母不能为零.题型08 已知分式方程有增根求参数依据分式方程的增根确定字母参数的值的一般步骤:1)先将分式方程转化为整式方程;2)由题意求出增根;3)将增根代入所化得的整式方程,解之就可得到字母参数的值.题型09 已知分式方程有整数解求参数考点二分式方程的应用用分式方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解方程;验:考虑求出的解是否具有实际意义;+1)检验所求的解是否是所列分式方程的解.2)检验所求的解是否符合实际意义.答:实际问题的答案.与分式方程有关应用题的常见类型:题型01 列分式方程【例1】(2022·云南·中考真题)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该A.1.4−x=8 1.4+x=8 1.4−2x=8 1.4+2x=8题型02 利用分式方程解决实际问题类型一行程问题【例2】(2022·四川自贡·统考中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【变式2-1】(2023青岛市一模)小李从A地出发去相距4.5千米的B地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍:(1)求小李步行的速度和骑自行车的速度分别为多少千米每小时;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前5分钟到达.则跑步的速度至少为多少千米每小时?类型二工程问题【例3】(2023重庆市模拟预测)为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线600m,甲队比乙队少用4天.(1)求甲,乙两个工程队每天各修路多少米?(2)现计划再修建长度为3000m的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?【变式3-1】(2023·重庆渝中·重庆巴蜀中学校考一模)重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两,而乙施工队单独修建这个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的43项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.(1)求甲、乙两施工队每天各修建多少米?(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?类型三和差倍分问题【例4】(2022·广东深圳·深圳中学校考一模)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【变式4-1】(2022·河南·统考中考真题)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需倍,用300元在市场上要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【变式4-2】(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【变式4-3】(2022·山东烟台·统考中考真题)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?类型四销售利润问题【例5】(2023梁山县三模)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【变式5-1】(2023银川市二模)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?。
2024年中考第一轮复习 二次函数的图象与性质 课件
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2
∴
>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴
-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与
x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代
人教版初三数学:《二次函数》全章复习与巩固—知识讲解(提高)
《二次函数》全章复习与巩固—知识讲解(提高)=【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a=++≠中,,,a b c的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式. 【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即2(3)2y a x =--,也就是2692y ax ax a =-+-,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即2692y ax ax a =-+-,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则212364(92)||6a a a x x ---==,解得29a =.∴ 抛物线的解析式为22(3)29y x =--,即22493y x x =-. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为2(3)2y a x =--.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0).把(0,0)代入关系式,得0=a(0-3)2-2,解得29a =,∴ 抛物线的解析式为22(3)29y x =--, 即22493y x x =-.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),把(3,-2)代入得3(36)2a ⨯⨯-=-,解得29a =. ∴ 抛物线的解析式为2(6)9y x x =-,即22493y x x =-.【点评】求抛物线解析式时,根据题目条件,恰当选择关系式,可使问题变得简单. 举一反三:【高清课程名称:二次函数复习高清ID 号:357019 关联的位置名称(播放点名称):练习题精讲】 【变式】已知抛物线2442y mx mx m =-+-(m 是常数).(1)求抛物线的顶点坐标; (2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得0≠m ,∴2242=--=-=mma b x ,m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m∴抛物线的顶点坐标为)2,2(-. (2)∵抛物线与x 轴交于整数点,∴02442=-+-m mx mx 的根是整数.∴24164(42)2222m m m m m x m±--==±. ∵0m >,∴22x m =±是整数.∴2m是完全平方数.∵155m <<, ∴22105m <<,∴2m取1,4,9, 24164(42)2222m m m m mx m±--==±. 当21m =时,2=m ;当24m =时,21=m ;当29m =时,29m =. ∴m 的值为2或21或29.∴抛物线的解析式为6822+-=x x y 或x x y 2212-=或22810999y x x =--.类型二、根据二次函数图象及性质判断代数式的符号2. (2016•鄂州)如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣ 其中正确的结论个数有( )A.1个B.2个C.3个D.4个【思路点拨】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【答案】C;【解析】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.