平面向量线性运算的应用

合集下载

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结

平面向量的线性运算知识点总结平面向量是数学中的重要概念之一,它们具有方向和大小,并且可以进行线性运算。

本文将对平面向量的线性运算相关知识进行总结,包括加法、数乘和线性组合三个方面。

一、平面向量的加法平面向量的加法是指将两个向量合成为一个新向量的运算。

具体而言,设有两个向量A和B,它们的加法运算符号为"+",则其加法公式为:A +B = (Aₓ + Bₓ, Aᵧ + Bᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量,Bₓ和Bᵧ分别表示向量B在坐标系中的x轴和y轴上的分量。

需要注意的是,向量的加法满足交换律和结合律。

即:A +B = B + A(A + B) + C = A + (B + C)二、平面向量的数乘数乘是指将向量与一个实数相乘得到一个新向量的运算。

具体而言,设有一个向量A和一个实数k,它们的数乘运算符号为"·",则其数乘公式为:k·A = (k·Aₓ, k·Aᵧ)其中,Aₓ和Aᵧ分别表示向量A在坐标系中的x轴和y轴上的分量。

数乘的运算法则如下:1. 若k>0,则k·A的方向与A的方向相同。

2. 若k<0,则k·A的方向与A的方向相反。

3. 若k=0,则k·A的方向为零向量。

4. |k·A| = |k|·|A|三、平面向量的线性组合线性组合是指将多个向量按一定比例相加得到一个新向量的运算。

具体而言,设有n个向量A₁、A₂、...、Aₙ和n个实数k₁、k₂、...、kₙ,它们的线性组合公式为:k₁A₁ + k₂A₂ + ... + kₙAₙ线性组合的运算法则如下:1. 线性组合的次序不影响结果,即k₁A₁ + k₂A₂ + ... + kₙAₙ =kₙAₙ + ... + k₂A₂ + k₁A₁。

2. 向量的线性组合满足数乘与加法的结合律,即k₁(A₁ + A₂) =k₁A₁ + k₁A₂。

典型例题:平面向量的线性运算

典型例题:平面向量的线性运算

平面向量的线性运算例1一辆汽车从A点出发向西行驶了100公里到达B点,然后又改变方向向西偏北050走了200公里到达C点,最后又改变方向,向东行驶了100公里到达D点。

(1)作出向量AB,BC,CD;(2)求AD。

分析:解答本题应首先确立指向标,然后再根据行驶方向确定出有关向量,进而求解。

解析:(1)如图所示。

(2)由题意易知,AB与CD方向相反,故AB与CD共线。

又AB CD=,∴在四边形ABCD中,//=,AB CD且AB CD∴四边形ABCD为平行四边形。

故200==(公里)。

AD BC评注:准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点。

例2化简:()()---。

AB CD AC BD分析:该例为一基础题目,可有多种解法。

解法1:原式AB CD AC BD=--+=+++()()AB DC CA BD=+++AB BD DC CA=+=0AD DA评注:该解法是将向量减法转化为加法进行化简的。

解法2:原式AB CD AC BD=--+=()-DC DB-()AB AC=CB BC+=0评注:本解法是利用AB AC CB-=进行化简的。

-=,DC DB BC解法3:设O为平面内任意一点,则有原式AB CD AC BD=--+=-----+-OB OA OD OC OC OA OD OB()()()()=--+-++-OB OA OD OC OC OA OD OB=0评注:本解法是利用MN ON OM=-关系进行化简的。

例3对于下列各种情况,各向量的终点的集合分别是什么图形(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有单位向量的起点平行移动到直线l 的点P ;(3)把平行于直线l 的所有向量的起点平行移动到直线l 的点P 。

