数字特征与特征函数
特征函数讲解
A
2
dF ( x ) | (eihx 1) | dF ( x )
A
hx 2 dF ( x ) 2 | sin |dF ( x ) | x| A A 2 由此可以看到,A足够大时,第一部分可以任意 小,h的绝对值足够小时,第二部分也可以任意小. (3) 性质3 对于任意的正整数n以及任意实数t1 , t 2 , , t n ,
以及复数1 , 2 , n , 成立
f (t
k 1 j 1
n
n
k
t j )k j 0
证明: f ( t k t j )k j
k 1 j 1
n
n
{ e
n
n
i ( tk t j ) x
k 1 j 1 n
d F ( x )}k j
则
0, x x1或x x2 1 lim g (T , x , x1 , x2 ) , x x1或x x2 T 2 1, x1 x x2
证明 由狄利克雷积分可知
因而
T
1 , 0 2 1 sin t D( ) dt 0, 0 π 0 t 1 , 0 2
| f (t ) | f (0)
f ( t ) f ( t )
证明
f ( t ) e
itx
dF ( x ) eitx dF ( x ) f (t )
(2) 性质2
特征函数在(-,)上一致连续.
证明
| eitx || (eihx 1) | dF ( x )
【二项分布】
f (t ) C p e q
概率论_特征函数
f ( t ) e dF ( x ) e itx dF ( x ) f ( t ).
- itx
9
【系1】 (唯一性定理) 两分布函数恒等的充要条 件是它们各自的特征函数恒等。
即:分布函数由其特征函数唯一确定
23
三、性质与定理的应用 例1 若X~B(n1 , p)、Y~B( n2 , p),且X与Y相互独立
性质3:设Y aX b, 这里a, b为常数,则fY (t ) ei bt f X (at ).
29
f ( t ) E (e ) e f ( x )dx
itX itx
这就是密度函数f(x)的傅里叶变换
5
常见分布的特征函数
【单点分布】
f ( t ) pk e
k 1
itxk
e
ita
【二项分布】
f (t ) C p q
k 0 k n k
n
nk
e
itk
C ( p e ) q
k 0 k n it k
n
n k
( pe q)
it
n
【泊松分布】
it k ( e ) itk eit (eit 1) f (t ) e e e e e k! k 0 k ! k 0
6
k
【均匀分布】X~U [a, b]
【注1】 e
itx
cos tx i sin tx (欧拉公式)
3
【注2】 f (t ) cos txdF ( x ) i sin txdF ( x )
【注3】
特征函数的计算中用到复变函数,为此注意:
特征函数
回忆: 所谓可加性,是指若ξ与η相互独立,服从同一 类型分布,则其和ξ+η也服从该类分布,且其分布中 的参数是ξ与η的相应参数之和. 可加性也称再生性.
例8 设X和Y分别服从参数为1和2 的泊松分布, 且二者独立 试证X+Y服从参数为 1 2 的泊松分布.
f (t) 1 1 it
三、性质
性质1 f (t) f (0) 1 性质2 f (t) f (t) 性质3 设η= aξ+b, a,b是任意常数,则
f (t) eibt f (at)
性质4 若 1 , 2 ,, n 相互独立, 1 2 n , i
的特征函数为 fi (t) ,则 f (t) f1 (t) f 2 (t) f n (t)
f (t ) e(eit 1) 例4 均匀分布U [a, b] 的特征函数
f (t) eitb eita (b a)it
例5 正态分布 N (, 2 ) 的特征函数
i t 2t 2
f (t) e 2 特别地,标准正态分布的特征函数为
t2
f (t) e 2
例6 指数分布 Exp() 的特征函数
(e it
e it ) =
1 eit 2
1 eit 2
这是分布列为
11/ 2
1/
12
的随机变量的特征函数.
一般,若能把f (t)写成 aneixnt 的形式,其中 an 0,
an 1,
n1
则f (t)是特征函数,它的分布列为 P( xn ) an , n 1,2,
关于分布函数的可加性
证明: 由泊松分布的特征函数知
f X (t ) e1(eit 1) ,
数字特征与特征函数
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k ,,2,1Λ=,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p nn =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max (21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
概率与数理统计第四版(简明版)课后习题答案
随机变量的函数及其分布
总结词
描述通过函数变换得到的随机变量的概率分 布情况。
详细描述
对于一个或多个随机变量,通过函数变换可 以得到新的随机变量。这些新随机变量的概 率分布可以通过对原随机变量的概率分布进 行函数变换得到。例如,如果X是一个随机 变量,f(X)是关于X的函数,那么f(X)的概率 分布可以通过对X的概率分布进行函数变换 得到。常见的函数变换包括线性变换、幂函 数变换等。在得到新随机变量的概率分布后, 可以进一步分析其性质和特征。
多元线性回归分析的假设包括线性关系、误差项独立同分 布以及误差项的无偏性。
详细描述
在进行多元线性回归分析之前,需要检验各因变量与自变 量之间的线性关系,并确保误差项独立且服从相同的分布 ,同时误差项的均值为零,以保证估计的回归系数是无偏 和有效的。
总结词
多元线性回归分析的应用范围广泛,包括经济、金融、生 物、医学和社会科学等领域。
随机变量的定义与性质
随机变量是定义在样本 空间上的一个实值函数 ,其取值随试验结果的 变化而变化。
随机变量具有可加性、 独立性、有限可加性等 性质,这些性质在随机 变量的计算和推导中有 着重要的应用。
离散型随机变量是取有 限个或可数个值的随机 变量,其分布律是一个 离散的概率分布。常见 的离散型随机变量包括 二项分布、泊松分布等 。
边缘概率分布与条件概率分布
总结词
描述随机变量的边缘概率分布和条件概 率分布,即考虑某些变量的取值对其他 变量的概率分布的影响。
VS
详细描述
边缘概率分布是指考虑某些随机变量的取 值后,其他随机变量的概率分布情况。对 于两个随机变量X和Y,X的边缘概率分布 表示为P(X),表示在给定Y取某个值的条件 下,X的概率分布。条件概率分布则表示在 给定某个事件发生的条件下,其他随机变 量的概率分布情况。条件概率分布表示为 P(X|Y),表示在Y取某个值的条件下,X的 概率分布。
随机过程0-2数字特征、特征函数
第0章 补充知识
第14页
三、特征函数的定义 引言 特征函数是处理概率论问题的有力工具,
其作用在于: ➢ 可将卷积运算化成乘法运算; ➢ 可将求各阶矩的积分运算化成微分运算; ➢ 可将求随机变量序列的极限分布化成一般的
函数极限问题; ➢ ……….