类型三、数形结合3. 已知平面直角坐标系xOy(如图所示),一次函数334y x=+的图象与y轴交于点A,点M在正比例函数32y x=的图象上,且MO=MA,二次函数2y x bx c=++的图象经过点A、M.(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+ 的图象上,且四边形ABCD 是菱形,求点C 的坐标. 【答案与解析】(1)一次函数334y x =+,当x =0时,y =3,所以点A 的坐标为(0,3), 又∵ MO =MA ,∴ M 在OA 的中垂线上,即M 的纵坐标为32,又M 在32y x =上,当32y =时,x =1,∴ 点M 的坐标为31,2⎛⎫⎪⎝⎭. 如图所示,2231312AM ⎛⎫=+= ⎪⎝⎭.(2)将点A(0,3),31,2M ⎛⎫ ⎪⎝⎭代入2y x bx c =++中,得3,31.2c b c =⎧⎪⎨++=⎪⎩ ∴ 5,23.b c ⎧=-⎪⎨⎪=⎩ 即这个二次函数的解析式为:2532y x x =-+. (3)如图所示,设B(0,m)(m <3),25(,3)2C n n n -+,3,34D n n ⎛⎫+ ⎪⎝⎭.则|AB|=3-m ,213||4D C DC y y n n =-=-,5||4AD n =. 因为四边形ABCD 是菱形,所以||||||AB DC AD ==.所以2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩ 解得113,0;m n =⎧⎨=⎩(舍去)221,22.m n ⎧=⎪⎨⎪=⎩将n =2代入2532y x x =-+,得2C y =,所以点C 的坐标为(2,2). 【点评】结合题意画出图形,再根据图形的特殊性求线段长或点的坐标,达到以“形”助“数”的目的.类型四、函数与方程4.(2015•本溪模拟)某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套. (1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000, 解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得: w=(x ﹣40)(﹣4x+480) =﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.【点评】本题考查了函数模型的选择与应用,考查了数学建模思想方法,关键是对题意要正确理解. 举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.【答案】由题意得把②代入①得.∵抛物线与直线只有一个公共点,∴方程必有两个相等的实数根,∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出不等式的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1)(2).(3).(4)方法1:方程的解,即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出,当时,直线与抛物线有两个交点,∴.方法2:∵ 二次函数的图象过(1,0),(3,0),(2,2)三点,∴ ∴∴ ,即,∴.∵ 方程有两个不相等的实数根,∴ ,∴.类型五、分类讨论5.若函数22(2)2(2)x x y xx ⎧+≤=⎨>⎩,则当函数值y =8时,自变量x 的值是( ).A .6±B .4C .6±或4D .4或6-【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论. 【答案】D ; 【解析】由题意知,当228x +=时,6x =±.而62>,∴ 6x =-.6x =(舍去).当2x =8时,x =4.综合上知,选D .【点评】正确的分类必须是周全的,既不重复、也不遗漏.类型六、与二次函数有关的动点问题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】解:(1)令mx2-(m+n)x+n=0,则△=(m+n)2-4mn=(m-n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m-n<0,∴△=(m-n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2-(m+n)x+n=0,解得:x1=1,x2= nm,由(1)得nm<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=-x+1.再向下平移2个单位可得到直线l:y=-x-1;(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,解得:m≥- 12,∴m的取值范围为:-12≤m<0.【点评】此题主要考查了二次函数综合以及根的判别式和一次函数图象的平移等知识,利用数形结合得出是解题关键.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360lS rlππ=扇n=,圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB切⊙O于点B,OA=23AB=3,弦BC∥OA,则劣弧BC的弧长为().A.33B.32C.πD.32π图(1)【答案】A. C BO【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm ,侧面展开图是半圆,求:(1)圆锥的底面半径r 与母线R 之比; (2)圆锥的全面积.A EB C F P【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
(学生版)第6讲 平行线--提高班
第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】例1(2019春•西湖区校级月考)在同一平面内,与已知直线a平行的直线有_______条;而经过直线外一点P,与已知直线a平行的直线有且只有条.【方法总结】本题主要考查平行公理,注意成立的条件.【随堂练习】1.(2019秋•玄武区校级期末)如图,已知//ON a,所以点O、M、N三点共OM a,//线的理由__________________________________________-.2.(2019春•颍泉区校级月考)如图,在直线a的同侧有P、Q、R三点,若//QR a,PQ a,//则P、Q、R三点______(填“在”或“不在”)同一条直线上.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a ∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a ∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a ∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行. 注意:条件“同一平面”不能缺少,否则结论不成立.【典例】例1 (2020春•息县期末)如图,射线BC 平分ABD ∠,且12180∠+∠=︒.求证://AB CD .【方法总结】本题考查的是平行线的判定,用到的知识点为:同旁内角互补,两直线平行. 例2 (2020春•昆明期末)填写下列空格: 已知:如图,CE 平分ACD ∠,AEC ACE ∠=∠. 求证://AB CD .证明:CE 平分ACD ∠(已知),∴∠________=∠ ( ). AEC ACE ∠=∠(已知), AEC ∴∠=∠ ( ).//(AB CD ∴ ).【方法总结】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.