分析:数学中的向量是自由向量,可以重新选择起点进行平移,只要平移前后两个向量相等即可。

解析:(1)是以P 点为圆心,以1个单位长为半径的圆;(2)是直线l 上与P 的距离为1个单位长的两个点;(3)是直线l 。

平面向量的线性运算与应用

平面向量的线性运算与应用

平面向量的线性运算与应用在数学中,平面向量是一个具有大小和方向的量,常用箭头表示,用于表示平面上的物理量或几何概念。

平面向量的线性运算是指对向量进行加减和标量乘法的操作。

同时,平面向量的线性运算在许多应用中是非常重要和有用的。

一、平面向量的定义和表示平面向量由其大小和方向共同确定,通常用a→表示。

其中,大小称为向量的模,记作|a→|,方向可以用与向量平行的线段来表示。

在笛卡尔坐标系中,可以用坐标表示平面向量。

例如,向量a→可以用(ai, aj)来表示。

二、平面向量的线性运算1. 向量的加法平面向量的加法是指两个向量按照相同的方向进行相加。

设向量a→=(a1, a2),向量b→=(b1, b2),则向量a→+b→=(a1+b1, a2+b2)。

2. 向量的减法平面向量的减法是指两个向量按照相反的方向进行相减。

设向量a→=(a1, a2),向量b→=(b1, b2),则向量a→-b→=(a1-b1, a2-b2)。

3. 向量的标量乘法平面向量的标量乘法是指向量与一个标量的乘积。

设向量a→=(a1, a2),标量k,则向量ka→=(ka1, ka2)。

三、平面向量的应用平面向量的线性运算在许多数学和物理问题中都有广泛的应用。

1. 平面几何问题在平面几何问题中,平面向量的线性运算常常用于判断点、线、圆等的位置关系,计算长度和面积等。

例如,可以利用向量的加法和减法判断线段的平行性和垂直性;可以使用向量的模计算线段的长度;可以利用向量的叉乘计算三角形的面积等。

2. 力学问题在力学中,平面向量的线性运算被广泛应用于描述物体的受力情况。

根据牛顿第二定律,物体所受的合力等于物体的质量乘以加速度,可以用平面向量的标量乘法表示。

同时,可以使用平面向量的加法和减法来计算多个力的合力,从而描述物体的运动状态。

3. 电磁学问题在电磁学中,平面向量的线性运算同样起着重要的作用。

例如,可以使用平面向量的加法和减法来计算电场的合成和分解;可以利用平面向量的叉乘来计算电磁感应产生的力和磁场等。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是解决平面几何问题的重要工具。

平面向量之间可以进行线性运算,包括加减法、数量乘法和应用特殊运算规则的向量乘法。

本文将详细介绍平面向量的线性运算及其应用。

一、平面向量的基本概念在平面直角坐标系中,向量由两个有序实数对表示,分别表示向量在 x 轴和 y 轴上的分量。

设向量 a 的分量为 (a1, a2),则向量 a 可表示为 a = a1i + a2j,其中 i 和 j 分别是 x 轴和 y 轴的单位向量。

二、平面向量的加法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其和为 c = (a1 +b1)i + (a2 + b2)j。

向量的加法满足交换律、结合律和零向量的存在性。

三、平面向量的减法设有两个平面向量 a = a1i + a2j, b = b1i + b2j,其差为 c = (a1 - b1)i + (a2 - b2)j。

向量的减法也满足交换律和结合律。

四、平面向量的数量乘法设有平面向量 a = a1i + a2j,实数 k,k与向量 a 的数量积为 k * a =ka1i + ka2j。

数量乘法满足结合律、分配律和对数乘法的分布律等性质。

五、平面向量的线性运算应用1. 向量共线与平行若有两个非零向量 a 和 b,当且仅当存在实数 k,使得 a = kb,称向量 a 和 b 共线。

若向量 a 和 b 共线且方向相同或相反,则称向量 a 和b 平行。

2. 向量的线性组合设有向量组 a1, a2, ..., an,其中每个向量的形式为 ai = ai1i + ai2j。

对于任意给定的实数 k1, k2, ..., kn,向量 b = k1a1 + k2a2 + ... + knan 称为向量组 a1, a2, ..., an 的线性组合。