第0章 补充知识
第15页
1 .复随机变量 设X,Y 为二维(实)随机变量,则称
则对于 F(x) 的任意连续点 x1和x2 ( x1 x2 ),
有
F
(
x2
)
F
(
x1
)
lim
T
1
2
T eitx1 eitx2 (t )dt.
T
it
此定理的证明略去。
注 : 定理表明,当x1, x2为F ( x)的连续点时, F ( x2 ) F ( x1 )的值完全由特征函数决定.
第0章 补充知识
[a, b] 上存在且 g/(x) 在 [a, b] 上黎曼可积,则
b f ( x)dg( x)存在,且 a
b f ( x)dg( x)
b f ( x)g/ ( x)dx
a
a
定理1.3 若f(x)在[a, b]上连续,设
a c0 c1 c2 cn b
若g( x)在[ck , ck1 )取常数值,则
(t)
e itk
k0
pk
e itk
k0
k
k!
e
e (eit )k e e eit
k0 k !
e . (eit 1)
第0章 补充知识
第19页
(4)设随机变量 X 服从U(a, b), 求其特征函数。
1
解
f
第4章数字特征与特征函数
( ) a0 ( ) a0 1 ( ) ( )
例: 有5个相互独立的电子装置串联组成整机,它们每一个 的寿命 X kபைடு நூலகம்(k 1, 2,3, 4,5) 服从同一指数分布,其概率密度为
e x , x 0 f ( x) 0, x 0
y0 y0
于是Y的数学期望为
fY ( y )
0,
y0
E (Y ) y fY ( y )dy y5 e y dy
0
1 5
例: 随机变量X服从柯西分布,其分布密度为
1 f ( x) , x 2 (1 x )
求E(X)。 解:
xf ( x, y )dxdy
yf ( x, y )dxdy
xf X ( x) dx
yfY ( y ) dy
推广: E (c1 X1 c2 X 2 cn X n ) c1E ( X1 ) c2 E ( X 2 ) ④设X与Y相互独立,则 E ( XY ) E ( X ) E (Y )
所以X的数学期望不存在。
1 1 x dx 2 x dx 2 2 0 (1 x ) (1 x ) 1 ln(1 x 2 ) 0
三、随机变量函数的数学期望 定理: 设Y是随机变量X的函数,Y=g(X)(g是单值连续函数), 当X是离散型随机变量时,若 g ( x ) p 绝对收敛,则
推广: n个相互独立的随机变量 E ( X1 X 2
X n ) E ( X1 ) E ( X 2 )
第08章特征函数
第八章特征函数第一节特征函数一、复随机变量1、定义:设与均为上的一维随机变量,称为上的复随机变量.2、的数学期望: ,若、均存在.3、相互独立:设()独立,称()独立.4、性质:(1),其中为复常数.证明:.(2).证明:.精彩文档精彩文档(3).证明:仅证离散型.设,则||||)(,,Z E p iy x p iy xlk kl l k lk kl l k∑∑=+≤+=.(4)|||1|x e ix≤-, R ∈∀x .证明:|||||1|0x dt edt e e xitx it ix=≤=-⎰⎰.(5)若k k k iY X Z +=独立,则. 证明:仅证明时成立即可.因独立,则与独立, 从而与,与,与,与,均独立.那么.(6),必存在.证明:仅证连续型. 因 ,,故与存在,从而存在.精彩文档二、特征函数 1、定义:设为上的一维随机变量,,规定,称为的特征函数.显然:①.② 若为离散型,则.③ 若为连续型,则.2、性质: (1);证明:.(2);证明:.(3)在上一致连续;证明:R ∈∀t ,R ∈∀h ,|])1[(||||)()(|)(itX ihX itX X h t i X X e e E Ee Ee t h t -=-=-++ψψ⎰⎰+∞∞-+∞∞--≤-=dx x edx x e e ihxitxihx)(|1|)()1(ϕϕ⎰∞∞-=dx x hx)(2sin2ϕ 其中:2sin222|1|222hx ie eeex h i x h i x h i ihx=-=--;精彩文档由于 0>∀ε, 0>∃K ..t s ⎰>Kx dx x ||)(ϕε<, (因为1)(=⎰+∞∞-dx x ϕ收敛)取0>=Kεδ , 当δ<||h 时,⎰⎰->+≤-+KKK x X X dx x hxdx x hx t h t )(2sin 2)(2sin 2|)()(|||ϕϕψψ⎰⎰⎰-->+<+≤KKKKKx dx x K h dx x hx dx x )(||22)(||2)(2||ϕεϕϕεϕεε4)(22≤++<⎰-KKdx x .(4),为常数;证明:.(5)设()独立, 则.证明:仅证明时成立即可..(6),若存在.证明:因 .所以 .三、常见分布的特征函数1、离散型(1)退化分布:.证明:.(2):,其中.证明:.(3):.证明:,服从参数为的(0-1)分布,且独立, , 所以.(3):.证明:.2、连续型(1):.特别:①:;②:.精彩文档精彩文档证明:(2):.(3):.证明:.(4) :.证明:222122221 221t t i it itz t t i edz eeσμσσσμπ--+∞-∞---==⎰.其中:.2222)(2σσσμσμσσμit it x x it x z +--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=精彩文档22222σμσμt it xit x -+-⎪⎭⎫ ⎝⎛-= 222221212t t i itx x z σμσμ+-+⎪⎭⎫ ⎝⎛--=- 下面计算 πσσ22222==⎰⎰-+∞-∞---it itz Lz dz edz e:,.,,在上, ,π2022=+→+=⎰⎰⎰⎰+∞∞---dx ex l xxL xx.第二节 唯一性定理一、逆转公式 1、预备知识 (1)设有函数,使得,,收敛,则在上一致收敛. 于是有;又若在上连续,则.华东师大《数学分析(下)》(2)狄里克莱积分: 华东师大《数学分析(下)》,.(3)设,,则2、逆转公式:设的分布函数为,特征函数为,又是的连续点,则证明: 不妨设,且,令,因为精彩文档.又收敛,则又因为存在,故. 所以.二、唯一性定理1、唯一性定理: 的分布函数由其特征函数为唯一确定.证明:在的每一个连续点上,取也为的连续点,于是有.因由其上连续点唯一确定,故由唯一确定.精彩文档精彩文档2、设,且,则⎰∞∞--='=dt t ex F x X itxX )(21)()(ψπϕ.证明: 因,故连续.,,有, 又 ,且 ,于是⎰⎰∞∞--+∞∞-∆+--→∆=∆-=dt t e dt t x it e e X itxX x x it itx x )(21)(lim 21)(0ψπψπ.注意为解析函数,.三、分布函数的再生性 1、,独立,则: . 证明:因,.由唯一性定理知, .2、,独立,则: .证明:因,.由唯一性定理知, .3、,独立,则: .证明:,,由唯一性定理知, .4、,独立,则: .