【随堂练习】1.(2020春•越秀区校级月考)如图,下列条件中,不能判定12//l l 的是( )A.13∠=∠D.45180∠+∠=︒∠+∠=︒C.23∠=∠B.24180∠=∠;2.(2020春•瀍河区校级期中)如图,下列条件中:①180BAD ABC∠+∠=︒;②12③34AD BC的是_____________.∠=∠,能判定//∠=∠;④BAD BCD知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】例1 (2020春•黄埔区期末)完成下面的证明:如图,AB和CD相交于点O,//∠=∠.AC BD,A AOC∠=∠.求证B BOD证明://AC BD(已知)∴∠=∠(___________________________).A B∠=∠(已知)A AOCB AOC∴∠=∠().∠=∠().AOCB BOD∴∠=∠(等量代换).【方法总结】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.例2 (2020春•蔡甸区校级月考)如图,直线//C∠=︒,∠=︒,125CD EF,且30AB CD,//B求CGB∠的度数.【方法总结】本题主要考查了平行线的性质以及平行公理的推论,牢记“两直线平行,内错角相等”等平行线的性质是解题的关键.【随堂练习】∠=_______.1.(2020秋•德惠市期末)如图,////OP QR ST,若2100∠=︒,3120∠=︒,则12.(2020•庆云县模拟)如图,已知//a b,直角三角板的直角顶点在直线a上,若130∠=︒,∠等于()则2A.30︒B.40︒C.50︒D.60︒∠的度数.3.(2020秋•增城区期中)如图,//∠=︒,C E∠=∠,求EAAB CD,40知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“ ”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】例1 (2020春•河口区期末)如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【方法总结】本题考查了平行线性质和判定的应用,关键是根据平行线的判定和性质解答.例2 (2020春•汉阳区期末)如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由;(2)若∠C=63°,求∠DEC的度数.【方法总结】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.【随堂练习】1.(2020春•曹县期末)如图,∠ABC=∠ADC,DE平分∠ADC交AB于点E,BF平分∠ABC交CD于点F,DE∥BF.(1)说明AB∥DC的理由;(2)若∠A=70°,求∠BFC的度数.2.(2020春•莱州市期末)(1)已知,如图1,BE平分∠ABC,∠1=∠2,试说明∠AED=∠C成立的理由.下面是小明同学进行的说理,请你将小明同学的说理过程或说理根据补充完整.解:因为BE平分∠ABC,根据角平分线的定义所以∠1=______.又因为∠1=∠2,所以______=∠3根据______________________________,所以DE∥BC.根据______________________________.所以∠AED=∠C.(2)如图2,如果a∥b,写出:一组相等的角(对顶角除外);写出一组互补的同旁内角.要求:使用已有的标注数据的角.(3)如图2,要使c∥d,那么需要哪两个角相等?要求:使用已有的标注数据的角;直接写出所有的符合要求的等角,不需要说明理由.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】例1(2020秋•枣庄月考)下列语句:①钝角大于90︒;②两点之间,线段最短;③明天可能下雨;④作AD BC⊥;⑤同旁内角不互补,两直线不平行.其中是命题的是_______.【方法总结】本题考查的是命题的概念,掌握判断一件事情的语句,叫做命题是解题的关键.例2 (2020春•徐州期末)图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,//EF CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得BEF CDG∠=∠,并给出证明过程.小丽添加的条件:180B BDG∠+∠=︒.请你帮小丽将下面的证明过程补充完整.证明://EF CD(已知)∴∠=________()BEFB BDG∠+∠=︒(已知)180∴()BC//∴∠=()CDGBEF CDG∴∠=∠(等量代换)(2)拓展:如图,请你从三个选项①//∠=∠中任DG BC,②DG平分ADC∠,③B BCD选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.【方法总结】本题考查的是命题的真假判断、平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.【随堂练习】1.(2020秋•卢龙县期末)“对顶角相等”的逆命题是( )A .如果两个角是对顶角,那么这两个角相等B .如果两个角相等,那么这两个角是对顶角C .如果两个角不是对顶角,那么这两个角不相等D .如果两个角不相等,那么这两个角不是对顶角2.(2020秋•唐河县期中)如图,分别将“12∠=∠ “记为a ,“B D ∠=∠ “记为b ,“CB CD =”记为c .(1)填空:“如图,如果CB CD =,B D ∠=∠,那么12∠=∠ “是_______命题;(填“真”或“假“)(2)以a 、b 、c 中的两个为条件,第三个为结论,写出一个真命题,并加以证明.综合运用1.(2020秋•叙州区期末)如图,下列条件:①12∠=∠,②34180∠+∠=︒,③56180∠+∠=︒,④23∠=∠,⑤723∠=∠+∠,⑥741180∠+∠-∠=︒中能判断直线//a b 的有( )A .3个B .4个C .5个D .6个2.(2020春•下城区期末)如图,在下列给出的条件中,不能判定//AB DF 的是( )A .1A ∠=∠B .3A ∠=∠C .14∠=∠D .2180A ∠+∠=︒3.(2019春•桂平市期末)如图,//AB DC ,//ED BC ,//AE BD ,那么图中和ABD ∆面积相等的三角形(不包括)ABD ∆有( )A .1个B .2个C .3个D .4个4.(2020春•定远县期末)如图,将一副三角板按如图放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠.其中正确的有___________.(填序号)5.(2020春•商河县期末)填写推理理由:如图,//CD EF ,12∠=∠,求证:3ACB ∠=∠.证明://CD EF ,2DCB ∴∠=∠______________________12∠=∠,1DCB ∴∠=∠.______________//GD CB ∴______________.3ACB ∴∠=∠_______.6.(2020春•青龙县期末)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .7.(2020春•凉山州期末)如图,已知∠1、∠2互为补角,且∠3=∠B .(1)求证:∠AFE =∠C ;(2)若CE 平分∠ACB ,且∠1=85°,∠3=50°,求∠AFE 的度数.。
第6讲.中考第一轮复习二次函数.目标班.学生版