3. 向量的共面性若存在不全为零的实数 k1, k2, k3,使得 k1a1 + k2a2 + k3a3 = 0,称向量组 a1, a2, a3 共面。

平面向量的概念及线性运算

平面向量的概念及线性运算
平面向量的概念及线性运算
一、平面向量的线性运算(三角形重心问题)
例 1、在△ABC 中,D、E 分别为 BC,AC 边上的中点,G 为 BE 上一点,且 GB=2GE,设
AB a , AC b ,试用 a , b 表示 AD , AG 。
变式 1: (2007 年高考北京卷)已知 O 是△ABC 所在平面内一点,D 为 BC 边中点,且
2OA OB OC 0 ,那么(
A、 AO OD
) C、 AO 3OD D、 2 AO OD )
B、 AO 2OD
变式 2:G 为△ABC 内一点,且满足 GA GB GC 0 ,则 G 为△ABC 的( A、外心 B、内心 C、垂心 D、重心
变式 3:若 OA OB OC 0 ,且 OA OB OC ,则△ABC 是
D、
4 3 a b 5 5
AB AC m AM 成立,则 m=
A、5 B、4 C、3 D、2 变式 6:在△ABC 中,点 D 在边 AB 上,CD 平分∠ACB,若 CB a , CA b , a 1 ,
b 2 ,则 CD =(
A、 a
) B、
1 3
2 b 3
2 1 a b 3 3
C、
3 4 a b 5 5
三角形;
变 式 4 : 设 G 是 ABC 的 重 心 , a, b, c 分 别 是 角 A, B, C 的 对 边 , 若
3 aGA bGB cGC 0 则角 A ( 3 A、 90 B、 60
) C、 45


D、 30

变 式 5 : 已 知 △ ABC 和 点 M 满 足 MA MB MC 0 , 若 存 在 实 数 m 使 得

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算线性运算是以向量和矩阵进行操作的数学运算方法,它可以引发出许多更复杂的数学原理和研究结果。

线性运算可以在各种学科中应用,例如线性系统的分析和解析,图论,资源分配,Modal和语义计算等等。

一、定义线性运算是一种数学方法,用来处理平面向量。

它基于直线,计算两个向量之间的关系。

在数学上,从点到点之间有一条路径,称为一条直线,线性运算可以用来描述这条直线上起点和终点之间的空间特征。

二、实现方式1、向量乘法:向量乘法是两个向量相乘,以计算它们之间的关系。

2、矩阵乘法:矩阵乘法是两个矩阵相乘,它可以用来揭示一种向量的多重关系。

3、矩阵分解:矩阵分解是把一个大的矩阵分解为多个子矩阵,用来求解一组向量关系问题。

4、向量累加:向量累加是两个向量加起来,用来表示向量之间关系的变化。

5、根据相反关系:根据相反关系,把两个平面向量的起点和终点的关系,反转过来,以计算出新的关系。

三、应用1、线性代数:高等数学中的线性代数中,线性运算涉及到线性方程,矩阵,特征值,线性空间等等基本概念,也常常被用来分析线性系统,解析图论问题,和解决资源分配问题等等。