证明:,, 由唯一性定理知, .第三节维随机变量的特征函数一、特征函数1、定义:设为上的维随机变量,,规定,称为精彩文档精彩文档的特征函数. 显然:① 若为离散型,则.② 若为连续型,则.注:∑==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='nk k k n n X t X X X t t t X t 12121) (M Λ2、性质: (1);证明:.(2);证明:.(3)在上一致连续; 证明:,,.其中:2121|||)()(|||X X t t X t '∆'∆≤'∆,注:∑=∆='∆nk k kX tX t 1,∑=∆∆=∆'∆nk k k t t t t 1,∑=='nk k k X X X X 1此式利用了许瓦兹不等式:精彩文档.因,由判别式可得.为方便起见,以下引入记号: ①,,.②,,特别记: ,.例: )4(}4,2{N I ⊂=,)1,0,1,0(1=I ,)0,1,0,0(11}3{3==.③ ,其中,.特别记,为单位矩阵.例: )4(}4,2{N I ⊂=,精彩文档⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000100000I E , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==0000010000000000}3{3E E .④ t E t I I =, 为t 的取有行的向量,I I I AE E A =, 为的取有行和列的矩阵,例: ),,,(4321t t t t t =,)4(}4,2{N I ⊂=,⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==43214242100000000010000000),0,,0(t t t t t t t t t I ,⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000010000100000000010000000000000000000444342413433323124232221141312114422a a a a a a a a a a a a a a a a a a A I ④ ,,但均为非负整数. (4),为常量,为常矩阵. 证明:.精彩文档注:A B AB ''=')((5) 边缘分布:,, 特别,证明:.其中:X t E X E t X E E t X E t E X t I I I I I I I I )()()('='='='='(6),若存在,.说明:n kn kkkt t t t ∂∂∂=∂Λ2121二、逆转公式 1、逆转公式:设的分布函数为,特征函数为,在体面上概率为0,则⎰∏∈=---=-n kk k k x nk k b it a it X n dt it e e t a F b F R 1)()2(1)()(ψπ.2、唯一性定理:的分布函数由其特征函数唯一确定.⎰∏∈=---∞→-=n k k k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ.三、独立性 1、设()独立, 则.证明:仅证明时成立即可.精彩文档.2、设为维随机变量,则 ,独立 ⇔ ∏==nk k X X t t k1)()(ψψ.证明:“”因为,独立,从而, 所以. “”因为,所以⎰∏∈=---∞→-=n kk k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ⎰∏∈=---∞→-=n k kk k k x nk k X k x it y it n y dt t it e e R 1)()2(1lim ψπ ∏∏⎰==∈---∞→=-=nk k X nk t k k X k x it y it y x F dt t it e e k k k kk k k 11)()(21lim Rψπ.故,独立.第四节 n 维正态分布矩阵回顾:(1) 正定,记为; 非负定,记为.(2) ,.(3) 所有主子式存在,,使得存在,,使得.(4) 所有主子式存在,使得.(5) . 这时即的主子式.(6) ,则.(7) 对称合同于对角矩阵,即存在,,使得为对角矩阵.一、n维正态分布1、定义:设,,为阶正定矩阵,且,称服从维正态分布,记作.2、验算:验算确实是维随机变量的密度函数.(1)显然:,;(2)因,故存在,,使得,且.令,于是,这样,而,有,那么精彩文档,从而.于是.3、特别,当时, .二、特征函数1、的特征函数:.证明:,令,.由于,而,令,, 有,所以.精彩文档精彩文档2、I X 的特征函数: ,因此也是正态分布),(~I I I C N X μ. 其中,,为二次型的矩阵,也是正定矩阵.特别: ,.证明:.三、数字特征 1、设,则μ=EX .证明:因,从而,,所以.2、设,则. 因此有.预备工作: (1)设,为含自变量的可微函数,定义:.(2).证明:⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑==)()(11n j jl kj nj jl kj B A t B A t t AB .(3)设,与无关,则精彩文档,.下面证明.证明:因)()()(202l k l k t l k X X X E X X E i t t t -==∂∂∂=ψ,又,而,,kl k l l k lk C C C t t Z -='-'-=∂∂∂111121212, lk Z k l Z k Z l l k X t t Z e t Z t Z e t Z e t t t t ∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂22)(ψ, 于是kl k l t l k X C i i t t t -=∂∂∂=))(()(02μμψ,从而,所以.四、独立性设,则独立,,证明:“”显然. “”因,,)(ex p()ex p()(221121kk k nk k k X C t it Ct t t i t -='-'=∑=μμψ∏∏===-=nk k X n k kkk k k t C t it k 11221)()ex p(ψμ. 所以 独立.精彩文档五、线性变换 1、,,,,则.证明:因})()( ex p{21t A AC t A t i ''-'=μ, 下面证明.因,,,故存在,,使得,且, 于是.可见.2、,,服从一维正态分布.证明:“”取,由1知.“”①先证明,当,,时., ,令,,,有,,已知,精彩文档那么.故 .显然,可见, 有,又X X k k 1'=服从一维正态分布,有0),cov(>==k k k kk DX X X C ,可知, 所以. ②再证明一般地也有.由于为实对称矩阵,故存在,,使得为对角矩阵.令,由条件知,,,,也服从一维正态分布, 而由知道,,,由①知,又,由1知.3、独立,),0(~E N X .