考试内容考试要求层次ABC二次函数能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象 能通过对实际问题情境的分析确定二次函数的表达式;能从图象上认识二次函数的性质;会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其它知识结合的有关问题1. a b c 、、的作用:①a 决定开口方向及开口大小. 0a >,开口向上;0a <,开口向下;a 越小开口越大;a 越大开口越小;a 相等, 开口大小相同.②a b 、共同决定对称轴的位置:对称轴在y 轴左侧,则a b 、同号;对称轴在y 轴右侧,则 a b 、异号,简称“左同右异” ③ c 决定与y 轴交点.2. 二次函数解析式的三种表示形式:① 一般式:()20y ax bx c a =++≠;知识导航本讲结构中考大纲剖析② 顶点式:()2y a x h k =-+或()224024b ac b y a x a a a -⎛⎫=++≠ ⎪⎝⎭;③ 交点式:()()12y a x x x x =--()0a ≠,其中12x x ,是方程20ax bx c ++=()0a ≠的两实根.3. ① 当02b a x a ><-,时,y 随x 的增大而减小;当02ba x a >>-,时,y 随x 的增大而增大.② 当02b a x a <<-,时,y 随x 的增大而增大;当02ba x a<>-,时,y 随x 的增大而减小.4. 二次函数与一元二次方程的联系:① 当240b ac ->时,抛物线与x 轴有2个交点,并且关于2bx a=-对称,两交点之间的距② 当240b ac -=时,抛物线与x 轴有1个交点,即为抛物线的顶点; ③ 当240b ac -<时,抛物线与x 轴没有交点.5. 抛物线平移的规律:按照八字原则“左加右减,上加下减”进行.或化成顶点式平移顶点.6. 抛物线()20y ax bx c a =++≠关于x 轴对称的抛物线解析式为2y ax bx c =---;关于y 轴对称的抛物线解析式为2y ax bx c =-+;关于原点对称的抛物线解析式为2y ax bx c =-+-;关于顶点对称的抛物线解析式为222b y ax bx c a=--+-.【例1】 ⑴ 二次函数2y ax bx c =++的图象如右图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( ).⑵ 根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )A.只有一个交点B.有两个交点,且它们分别在y 轴两侧C.有两个交点,且它们均在y 轴同侧D.无交点⑶ 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中 划出的曲线是抛物线24y x x =-+(单位:米)的一部分, 则水喷出的最大高度是( ) A .4米 B .3米C .2米D .1米⑷ 已知二次函数215y x x =-+-,点()11y -,,()22y -,在二次函数图象上,则1y 、2y 满足( )A.12y y >B.12y y <C. 12y y =D. 不确定x … 1- 0 1 2 … y … 1- 74- 2- 74- … 夯实基础O yx米)y (米)x【例2】 如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,已知()04A ,、()50C ,.作AOC ∠的平分线交AB 于点D ,连接CD ,过点D 作DE CD ⊥交OA 于点E . ⑴求点D 的坐标;⑵求证:ADE BCD △≌△;⑶抛物线2424455y x x =-+经过点A 、C ,连接AC .探索:若点P 是x 轴下方抛物线 上一动点,过点P 作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 的长 度有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.能力提升C BDE A O xy【例3】 如图,抛物线的顶点A 的坐标()02,,对称轴为y 轴,且经过点()44-,. ⑴ 求抛物线的表达式.⑵ 若点B 的坐标为()04,,P 为抛物线上一点(如图),过点P 作PQ x ⊥轴于点Q , 连接PB .求证:PQ PB =.⑶ 若点()24C -,,利用⑵的结论.判断抛物线上是否存在一点K ,使KBC △的周长最 小?若存在,求出这个最小值,并求此时点K 的坐标;若不存在,请说明理由.【例4】 如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC ∠CBE .【例5】 抛物线()021≠+=a bx ax y C :经过点()02 ,-A ,顶点M 在直线32--=x y 上,(1) 求抛物线1C 的解析式;(2) 将抛物线1C 平移得到抛物线2C 与直线32--=x y 仅有一个交点()30- ,B ,求2C 的解析式;(3) 抛物线2C 与反比例函数x y 1=交于点()n m C ,,求154332323+--+++m m m n n n .探索创新【例6】 已知二次函数217=22y x kx k ++-. ⑴ 求证:不论k 为任何实数,该函数的图象与x 轴必有两个交点;⑵ 若该二次函数的图象与x 轴的两个交点在点A (1,0)的两侧,且关于x 的一元二次 方程()222310k x k x +++=有两个不相等的实数根,求k 的整数值;⑶ 在⑵的条件下,关于x 的另一方程()2222640x a k x a k k +++-+-=有大于0 且小于3的实数根,求a 的整数值.【例7】 已知关于x 的方程03)13(2=+++x k kx . ⑴ 求证:无论k 取任何实数时,方程总有实数根;⑵ 若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值;⑶ 在⑵的条件下,设抛物线的顶点为M ,直线y =-2x +9与y 轴交于点C ,与直线 OM 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线 CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围.【演练1】 已知二次函数22y x x m =++的图象1C 与x 轴有且只有一个公共点.⑴ 求1C 的顶点坐标;⑵ 将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()30A -,,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标; ⑶ 若()1P n y ,,()22Q y ,是1C 上的两点,且12y y >,求实数n 的取值范围.实战演练【演练2】 已知:二次函数22(2)y x n m x m mn =+-+-.⑴ 求证:此二次函数与x 轴有交点;⑵ 若10m -=,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;⑶ 在⑵的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a ,当2x =时,关于n 的函数1y nx am =+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若6CD =,求点C 、D 的坐标.【演练3】 已知:如图,抛物线22(0)y ax ax c a =-+≠与y 轴交于点(03)C ,,与x 轴交于A 、B 两点,点A 的坐标为(10)-,. ⑴ 求抛物线的解析式及顶点D 的坐标;⑵ 设点P 是在第一象限内抛物线上的一个动点,边形ACDB 面积相等的四边形ACPB 的点P 的坐标;⑶ 在⑵的条件下求APD △的面积.第十八种品格:坚持坚持就有希望两个探险者迷失在茫茫的大戈壁滩上,他们因长时间缺水,嘴唇裂开了一道道的血口,如果继续下去,两个人只能活活渴死!一个年长一些的探险者从同伴手中拿过空水壶,郑重地说:“我去找水,你在这里等着我吧!”接着,他又从行囊中拿出一只手枪递给同伴说:“这里有6颗子弹,每隔一个时辰你就放一枪,这样当我找到水后就不会迷失方向,就可以循着枪声找到你。
2023年中考苏科版数学一轮复习专题讲义与练习-二次函数和一元二次方程