2、机器学习:机器学习中,线性运算被用来表示各种模型,用来对数据集或者特征分析,例如线性回归,逻辑斯谛回归,支持向量机等等。

3、信号处理:在信号处理中,线性运算可以用来表示信号的变换和处理,例如傅里叶变换,滤波器,卷积,离散余弦变换等等。

4、语言处理:线性运算也可以被用来处理自然语言,例如用于语法分析的实体矩阵,或者模糊语义的语义码表。

四、总结线性运算是以向量和矩阵进行操作的数学运算方法,可以应用于多种学科,也可以用来理解多重关系,分析和解决资源分配问题。

它可以引发出许多更复杂的数学原理和研究结果,已被广泛应用于模型表示,信号处理和语义计算等领域。

平面向量的线性运算教案

平面向量的线性运算教案

平面向量的线性运算教案教案标题:平面向量的线性运算教学目标:1. 理解平面向量的基本概念和性质。

2. 掌握平面向量的线性运算,包括向量的加法、减法、数乘和点乘。

3. 能够应用线性运算解决平面向量相关的问题。

教学重点:1. 平面向量的线性运算的定义和性质。

2. 向量的加法、减法、数乘和点乘的运算规则。

3. 运用线性运算解决平面向量的问题。

教学难点:1. 点乘的概念和应用。

2. 运用线性运算解决复杂的平面向量问题。

教学准备:1. 教师准备:教学课件、平面向量的示意图、习题集。

2. 学生准备:纸笔、计算器。

教学过程:一、导入(5分钟)1. 引入平面向量的概念和基本性质,与学生进行互动讨论,激发学生的学习兴趣。

2. 回顾向量的表示方法和坐标表示,确保学生对向量的基本概念有清晰的理解。

二、讲解平面向量的线性运算(15分钟)1. 向量的加法和减法:介绍向量的加法和减法的定义和运算规则,并通过示意图进行解释和演示。

2. 向量的数乘:介绍向量的数乘的定义和运算规则,并通过示意图进行解释和演示。

3. 向量的点乘:介绍向量的点乘的定义和运算规则,并通过示意图进行解释和演示。

三、练习与讨论(20分钟)1. 给出一些简单的练习题,让学生进行个别或小组练习。

2. 针对学生的问题和困惑进行解答和讲解,引导学生理解和掌握平面向量的线性运算。

四、拓展应用(15分钟)1. 给出一些实际问题,引导学生运用平面向量的线性运算解决问题。

2. 分组讨论和展示解题过程和结果,促进学生的思维发散和创新。

五、归纳总结(5分钟)1. 对平面向量的线性运算进行总结和归纳,强化学生对知识点的理解和记忆。

2. 指导学生将所学知识进行整理和梳理,形成学习笔记或思维导图。

六、作业布置(5分钟)1. 布置适量的练习题,巩固学生对平面向量的线性运算的掌握。

2. 鼓励学生自主学习,拓展相关知识,提高问题解决能力。

教学反思:在教学过程中,要注重理论与实践的结合,通过示意图和实际问题的引导,帮助学生理解和应用平面向量的线性运算。

平面向量的线性运算(解析版)

平面向量的线性运算(解析版)

专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案一、教学目标1.理解向量的加、减、数乘运算及其物理意义。

2.掌握平面向量的线性运算方法。

3.能够应用向量的线性运算解决实际问题。

二、教学重点平面向量的线性运算。

三、教学难点向量线性运算一个实际问题的解决。

四、教学方法讲授法,示范法,练习法,问题解决法。

五、教学工具黑板、多媒体投影仪等。

六、教学过程1.引入教师引导学生回忆已学过的向量概念以及向量的模、方向和共面等概念。

2.新课讲解(1)向量加法。

如果 $\vec {AB}$ 和 $\vec {BC}$ 表示两个向量,那么它们的和为 $\vec {AB} + \vec {BC} = \vec {AC}$,如图所示:向量和的性质:①结合律:$(\vec a+\vec b)+\vec c=\vec a+(\vec b+\vec c)$②交换律:$\vec a+\vec b=\vec b+\vec a$③零向量的性质:$\vec a+\vec 0=\vec a$(2)向量减法。

如果 $\vec {AB}$ 和 $\vec {AC}$ 表示两个向量,那么它们的差为 $\vec {AB}-\vec {AC} = \vec {CB}$,如图所示:向量差的性质:$\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$(3)向量数乘。

如果 $\vec a$ 表示一个向量,$\lambda$ 表示一个标量,那么$\vec a$ 与 $\lambda$ 的积为 $\lambda \vec a$,如图所示:向量数乘的性质:①交换律:$\lambda \vec a=\vec a \lambda$②系数倍数的分配律:$(k+l)\vec a=k\vec a+l\vec a$③数乘的分配律:$k(\vec a+\vec b)=k\vec a+k\vec b$(4)向量共线和平行。

向量 $\vec a$ 和 $\vec b$ 共线的充要条件是 $\vec a = \lambda \vec b (\lambda \in R)$;向量 $\vec a$ 和 $\vec b$ 平行的充要条件是 $\vec a \times \vec b =\vec 0$(叉乘得到的是一个向量,如果结果为 $\vec 0$ 说明它们是平行的),或者 $\vec a\cdot\vec b=|\vec a|\cdot|\vec b|$。

(新教材)2021版高中数学人教B版必修第二册同步练习:6.3 平面向量线性运算的应用 (含解析)

(新教材)2021版高中数学人教B版必修第二册同步练习:6.3 平面向量线性运算的应用 (含解析)