证明:“”因,那么,故独立,.“”因,故,,服从一维正态分布.因此,又因独立,,所以.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ2、设X 服从几何分布,求)(t X ψ、EX 及DX .3、设||21)(~x e x X -=ϕ, 求)(t X ψ.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ.6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布.7、已知),1,1,0,0(~ρN X ,求)(21X X E . 8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ解: )1()1()(1)( 1111it t in it nk k it itn k ikt nk k itx itXX e n e e ene e n p eEet k--=====∑∑∑=-==ψ )1(1 --=-it tin e n e .2、设X 服从几何分布,求)(t X ψ、EX 及DX . 解:(1) qe p qe pe qepep qe Eet it it it k k it itk k ikt itXX -=-====-∞=-∞=-∑∑1)()(1111ψ. (2)由于kk k EX i X =)0()(ψ,而22)()()()(q e ipe i e q e p t it it itit X -=---='----ψ,精彩文档22)()()(2))(()(q e i e q e ipe q e i ipe t it it it it it it X ---⋅---=''------ψ32)(q e pe pqe it ti it ---=---. 于是 pq p i i EX X1)1()0(22=--='-=ψ. 又 2321)1()0(p q q p pq EX X +=----=''-=ψ, 从而 2222211)(p q p p q EX EX DX =-+=-=.3、设||21)(~x e x X -=ϕ, 求)(t X ψ.解: ⎰⎰⎰+∞∞-+∞∞-+∞∞-+===txdx x i txdx x dx x e Eet itxitXX sin )(cos )()()(ϕϕϕψ220||111)cos sin (cos cos 21t t tx tx t e txdx e txdx e x xx +=+-===+∞-+∞-+∞∞--⎰⎰.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.解: 由于1111)(-⎪⎭⎫⎝⎛-=-=λψit it t X , 可见 )1(~Exp X .所以 ⎩⎨⎧≤>=- .0 ,0,0 ,)(x x e x x X ϕ⎩⎨⎧≤>-=- .0 ,0,0 ,1)(x x e x F x X精彩文档另解: ⎰⎰⎰∞∞--∞∞--∞∞--++=-==dt t e it dt it e dt t e x itxitx X itxX 21)1(21121)(21)(ππψπϕ ⎰⎰∞∞---∞∞--⎩⎨⎧≤>=+=+++= .0 ,0 ,0 ,121212122x x e iI I dt t te idt t e x itxitx ππ其中: ⎪⎩⎪⎨⎧≤>=- .0 ,21 ,0 ,211x e x e I xx⎪⎩⎪⎨⎧≤->=- .0 ,21 ,0 ,212x e x e iI x x 于是 ⎩⎨⎧≤>-=- .0 ,0 ,0 ,1)(x x e x F x X5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ. 解: 由于 2212221 )(t t t i X ee t --==σμψ,而)()(at e t X ibtb aX ψψ=+, 那么222212212323)2(3332)2()()(t t i t t i t t i X t i X Y e eee t e t t ---+=====ψψψ.可见 3=EY ,422==DY ,由唯一性定理知: )4,3(~N Y .6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布. 解: 310818321)(⋅⋅⋅++==it it it itXX e e e Eet ψ, 103231)(⋅⋅+==it it itY Y e e Ee t ψ,因 X 与Y 独立, 于是精彩文档4321012124141241161)()()(⋅⋅⋅⋅⋅++++==it it it it it itX Y X Z e e e e e Ee t t t ψψψ, 所以,由唯一性定理知Z1234P612411 41 241 1217、已知),1,1,0,0(~ρN X ,求)(21X X E . 解: 由于) ex p()(21Ct t t i t X '-'=μψ,而 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=0021μμμ, ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1122212121ρρσσρσσρσσC , ()⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛='211221212111)(t t t t t t t t t t Ct t ρρρρ222121212221212t t t t t t t t t t ++=+++=ρρρ, 于是 u t t t t X e eCt t t =='-=++-)2(2121222121)ex p()(ρψ因 ,而uu X e t t t t e t t )(222)(21211ρρψ+-=⎪⎭⎫ ⎝⎛+-=∂∂, )()()(1221212t t e t t e t t t u u X ρρρψ+++-=∂∂∂,所以 ρψ=∂∂∂-==021221)()(t X t t t X X E .精彩文档8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.证明: 设k X 的特征函数为)(t k ψ,.,,2,1n k Λ=且独立,则∑==n k k X X 1的特征函数为=∏=n k X t k 1)(ψ∏=nk k t 1)(ψ.因此∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.解: 由于b AX Y +=,因 })()( ex p{)()()(21t A AC t A t i e t A e t t bt i X b t i b AX Y ''-'='==''+μψψψ,})()( ex p{21t A AC t b A t i ''-+'=μ, 由唯一性定理知 ),(~A AC b A N Y '+μ.而 ⎪⎪⎭⎫ ⎝⎛-=1111A ,⎪⎪⎭⎫ ⎝⎛-=11b ,⎪⎪⎭⎫⎝⎛=11ρρC , 有 b b A =+μ,⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-='ρρρρ2200221111111111A AC , 从而 1,121-==y y μμ,0,)1(2,)1(22121=-=+=y y y y ρρσρσ,于是 ⎥⎥⎦⎤⎢⎢⎣⎡-+++---=ρρρπϕ1)1(1)1(412212221141),(y y ey y2)1(6)1(2221321+---=y y eπ.参考:精彩文档,⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121),(σμσσμμρσμρρσπσϕy y x x ey x .。