2023年中考数学一轮复习专题讲义与练习二次函数和一元二次方程【课标要求】1、会用对立统一的辨证观点,把一元二次方程ax 2+bx +c =0的问题转化为相应的二次函数y =ax 2+bx +c 的相关问题;2、能根据二次函数的图像与x 轴的位置关系判断相应的一元二次方程的根的情况;3、会利用二次函数的图像求出一元二次方程的近似解.4、掌握分析图像的方法,并结合图像解决简单的实际问题. 图像信息题是指由图像(表)来获取信息.从而达到解题目的的题型. 【要点梳理】二次函数与一元二次方程的关系1、二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2、一般地,如果二次函数y =ax 2+bx +c 的图像与x 轴有两个公共点(x 1,0),(x 2,0),那么一元二次方程ax 2+bx+c =0有两个不相等的实数根x =x 1,x =x 2,反之亦成立.3、(1)当△=b 2-4ac >0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有___个公共点; (2)当△=b 2-4ac =0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴有____个公共点; (3)当△=b 2-4ac <0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴_____公共点.4、二次函数y =2ax bx c ++的图像是一条抛物线,这条抛物线的形状(开口方向、开口大小)是由二次项系数a 决定的.a >0⇔抛物线的开口向上;a <0⇔抛物线的开口向下;|a |相同⇔抛物线的形状相同. 2、抛物线y =2ax bx c 与y 轴的交点的位置是由常数项c 决定的.c >0⇔抛物线与y 轴相交于正半轴上; c =0⇔抛物线与y 轴相交于原点; c <0⇔抛物线与y 轴相交于负半轴上.3、抛物线y =2ax bx c ++的对称轴的位置是由a 和b 联合决定的.a 与b 同号⇔对称轴在y 轴的左侧;a 与b 异号⇔对称轴在y 轴的右侧;b =0⇔对称轴就是y 轴.4、抛物线与x 轴交点的个数由24b ac ∆=-的符号决定的.24b ac ->0⇔抛物线与x 轴有2个交点; 24b ac -=0⇔抛物线与x 轴有1个交点; 24b ac -<0⇔抛物线与x 轴有0个交点.5、解图像信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图像,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题。
二次函数一轮复习课件
y x=—12
增减性: 当 x 1 时,y随x的增大而减小
当 x 21 时,y随x的增大而增大
(-2,0) 0
(3,0)x 最值: 2
当 x 1 时,y有最 小值,是 25
2
4
(1,-6) 函数值y的正负性:
(0,-6)(—12 ,- 2—45 )
当 x<-2或x>3 时,y>0
当 x=-2或x=3 时,y=0
y x=—12
画二次函数的大致图象:
①画对称轴
②确定顶点
(-2,0) 0
(3,0)x
③确定与y轴的交点 ④确定与x轴的交点
⑤确定与y轴交点关于对称轴对称的点
(1,-6) ⑥连线
(0,-6)(—12 ,-
25 —4
)
二次函数y=x2-x-6的图象顶点坐标是_(__—12_,__-_2—4_5 )__ 对称轴是___x_=—_12____。
Y=-1/10x²+34x+8000
练习
• 某商场购进一种单价为40元的篮球,如果以单价 50元售出,那么每月可售出500个,根据销售经 验,食欲每提高1元,销售量相应减少10个。
• (1)假设销售单价提高元,那么销售每个篮球
所获得的利润是
元;这种篮球每月的
销售量是
个(用含的代数式表示)。
• (2)8000元是否为每月销售这种篮球的最大利 润?如果是,请说明理由;如果不是,
A、a>0,b=0,c>0,△>0 B、a<0,b>0,c<0,△=0 C、a>0,b=0,c<0,△>0 D、a<0,b=0,c<0,△<0
熟练掌握a,b, c,△与抛物线图象的关系 (上正、下负) (左同、右异)
《二次函数(1)》中考第一轮复习教案
《二次函数(1)》中考第一轮复习教案茂名市第九中学张茂容一、学情分析:本节课是总复习第一轮,学生已经学习了初中阶段的所有必修的函数内容,对二次函数已经有一定的把握能力,只是二次函数在中考中出现的频率高、难度相对大,所有学生在二次函数的整合应用上有待提高。
二、教学目标:1、知识目标:复习二次函数的定义、图像、性质、解析式2、能力目标:通过抢答的形式,提高学生的语言表述能力;图形与式子变形的训练,提高学生的观察、分析的能力。
3、情感目标:通过分享同学之间的解法,增强学生之间的交流意识;通过课后学生的自我总结反思,提高学生的自习观念.三、教学重难点:1、重点:二次函数的图像、性质。
2、难点:多种方法求二次函数的解析式四、教学方法:讲解法、图像法、小结发五、教学过程设计:(一)二次函数的定义1、定义:一般地,形如y=ax²+bx+c (a 、b 、c 是常数,a ≠0 )的函数叫做______.2、定义要点:①a ≠0 ②最高次数为2 ③代数式一定是整式3、练习A:(1)、y=-x²,y=2x²-2/x,y=100-5x²,y=3x²- 2x³+5,其中是二次函数的有____个。
(2)、当m_______时,函数y=(m+1)χ - 2χ+1 是二次函数?(二)、二次函数的图象及性质(播放视频)1、形状:抛物线2、性质:开口方向、顶点坐标、对称轴、增减性、最大(小)值3、抛物线与a、b、c (播放视频)4、练习B:1、快速回答:(1)、抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:(注意:由形定数、对称轴a、b左同右异)图一图二图三图四图五2、基础演练mm23、二次函数y=x2-x-6的图象顶点坐标是__________,对称轴是_________。
4、点击中考:3、[2014·中山]二次函数y =ax 2+bx +c (a ≠0)的大致图象如图15-3,关于该二次函数,下列说法错误的是 ( )A .函数有最小B .对称轴是直线x =12C .当x <12时,y 随x 的增大而减 D .当-1<x <2时,y >0(三)、求抛物线解析式的方法1、抛物线有几种解析式?(播放视频)2、 a 、b 、c 的变化与解析式的关系3、求抛物线解析式的三种方法:(1)、已知抛物线上的三个普通点,通常设解析式为________________(2)、已知抛物线顶点坐标(h, k )和一个普通点,通常设抛物线解析式为_______________(3)、已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0)和另一个普通点,通常设解析式为_____________4、练习C:1、二次函数y= 12 x 2+2x+1写成顶点式为:__________,对称轴为_____,顶点为______2、已知二次函数y= - 12 x 2+bx-5的图象的顶点在y 轴上,则b=___。
初三上册数学直升班培优讲义学生版第6讲二次函数的图像、性质和解析式(学生版)
例题 6
( 1)已知二次函数
y
(x
2
3)
1 .下列说法: ①其图象的开口向下; ②其图象的对称轴为直线
③其图象顶点坐标为 (3, 1) ;④当 x 3 时, y 随 x 的增大而减小.则其中说法正确的有(
x 3; )
A.1 个
B.2 个
C. 3 个
D.4 个
( 2)对于二次函数 y x2 2mx 3(m 0) ,有下列说法: ①如果 m 2 ,则 y 有最小值 1; ②如果当 x 1 时, y 随 x 的增大而减小,则 m 1 ; ③如果当 x 1 时的函数值与 x 2015 时的函数值相等,则当 x 2016 时的函数值为 3. 其中正确的说法是 ________________ .(把你认为正确的结论的序号都填上)
________.(填序号)
( 2)抛物线 y 2( x 1)(x 3) 的顶点坐标是 ________.