第六章 6.3请同学们认真完成 [练案31]A 级 基础巩固一、选择题1.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( C ) A .平行四边形 B .矩形 C .菱形D .等腰梯形[解析] 由BA →=CD →可知,四边形ABCD 为平行四边形,又因为|AB →|=|AD →|,所以四边形ABCD 为菱形.2.一条渔船距对岸4 km ,以2 km/h 的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8 km ,则河水的流速为( A )A .2 3 km/hB .2 km/hC . 3 km/hD .3 km/h[解析] 如图,船在A 处,AB =4,实际航程为AC =8,则∠BCA =30°,|v AB |=2,|v AC |=4,所以|v BC |=23,故选A .3.在矩形ABCD 中,|AB →|=4,|AD →|=2,则|BA →+BD →+BC →|=( C ) A .2 B .4 C .4 5D .2 5[解析] 由平行四边形法则可知BA →+BC →=BD →,原式即为2|BD →|,而BD 为矩形对角线,所以|BD →|=42+22=2 5.原式=2|BD →|=2×25=4 5.故选C .4.如图,在△ABO 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( A )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14[解析] 由题可知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13,故选A .5.(多选题)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( BD )A .|b |=1B .|a |=1C .a ∥bD .(4a +b )⊥BC →[解析] 如图,由题意,BC →=AC →-AB →=(2a +b )-2a =b ,则|b |=2,故A 错误;|2a |=2|a |=2,所以|a |=1,故B 正确;因为AB →=2a ,BC →=b ,故a ,b 不平行,故C 错误;设B ,C 中点为D ,则AB →+AC →=2AD →,且AD →⊥BC →,而2AD →=2a +(2a +b )=4a +b ,所以(4a +b )⊥BC →,故D 正确.二、填空题6.已知三个力F 1=(3,4),F 2=(2,-5),F 3=(x ,y )和合力F 1+F 2+F 3=0,则F 3的坐标为__(-5,1)__.[解析] 因为F 1=(3,4),F 2=(2,-5),F 3=(x ,y ),所以F 1+F 2+F 3=(3,4)+(2,-5)+(x ,y )=0,所以(3+2+x,4-5+y )=0,所以⎩⎪⎨⎪⎧x +5=0,y -1=0,解得x =-5,y =1.所以F 3的坐标为(-5,1).7.河水从东向西流,流速为2 km/h ,一艘船以2 3 km/h 垂直于水流方向向北横渡,则船实际航行的速度的大小是__4__km/h .[解析] 由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度,则|OA →|=2,|OB →|=23,∠AOB =90°, ∴|OC →|=4.8.△ABC 所在平面上一点P 满足P A →+PC →=mAB →(m >0,m 为常数),若△ABP 的面积为6,则△ABC 的面积为__12__.[解析] 取AC 的中点O ,∵P A →+PC →=mAB →(m >0,m 为常数), ∴mAB →=2PO →,∴C 到直线AB 的距离等于P 到直线AB 的距离的2倍,故S △ABC =2S △ABP =12.三、解答题9.如图,用两根绳子把重10 N 的物体W 吊在水平杆AB 上,∠ACW =150°,∠BCW =120°.求A 和B 处所受力的大小.(忽略绳子重量)[解析] 设A ,B 处所受力分别为f 1,f 2,10N 的重力用f 表示,则f 1+f 2+f =0.以重力作用点C 为f 1,f 2的始点,作平行四边形CFWE ,使CW 为对角线,则CF →=-f 2,CE →=-f 1,CW →=f .∠ECW =180°-150°=30°,∠FCW =180°-120°=60°,∠FCE =90°, ∴四边形CEWF 为矩形,∴|CE →|=|CW →|cos30°=53, |CF →|=|CW →|cos60°=5.即A 处所受力的大小为53N ,B 处所受力的大小为5N .10.如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F 在同一直线上. [解析] 设AB →=m ,AD →=n , 由CE ED =AF FB =12知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上.B 级 素养提升一、选择题1.已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰直角三角形[解析] AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), 所以|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,所以|AB →|2+|BC →|2=|AC →|2,所以△ABC 为直角三角形.2.在△ABC 中,D 为BC 边的中点,已知AB →=a ,AC →=b ,则下列向量中与AD →同方向的是( A )A .a +b |a +b |B .a |a |+b |b |C .a -b |a -b |D .a |a |-b |b |[解析] 因为D 为BC 边的中点,则有AB →+AC →=2AD →,所以a +b 与AD →共线,又因为a +b |a +b |与a +b 共线,所以选项A 正确.3.两个大小相等的共点力F 1,F 2,当它们的夹角为90°时,合力的大小为20 N ,则当它们的夹角为120°时,合力的大小为( B )A .40 NB .10 2 NC .20 2 ND .10 N[解析] 对于两个大小相等的共点力F 1,F 2,当它们的夹角为90°,合力的大小为20 N 时,由三角形法则可知,这两个力的大小都是10 2 N ;当它们的夹角为120°时,由三角形法则可知力的合成构成一个等边三角形,因此合力的大小为10 2 N .4.已知点A (2,0),B (-4,4),C (1,-1),D 是线段AB 的中点,延长CD 到点E 使|DC →|=2|DE →|,则点E 的坐标为( A )A .(-2,72)B .(2,72)C .(2,-72)D .(-2,-72)[解析] 由已知得D (-1,2),因为|DC →|=2|DE →|,所以CD →=2DE →,设E (x ,y ),则有(-2,3)=2(x +1,y -2),所以⎩⎪⎨⎪⎧-2=2x +2,3=2y -4.所以⎩⎪⎨⎪⎧x =-2,y =72.二、填空题5.已知△ABC 的三个顶点A (0,-4),B (4,0),C (-6,2),点D ,E ,F 分别为边BC ,CA ,AB 的中点.则直线DE 的方程为__x -y +2=0__,直线EF 的方程为__x +5y +8=0__ .[解析] 由已知得点D (-1,1),E (-3,-1), 设M (x ,y )是直线DE 上任意一点,则DM →∥DE →. 又DM →=(x +1,y -1),DE →=(-2,-2),所以(-2)×(x +1)-(-2)×(y -1)=0, 即x -y +2=0为直线DE 的方程.同理可求,直线EF 的方程为x +5y +8=0.6.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为__1∶2__.[解析] 设D 为AC 的中点, 如图所示,连接OD ,则OA →+OC →=2OD →. 又OA →+OC →=-2OB →,所以OD →=-OB →,即O 为BD 的中点, 从而容易得△AOB 与△AOC 的面积之比为1∶2. 三、解答题7.如图,已知河水自西向东流速为|v 0|=1 m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|= 3 m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|= 3 m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.[解析] 如图,设OA →=v 0,OB →=v 1,OC →=v 2, 则由题意知v 2=v 0+v 1,|OA →|=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB →|=AC =3,如图所示,则在直角△OAC 中,|v 2|=OC =OA 2+AC 2=2,tan ∠AOC =31=3, 又α=∠AOC ∈(0,π2),所以α=π3.(2)由题意知α=∠OCB =π2,且|v 2|=|OC →|=3,BC =1,如图所示,则在直角△OBC 中,|v 1|=OB =OC 2+BC 2=2,tan ∠BOC =13=33, 又∠BOC ∈(0,π2),所以∠BOC =π6,则β=π2+π6=2π3.答:(1)他实际前进方向与水流方向的夹角α为π3,v 2的大小为2 m/s ;(2)他游泳的方向与水流方向的夹角β为2π3,v 1的大小为2 m/s .8.如图,在△ABC 中,M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .[解析] 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2.故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →.故AP ∶PM =4∶1,BP ∶PN =3∶2.。