概率论答案 - 李贤平版 - 第四章
第四章 数字特征与特征函数1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶数或奇数而取数值0及1,试求ηE 及ηD 。
2、袋中有k 号的球k 只,n k,,2,1 =,从中摸出一球,求所得号码的数学期望。
3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。
4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。
5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞=≥=1}{k k P E ξξ。
6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(||∞<<∞-=--x e x p x λμλ0>λ。
试求ξE ,ξD 。
7、若21,ξξ相互独立,均服从),(2σa N ,试证πσξξ+=a E ),max(21。
8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放入乙袋中,求从乙袋中再摸一球而为白球的概率。
9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求n S 。
10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体质重量,试说明这样做的道理。
11、若ξ的密度函数是偶函数,且2E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。
12、若,ξη的密度函数为22221,1(,)0,1x y p x y x y π⎧+≤⎪=⎨⎪+>⎩,试证:ξ与η不相关,但它们不独立。
13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。
特征函数
it n
= k = ) • Poisson分布的特征函数 P ( X
λk
k!
e−λ
ϕ (t ) = e
λ ( e it −1)
• 均匀分布的特征函数
it
X ~ U [0,1]
n
e −1 ϕ (t ) = it
一些特殊分布的特征函数:
• 指数分布的特征函数 f ( x ) = e
θ
1
− x
θ
ϕ (t ) = (1 − iθ t )
性质4: 设 r.v. ξ 的n阶矩存在,则 ξ 的特征 函数可微分n次,且对任意 k ≤ n ,有
ϕ
即
(k )
(0) = i
ϕ
k
Εξ
k
Εξ =
k
(k )
(0)
i
k
特征函数的定理
定理1 逆转公式.
设分布函数F(x)的特征函数为g(t),又x1,x2是 F(x)的两个连续点,则
1 F ( x1 ) − F ( x2 ) = lim T →∞ 2π e −itx1 − e −itx2 ∫−T it g (t )dt
这里ϕ(t) 表示ϕ (t )的共轭
性质2: η = aξ + b 的特征函数,
ibt ( ) ϕ η t = e ϕ ξ (at )
性质3: 设
ξ1 , ξ 2 的特征函数分别为 ϕ1 (t ), ϕ 2 (t )
,
又 ξ1 , ξ 2 相互独立,则 η = ξ1 + ξ 2 的特征函数为
ϕη (t ) = ϕ1 (t )ϕ 2 (t )
= eitx cos(tx) + i sin(tx) (1) 欧拉公式:
(2) 复数的共轭: a + bi =a − bi (3) 复数的模:
第四章 数字特征与特征函数
复旦大学《概率论基础》习题答案(第一版)第四章 数字特征与特征函数1、解:∑∑∞=∞=+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++=+=011111)1(,k k kk k a a a a a k E ξ,令p a a =+)1(,则10<<p ,且∑∑∞=∞=-='⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛=121)1(1k k k k p p a a p p p kp ,a a a a aa E =⎪⎭⎫ ⎝⎛+-+⋅+=∴211111ξ。
采用同样的方法并利用a E =ξ得[]∑∑∞=∞=+-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++=11221)1(11111k k k kp k k a a a k a E ξ∑∑∞=∞=-+++=11)1(1111k k k kp k k a kp a"⎥⎦⎤⎢⎣⎡-++="⎪⎭⎫ ⎝⎛++=∑∞=)1(11212p p a p a p a p a k k 2322)1(21a a p a p a +=-⋅++= )1()2()(2222a a a a a E E D +=-+=-=ξξξ。
2、解:设n μμμμ+++= 21,其中⎩⎨⎧=出现次试验若第出现次试验若第A i ,A i i 0,1μ,则∑∑====ni i ni i p E E 11μμ,由试验独立得诸i μ相互独立,由此得)1(11i ni i n i i p p D D -==∑∑==μμ。
3、解:η服从两占分布,由第二章第29题得,P P ==}1{η{事件A 出现奇数次}===--}0{,)21(2121ηP p n P{事件A 出现偶数次}n p )21(2121-+=,所以 n p E )21(2121--=η,n n n p p p D 2)21(4141)21(2121)21(2121--=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=η.4、解:设ξ表取一球的号码数。
概率论习题及解答-第四章特征函数
的一个新分割, 且
∑n ∑ m
ξ +η =
(xi + yj )1AiBj .