( 3)抛物线 y
2
x
x 2 的对称轴是 _________ ,顶点坐标为 _________,当 x
______值是 ________.
_____时, y 有最
( 4)已知抛物线 y 和 _________.
4.二次函数 y
2
a( x h)
k (a
0 )的性质:
a的 符号 a0
a0
开口 方向 向上
向下
顶点 坐标
对称轴
增减性
( h, k)
x h 时, y 随 x 的增大而增大; x h 时, y 随 x
x=h
的增大而减小; x h 时, y 有最小值 k.
( h, k)
x h 时, y 随 x 的增大而减小; x h 时, y 随 x
第6讲 平面直角坐标系--提高班
第6讲 平面直角坐标系有序数对坐标系直角坐标系用坐标表示位置坐标与图形变换-平移⎧⎪⎪⎨⎪⎪⎩知识点1 有序数对像“9排7号”“第1列第5排”这样含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b ).注意:当a b ≠时,()a b ,和()b a ,是不同的两个有序数对. 【典例】例1(2020春•郁南县期末)如图,如果☆的位置为(1,2),则※的位置是 .【方法总结】此题考查了坐标确定位置,正确理解数对表示位置的方法是解题关键.例2(2020春•南平期末)教室里,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为 .【方法总结】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.【随堂练习】1.(2019秋•新昌县期末)甲的座位在第3列第4行,若记为(3,4),则乙的座位在第6列第2行,可记为 .2.(2020春•义安区期末)如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为 ;(5,6)表示的含义是 .知识点2 平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴叫做横轴或x轴,习惯上取向右方向为正方向;竖直的数轴叫做纵轴或y轴,取向上的方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2、象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限,第二象限,第三象限和第四象限.坐标轴上的点不属于任何象限.3、点的坐标对于坐标平面内的一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序实数对()a b ,叫做点A 的坐标,记作A ()a b ,.如下图为A (4,5)点坐标. 坐标平面内的点与有序实数对是一一对应的.注意:横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来.4、各象限内点的坐标特征点()P x y ,在第一象限⇔00x y >>,;点()P x y ,在第二象限⇔00x y <>,;点()P x y ,在第三象限⇔00x y <<,;点()P x y ,在第四象限⇔00x y ><,.5、坐标轴上点的坐标特征点()P x y ,在x 轴上⇔0y =,x 为任意实数; 点()P x y ,在y 轴上⇔0x =,y 为任意实数; 点()P x y ,即在x 轴上,又在y 轴上⇔00x y ==,,即点P 的坐标为()00,. 【典例】例1(2020春•新邵县期末)点P (x ,y )位于第二象限内一点,且x 、y 满足|x |=5,y 2=4,则点P 的坐标为 .【方法总结】本题考查了点的坐标:熟练掌握各象限内的坐标特点.例2(2020春•泸县期末)在直角坐标系中,已知点P 的坐标为(﹣3,﹣1),则点P 在第 象限. 【方法总结】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).例3(2020春•诸城市期末)若点P (2m +4,m ﹣1)在x 轴上,则m = .【方法总结】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键.【随堂练习】1.(2020春•陇西县期末)在平面直角坐标系xOy中,若点P(4﹣m,m﹣9)在y轴上,则m=.2.(2020春•浦东新区期末)直角坐标平面内,经过点A(2,﹣3)并且垂直于y轴的直线可以表示为直线.3.(2020春•大兴区期末)若点M(a﹣1,3a)在y轴上,则点M的坐标为.知识点3 用坐标表示位置1、直角坐标系法:(1)选择一个适当的参照物为原点,然后画出x轴和y轴,建立平面直角坐标系.(2)确定横轴和纵轴的单位长度.(3)在平面直角坐标系中,用点的坐标表示各个地点的位置.2、方位角法:从一定点出发,测量出被测点到定点的距离,及被测点相对于定点的方位角.这时被测点的位置就可以用距离和方位角唯一地确定.【典例】例1(2020春•海淀区校级期末)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.【方法总结】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.例2(2020春•房县期末)如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【方法总结】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.【随堂练习】1.(2020春•海淀区校级期末)如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(﹣2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处2.(2020春•集贤县期末)间操时,小红,小华和小军的位置如图,小华对小红说:“如果我的位置用(0,0)表示,小军的位置用(2,3)表示,那么你的位置可以表示成()A.(6,4 )B.(2,3)C.(3,2)D.(3,3)3.(2020•岳麓区校级模拟)如图,这是一个利用平面直角坐标系画出的某动物园的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且猴山和狮虎山的坐标分别是(﹣2,2)和(8,0),则图中熊猫馆的位置用坐标表示为()A.(1,1)B.(2,2)C.(1,3)D.(4,4)知识点4 坐标与图形变化-平移1、点坐标的平移变化:一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2、坐标与图形的平移变化:一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.【典例】例1 (2020春•雨花区校级月考)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)将△ABC向上平移3个单位长度,向右平移2个单位长度,得到△A1B1C1,画出平移后的图形△A1B1C1,并写出平移后△A1B1C1对应顶点的坐标.