i=1 j=1
所以由数学期望的定义和概率的有限可加性得
∑n ∑ m
∑n ∑ m
∑n ∑ m
E(ξ + η) =
(xi + yj)P(AiBj) =
xiP(AiBj) +
yj P(AiBj )
i=1 j=1
i=1 j=1
i=1 j=1
概率论习题解答
李勇 张余辉
May 30, 2018
1 第四章 数字特征与特征函数
§4.1.4 练习题
练习4.1.1 设 ξ 和 η 均为简单随机变量, 试证明 E(ξ + η) = E(ξ) + E(η).
证明: 不妨假设
∑n ξ = xi1Ai ,
i=1
∑ m η = yj 1Bj ,
j=1
其中 {Ai} 和 {Bj} 均为样本空间的分割. 记 Cij = AiBj, 则 {Cij : 1 i n, 1 j m} 构成样本空间
解: 记 ξ = min{ξ1, ξ2, · · · , ξn}, η = max{ξ1, ξ2, · · · , ξn}, 则 (ξ, η) 的联合密度函数
p(ξ,η)(x, y) = n(n − 1)(y − x)n−2, 0 < x < y < 1,
所以 ξ 和 η 的边缘密度函数分别为 ∫∞
∑n
∑ m
= xiP(Ai) + yjP(Bj) = E(ξ) + E(η).
i=1
j=1
练习4.1.2 假设简单随机变量 ξ 和 η 相互独立, 试证明
第三讲 随机过程的数字特征和特征函数讲解
R X (t1, t2 ) 0,则称
X (t1)和 X (t 2 ) 是不相关的。
X (t1 )和 X (t 2 ) 是相互正交的。
f X ( x1 , x2 , t1 , t 2 ) f X ( x1 , t1 ) f X ( x2 , t 2 )
一般说来时间相隔越远相关性越弱自相关函数的绝对值也越弱当两个时刻重合时其相关性应是最强的所以r中心化自相关函数?自相关系数正交独立不相关充分条件正态随机过程10?若均值与方差总功率存在存在称为二阶矩过程相关理论自相关函数和方差12t1t2例21一个随机过程由四条样本函数构成每条样本函数等概时刻t1t2上各条样本函数的取值给定求13?互相关函数3两个随机过程的相关特性dydx描述两个随机过程任意两个时刻之间的统计关联性t1t214?互协方差函数
1 2 (t ) R X (t , t ) m (t ) A 2
2 X 2 X
11
6
• • • •
t1
例2.1 一个随机过程由四条样本函数构成,每条样本函 数等概,时刻t1,t2上各条样本函数的取值给定,求RX (t1 , t2 )
5
4 3 2 1
• • • •
t2
x1(t) x2(t)
若:
R X (t1, t2 ) E[ X (t1)] E[ X (t2 )] 不相关
•2、反映不同随机过程的波形变化
7
•自协方差函数
C X (t1, t2 ) E{[ X (t1) m X (t1)][X (t2 ) mx (t2 )]} E{ X (t1) X (t2 )} m x (t1)mx (t2 ) 中心化自相 R(t1, t2 ) m x (t1)mx (t2 )
第三讲随机过程的数字特征和特征函数讲解
第三讲随机过程的数字特征和特征函数讲解在概率论和统计学中,随机过程是指一组随机变量的集合,这些随机变量依赖于一个参数(通常是时间)。
随机过程的数字特征和特征函数是描述随机过程的重要概念。
1.数字特征:随机过程的数字特征是对其统计特性的度量,通常用于描述随机过程的平均值、方差、协方差等。
随机过程的数字特征可以通过计算随机变量的数学期望、方差等得到。
2.特征函数:特征函数是随机过程的一种表示方式,它是对随机过程的全面描述。
特征函数是随机变量的复数值函数,它对于每个时间点都定义了一个复数值,用来表示该时间点的随机变量的概率分布。
特征函数可以通过随机变量的概率密度函数计算得到。
特征函数的性质:-对称性:如果随机过程的数字特征对称,那么它的特征函数也对称。
-唯一性:特征函数能够唯一地表示一个随机过程的概率分布。
-独立性:随机过程的特征函数在不同时间点上是相互独立的。
-连续性:特征函数是连续函数,可以通过连续函数逼近定理来证明。
特征函数的应用:-用于推导随机过程的数字特征:通过特征函数可以推导出随机过程的数字特征,例如平均值、方差。
-用于计算随机过程的概率分布:通过特征函数可以计算随机过程的概率分布,例如计算随机过程在其中一时间点的概率。
-用于分析和处理随机过程的相关问题:通过特征函数可以进行随机过程的变换、滤波等操作,从而实现对随机过程的分析和处理。
总之,随机过程的数字特征和特征函数是描述随机过程的重要工具,它们可以用来分析和处理随机过程相关的问题,推导随机过程的数字特征,并计算随机过程的概率分布。
西北工业大学2024年研究生初试考试大纲 432统计学
题号:432《统计学》考试大纲考试内容一、概率论部分(50分)(一) 随机事件与概率1.随机现象与统计规律性2.样本空间与事件3.古典概型4.几何概率5.概率空间(二)条件概率与统计独立性1.条件概率,全概率公式,贝叶斯公式2.事件独立性3.二项分布与泊松分布(三) 随机变量与分布函数1.随机变量及其分布2.随机向量,随机变量的独立性3.随机变量的函数及其分布(四) 数字特征与特征函数1.数学期望2.方差,相关系数,矩3.熵与信息4.母函数5.特征函数6.多元正态分布(五) 极限定理1.伯努利试验场合的极限定理2.收敛性3.独立同分布场合的极限定理4.强大数定律5.中心极限定理二、数理统计部分(100分)(一)统计量与抽样分布1. 总体,样本与经验分布函数2. 充分统计量与完备统计量3. 三大抽样分布4. 次序统计量,最小最大次序统计量的分布(二)参数估计1. 无偏估计,相合估计,均方误差,渐近正态估计2. 矩估计,最大似然估计,3. 最小方差无偏估计和有效估计4. 区间估计(三)统计决策与贝叶斯估计1. 统计决策的基本概念2. 贝叶斯估计(四)假设检验1. 假设检验的基本思想与基本概念,两类错误,功效函数2. 正态总体均值与方差的假设检验3. 拟合优度检验,柯尔莫哥洛夫检验与斯米尔诺夫检验(五)方差分析与试验设计1.单因素方差分析2. 两因素非重复试验的方差分析(六)回归分析1. 回归分析的基本概念,2. 一元线性回归方程参数的最小二乘估计,估计量的分布与性质,回归方程的显著性检验,利用回归方程进行预测3. 多元线性模型参数的最小乘估计、估计量的分布与性质、回归方程与回归系数的显著性检验参考书:1. 李贤平,《概率论基础》(第三版),北京:高等教育出版社,2010.2.陈家鼎,孙山泽,李东风,刘力平,《数理统计学讲义》(第三版),北京:高等教育出版社,20153.师义民,徐伟,秦超英,许勇,《数理统计》(第四版),北京:科学出版社,2015.。
特征函数的概念及意义
特征函数的概念及意义目录:一.特征函数的定义。
二.常用分布的特征函数。
三.特征函数的应用。
四.绪论。
一.特征函数的定义设X 是一个随机变量,称()()itXe t E =ϕ, +∞<<∞-t ,为X 的特征函数.因为=1Xit e ,所以()itX e E 总是存在的,即任一随机变量的特征函数总是存在的.当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为()∑+∞==1k k itx p e t k ϕ, +∞<<∞-t .当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()⎰+∞∞-=dx x p e t k itx ϕ, +∞<<∞-t .与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数.二.常用分布的特征函数1、单点分布:().1P ==a X 其特征函数为 ().e t it a =ϕ2、10-分布:()(),10x p 1p x X P x 1x =-==-,,其特征函数为 ()q pe t it +=ϕ,其中p 1q -=.3、泊松分布()λP :()λλ-==e k k X P k!,k=0,1, ,其特征函数为()()∑+∞=---===0k 1e e kiktit ite ee e k et λλλλλϕ!.4、均匀分布()b a U ,:因为密度函数为()⎪⎩⎪⎨⎧<<-=.;,0,1其他b x a a b x p所以特征函数为()()⎰--=-=b aiatibt itx a b it e e dx a b e x ϕ. 5、标准正态分布()1,0N :因为密度函数为()2221x e x p -=π, +∞<<∞-x .