(2)求出△ABC的面积S△ABC;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形满足:S△ABP=2S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.【方法总结】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.例2(2020春•灵山县期末)在平面直角坐标系xOy中,已知三角形ABC的三个顶点的坐标分别为A(4,3),B(3,1),C(1,2).(1)在坐标系中画出△ABC,并求出△ABC的面积;(2)将△ABC先向左平移4个单位,再向下平移3个单位,得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【方法总结】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.【随堂练习】1.(2020春•安化县期末)如图,在边长为1个单位长度的小正方形组成的网格中,三角形A1B1C1是三角形ABC向右平移5个单位长度后得到的.(1)请画出三角形ABC;(2)求出三角形AOA1的面积.2.(2020春•兴国县期末)已知:如图,把△ABC向上平移2个单位长度,再向右平移4个单位长度,得到△A′B′C′.(1)点C′的坐标为,并画出△A′B′C′;(2)求△A′B′C′的面积;(3)点P在y轴负半轴上,且△BCP与△A′B′C′的面积相等,求点P的坐标.综合运用1.剧院里5排2号可以用(5,2)表示,则(7,4)表示()A.4排7号B.2排5号C.7排4号D.5排2号2.点P(2,﹣4)到y轴的距离是()A.2B.﹣4C.﹣2D.43.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)4.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)5.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)6.如图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(﹣3,﹣1),在此坐标系下,写出B点的坐标;(2)在(1)的坐标系下将线段BA向右平移3个单位,再向上平移2个单位得线段CD,使得C点与点B对应,点D与点A对应.写出点C,D的坐标,并直接判断线段AB与CD之间关系?7.三角形ABC与三角形A′B′C′在平面直角经标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′B′C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点F(a,b)是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.8.(2020春•硚口区期末)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,其中A(﹣2,1).现将沿AA′的方向平移,使得点A平移至图中的A′(2,﹣2)的位置.(1)在图中画出△A′B′C′,写出点B′的坐标为,点C′的坐标为.(2)求线段AC扫过的面积.(3)直接写出线段AC与y轴交点坐标是.9.(2020春•芜湖期末)如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(﹣2,5)、B(﹣4,1)、C(2,3),将△ABC平移得到A'B'C',点A(a,b)对应点A'(a+3,b﹣4)(1)画出△A'B'C'并写出点B'、C'的坐标.(2)试求△A'B'C'的面积.(3)在x轴上存在一点P,使得S△ABP=7,则点P的坐标是.。
2021年初中数学·中考第一轮复习 第06讲 二次函数(一)学生版
二次函数(一)考点一:二次函数的定义考点二:根据二次函数的定义确定参数的值考点三:二次函数的对称轴及对称性考点四:求二次函数的顶点坐标及最值考点五:二次函数与x轴的交点个数及两点间距离考点六:二次函数的增减性考点七:二次函数与方程、不等式考点八:二次函数图象性质的综合考察考点九:函数图象的分布及交点个数考点十:待定系数法求函数的解析式考点十一:二次函数图象的平移考点十二:二次函数图象的旋转考点十三:二次函数图象的翻折考点一:二次函数的定义【例1】下列函数是二次函数的是( ) A.232y x =-B.21y x x=-C.22(3)y x x =--D.3221y x x =-+考点二:根据二次函数的定义确定参数的值【例2】函数()()2223ay a x a x a -=++-+.当______a =,它为二次函数;当____a =,它为一次函数.【例3】若函数232(1)mm y m x --=+是二次函数,则______m = 【例4】若抛物线2(1)m my m x -=-开口向下,则______m =考点三:二次函数的对称轴【例5】二次函数213y x =-的对称轴为_________【例6】二次函数21(1)22y x =-+的对称轴是直线__________【例7】二次函数1(1)(3)3y x x =-+的对称轴为________【例8】二次函数(2)(4)3y x x =---+的对称轴为________【例9】若二次函数222(1)2y x m x m m =-+-+-的图象的对称轴为y 轴,此图象的顶点A 和它与x 轴两个交点BC 所构成的三角形的面积是( )A.12B.1C.32D.2【例10】若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A.a c +B.a c -C.c -D.c【例11】若二次函数22y x x k =-++的部分图象,如图所示,则关于x 的一元二次方程220x x k -++=的一个解为13x =,另一个解为2_____x =考点四:求二次函数的顶点坐标及最值【例12】抛物线22(2)3y x =--+的顶点坐标为_________ 【例13】抛物线2944y x x =--的顶点坐标为_________ O yx31【例14】抛物线3(2)(6)y x x =-+的顶点坐标为__________【例15】将抛物线2365y x x =-+化成2()y a x h k =-+的形式是_____________【例16】将抛物线1(1)(3)3y x x =-+化成顶点式___________【例17】已知二次函数26y x x m =-+的最小值为1,则______m =【例18】已知矩形的长和宽分别为a 、b ,且矩形的周长为4,则该矩形的面积( )A.有最大值2B.有最小值2C.有最大值1D.