所以特征函数为()()⎰⎰∞+∞-∞+∞-----∞==dxit x t x itx e edx e x 2222222121πϕ=⎰-∞+-∞----=ititt t t edz ee22222221π.其中⎰-∞+-∞--=ititx dz eπ222 .三.特征函数的应用1、在求数字特征上的应用求()2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2t i 22et σμϕ=,于是由()k k k i 0ξϕE =得,()μϕξi 0i ′==E , ()22″220i σμϕξ--==E , 由此即得()222D σξξξμξ=E -E ==E ,.我们可以看出用特征函数求正态分布的数学期望和方差, 要比从定义计算方便的多.2、 在求独立随机变量和的分布上的应用利用归纳法, 不难把性质4推广到n 个独立随机变量的场合,而n21,ξξξ ,,是n 个相互独立的随机变量, 相应的特征函数为()()()∑==n 1i i n 21t t t ξξϕϕϕ,则,,, 的特征函数为()()∏==n1i i t t ϕϕ.设()n ,,21j j ,=ξ是n 个相互独立的,且服从正态分布()2N j j a σ,的正态随机变量.试求∑==n1j j ξξ的分布.由于j ξ的分布为()2N j j a σ,,故相应的特征为()222tia j j je t σϕ=.由特征函数的性质()()ξϕϕ可知∏==nj j t t 1的特征函数为()()21212221112t t a i n j nj tia j nj j nj j j jeet t ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==∑∑=====∏∏σσϕϕ.而这正是⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ的特征函数. 由分布函数与特征函数的一一对应关系即知ξ服从⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ.3、 在证明二项分布收敛于正态分布上的应用在n 重贝努力实验中,事件A 每次出现的概率为p(0<p<1),n μ为n 次试验中事件A 出现的次数,则dt e x npq np P xt n n ⎰∞-∞→=⎪⎪⎭⎫⎝⎛<-2221lim πμ.要证明上述结论只需证明下面的结论,因为它是下面的结论一个特例. 若 ,,21ξξ是一列独立同分布的随机变量,且(),,2,1,0,22 =>==E k D a k k σσξξ则有dt e x nna P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.证明 设a k -ξ的特征函数为(),t ϕ则∑∑==-=-nk knk kn anna11σξσξ的特征函数为nn t ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛σϕ 又因为()(),,02σξξ=-=-E a D a k k 所以()()20,00σϕϕ-=''=' 于是特征函数()t ϕ有展开式()()()()()()222222112000t t t t t t οσοϕϕϕϕ+-=+''+'+=.从而对任意的t 有,∞→→⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-n e n t nt n t tn,2122222οσϕ. 而22t e-是()1,0N 分布的特征函数,由连续定理可知dt e x n na P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.成立,证毕.我们知道在n 2221Plim μπμ中dt e x npq np xt n n ⎰∞-∞→=⎪⎪⎭⎫⎝⎛<-是服从二项分布.()n k q p C k p kn k k n n ≤≤==-0,μ.的随机变量,dt e x xt ⎰∞-∞→=⎪⎭⎫⎝⎛<-2221P lim πλλξλλ为“泊松分布收敛于正态分布” , 我们把上面的结论常常称为“ 二项分布收敛于正态分布”.4、在求某些积分上的应用我们知道⎰+∞-022dx e x x k 可以用递推法,现在我们用特征函数来解决随机变量ξ服从⎪⎭⎫ ⎝⎛21,0N ,其密度函数为:()21x e x p -=π,其特征函数为:()∑⎰∞+=-∞+∞--⎪⎭⎫ ⎝⎛-==⋅⋅=0241!41122i tit x itx i t edx e e t πϕξ, 故 ()()()() +++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+!131241!!241212k t k k k t k kkξϕ ,所以 ()()()!!1221!!24102-⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=k k k kkk ξϕ,由特征函数的性质 ()()()kk kk k i 2!!120222-=-=E ξϕξ,又 ⎰+∞-=E 0222dx e x x k kξ,故()⎰∞+∞-+--=122!!122k x k k dx e x .即 ()⎰∞++--=0122!!122k x k k dx e x四.结论从上面的内容可以看出:特征函数并不是一个抽象概念,在概率论与数理统计的许多问题中,无论是证明还是应用,通过构造特征函数,比如在求分布的数学期望和方差;在求独立随机变量和的分布上的应用,利用独立随机变量和的特征函数为特征函数的积性质推广,往往能使问题得到简化;在证明二项分布收敛于正态分布上的应用,可以从特例到一般问题,从而使问题迎刃而解;在求某些积分上的时候,可以通过构造特征函数使问题简单.• • ••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
特征函数和特征值
特征函数和特征值
特征函数和特征值是实际应用中非常重要的概念,它们是什么?
特征函数,也叫特征变换,是计算机中一种特殊的技术,用来提取一个多维数据集中的有用特征,或者说是将原始数据经过一定的变换,变换成另一种形式的数据。
它可以把原始数据转换为易于处理的结构和数字,这些结构和数字可以代表某种形状、距离等等。
特征值是特征函数提取的特征被量化后的数值,它们与原始数据有一定的关联,并可用于表达特定的特征,例如距离、方向等。
特征值可以用来检测一个物体的大小、形状、材质等信息,这些信息可以用来描述一个物体,从而利用计算机实现计算机视觉等功能。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题四1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()e d5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2ed [e]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y yy +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d 2k x kx x k+∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故2222214π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯=329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元 /41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ; (3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nniii i XnX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3) 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0.