有最小值1【例19】抛物线222y x mx m =-++的顶点坐标在第三象限,则m 的值为( ) A.1m <-或2m >B.0m <或1m >-C.10m -<<D.1m <-考点五:二次函数与x 轴的交点个数及两点间距离【例20】二次函数21y x x =++因24______b ac -=,故函数图象与x 轴________交点 【例21】抛物线223y x x =+-与x 轴的交点坐标是___________【例22】设A 、B 、C 分别为抛物线2122512y x x =-+与y 轴的交点及与x 轴的两个交点,则ABC ∆的面积为__________【例23】若抛物线22y x x m =-+与x 轴的一个交点是(20)-,,则另一个交点的坐标是______,_____m = 【例24】已知二次函数234y x x =-+⑴求此函数图象的顶点A 和其与y 轴的交点B 的坐标; ⑵求此图象与x 轴的交点C 和D 的坐标(点C 在点D 的左侧) ⑶求ACD ∆的面积【例25】已知二次函数22y x kx k =-+- ⑴求证:不论k 为何实数,函数的图象与x 轴总有两个交点 ⑵k 为何值时,这两个交点间的距离最小?求出最小值考点六:二次函数的增减性【例26】已知二次函数215322y x x =---,当自变量取值1x 、2x 、3x ,若123x x x <<,则对应的函数值1y 、2y 、3y 的大小关系是( )A.123y y y >>B.231y y y >>C.123y y y <<D.无法确定【例27】二次函数22(1)23y x m x m =---+中,已知当2x >时,函数值随自变量的增加而增加,则m 的取值范围是_____________【例28】已知二次函数21323y x x =-+图象上三点1(1)A y -,、21()2B y ,、35()2C y ,,则1y 、2y 、3y 三者之间的大小关系是( )A.123y y y <<B.231y y y <<C.213y y y <<D.无法确定考点七:二次函数与方程、不等式☞考点说明:二次函数与方程不等式的考察一般情况下以填空题为主,还会在综合题的第23题中涉及 【例29】抛物线如图所示,当_______x =时,0y =;当0y <时,x 满足的条件为_______;当0y >时,x 满足的条件为_______;【例30】根据函数图象,求出抛物线221y x x =++与双曲线4y x=的交点坐标为__________【例31】抛物线21y ax bx c =++(0a ≠)与双曲线2ky x=的图象如图所示, 则不等式2kax bx c x++<的解集为___________考点八:二次函数图象性质的综合考察【例32】抛物线2y ax bx c =++(0a ≠)的图象如图所示,与x 轴的交于点1(0)x ,、2(0)x ,,且101x <<,212x <<,与y 轴交于(02),,下列结论①21a b +>-;②30a b +>;③0;⑤280a b -=;其中结论正确的是__________【例33】已知二次函数()()2223y m x mx m =-+--的图象的开口向上,顶点在第三象限,且交于y 轴的负半轴,则m 的取值范围是________【例34】如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有( )A.1个B.2个C.3个D.4考点九:函数图象的分布及交点个数【例35】直线33y x =-与抛物线21y x x =-+交点的个数是:( )A.0个B.1个C.2个D.不能确定【例36】直线2y x k =+与抛物线232y x x =--的图象只有一个交点,则k 的值为________ 【例37】在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( )【例38】直线y ax b =+(0ab ≠)不经过第三象限,那么2y ax bx =+的图象大致为( )【例39】抛物线21y x =+与抛物线22y x x c =-+最多有几个交点( ) A.0个B.1个C.2个D.4个考点十:待定系数法求函数的解析式【例40】已知二次函数的图象过点(02),、(11),、(35),,则二次函数的解析式为______ 【例41】已知抛物线的顶点为(12)M -,,且过点(21)N ,,则抛物线的解析式为_____________【例42】已知抛物线2y ax bx c =++的顶点坐标为(32)-,,且抛物线与x 轴的两交点间距离为4,则抛物线的解析式为___________【例43】已知抛物线22y x x m =-+的顶点P 在直线31y x =-上,则抛物线的解析式为___________ 【例44】已知二次函数的图象过(20)-,、(30),、(03)-,,则二次函数的解析式为__________【例45】已知抛物线2(1)32y x k x k =----与x 轴交于两点(0)A a ,、(0)B b ,,且2217a b +=,则k 的值为_________【例46】抛物线(2)(8)y a x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,若90ACB ∠=︒,则a 的值为_______考点十一:二次函数图象的平移【例47】把抛物线2241y x x =-+向左平移1个单位,再向上平移2个单位,所得抛物线的解析式是_______【例48】抛物线21122y x x =+-可由抛物线212y x =-向______平移_______个单位,再向______平移____个单位得到【例49】将二次函数2y ax bx c =++向左平移2个单位,再向下平移4个单位得到的函数图象的解析式为235y x x =--,则_____a b c ++=考点十二:二次函数图象的旋转【例50】把抛物线2245y x x =--绕顶点旋转180︒,得到的新抛物线的解析式是( )A.2245y x x =---B.2245y x x =-++C.2249y x x =-+-D.以上都不对【例51】把抛物线223y x x =--绕点(23),旋转180︒后得到新的抛物线的解析式为______________考点十三:二次函数图象的翻折【例52】与抛物线2224y x x =--关于x 轴对称的抛物线的解析式是( )A.2224y x x =---B.2224y x x =-++C.2224y x x =++D.2224y x x =--【例53】与抛物线245y x x =--关于1x =-对称的抛物线的解析式为__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试内容 考试要求层次 A B
C 二次函数 能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象 能通过对实际问题
情境的分析确定二次函
数的表达式;能从图象上
认识二次函数的性质;会
确定图象的顶点、开口方
向和对称轴;会利用二次
函数的图象求一元二次
方程的近似解 能用二次函数解决简单的实际问题;能解决二次函数与其它知识结合的有关问题
1. a b c 、、的作用:
①a 决定开口方向及开口大小. 0a >,开口向上;0a <,开口向下;a 越小开口越大;a 越大开口越小;a 相等, 开口大小相同.
②a b 、共同决定对称轴的位置:对称轴在y 轴左侧,则a b 、同号;对称轴在y 轴右侧,则 a b 、异号,简称“左同右异”
③ c 决定与y 轴交点.
2. 二次函数解析式的三种表示形式:
① 一般式:()20y ax bx c a =++≠; 知识导航
本讲结构
中考大纲剖析。