而 C o v (,)[()][()](,XY x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他. ()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X YD Y =--+=-+=⨯-⨯+⨯=故122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k =因此,()0123.202020202E Z =⨯+⨯+⨯+⨯= (2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有30(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大?【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u uu u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()25(12)(1)21(10)(1)0(()),d x E T u u x u ϕϕϕ-=-⨯---⨯-= 令这里 得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米由此可得,当u =10.9毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩由于T i ~E (5),故知E (T i )=15,D (T i )=125i =1,2)因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225. 27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差.【解】设Z =X -Y ,由于22~0,,~0,,X N Y N ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/2()()1,(||)||dz E Z D Z E Z z z +∞--∞===⎰2/2e dzz z+∞-==所以2(||)1πD X Y-=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X,求E (X)和D(X).【解】记q=1 -p,X的概率分布为P{X=i}=q i -1p,i=1,2,…,故12111()().1(1)i ii iq pE X iq p p q pq q p∞∞-=='⎛⎫'=====⎪--⎝⎭∑∑又221211121()()i i ii i iE X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)iiqpq q pqp q ppq q pq p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E Xp p p--=-=-=题29图29.设随机变量X和Y的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y的方差.【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=D(X)+D(Y)+2[E(XY) -E(X)·E(Y)].由条件知X和Y的联合密度为2,(,),(,)0,0.x y Gf x yt∈⎧=⎨<⎩{(,)|01,01,G x y x y x y=≤≤≤≤+≥从而11()(,)d2d2.X xf x f x y y y x+∞-∞-===⎰⎰因此11122300031()()d2d,()2d,22XE X xf x x x x E X x x=====⎰⎰⎰22141()()[()].2918D XE X E X =-=-= 同理可得 31(),().218E Y D Y == 1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[ -2,2]上服从均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率.P {x = -1,Y = -1}=P {U ≤ -1,U ≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X = -1,Y =1}=P {U ≤ -1,U >1}=P {∅}=0,P {X =1,Y = -1}=P {U > -1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+=31.设随机变量X 的概率密度为f (x )=x-e 21,( -∞<x <+∞) (1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<< 故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY = -1/2,设Z =23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么? 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,))()3462XY X Y D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以 0.)()XZ D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y === 所以 0()()()2)()XY D X Y D X D Y D Y ρ=+=++2,24XY n nρ=+ 故XY ρ= -1. 34.试求X 和Y 【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为所以E (XY )= -Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -从而 XYρ35.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P (AB ) -P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0 -1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩ 从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB ) -P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为f X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求:(1) Y 的概率密度f Y (y ); (2) Cov(X ,Y );(3)1(,4)2F -. 解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=≤<+≤≤=,()Y f y =;当1≤y <4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他 (2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,02222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--,故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.。