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑常考问题8平面向量的线性运算及综合应用[真题感悟] 1.(2018·辽宁卷>已知点A(1,3>,B(4,-1>,则与向量A错误!同方向的单位向量为( >.b5E2RGbCAPA.错误!B.错误!p1EanqFDPwC.错误!D.错误!DXDiTa9E3d解读A错误!=(4,-1>-(1,3>=(3,-4>,∴与A错误!同方向的单位向量为错误!=错误!.RTCrpUDGiT答案A 2.(2018·福建卷>在四边形ABCD中,错误!=(1,2>,错误!=(-4,2>,则该四边形的面积为( >5PCzVD7HxAA.错误!B.2错误!C.5D.10解读因为错误!·错误!=0,所以错误!⊥错误!.jLBHrnAILg 故四边形ABCD的面积S=错误!|错误!||错误!|=错误!×错误!×2错误!=5.xHAQX74J0X答案C 3.(2018·湖北卷>已知点A(-1,1>,B(1,2>,C(-2,-1>,D(3,4>,则向量错误!在错误!方向上的投影为( >LDAYtRyKfEA.错误!B.错误!C. -错误!D.-错误!解读错误!=(2,1>,错误!=(5,5>,所以错误!在错误!方向上的投Zzz6ZB2Ltk影为错误!=错误!=错误!=错误!.dvzfvkwMI1答案A 4.(2018·新课标全国Ⅰ卷>已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b.若b·c=0,则t=________.rqyn14ZNXI 解读因为向量a,b为单位向量,又向量a,b的夹角为60°,所以a·b=错误!,由b·c=0,得∴b·c=ta·b+(1-t>·b2=错误!t+(1-t>×12=错误!t+1-t=1-错误!t=0.∴t=2.EmxvxOtOco答案2 5.(2018·山东卷>已知向量错误!与错误!的夹角为120°,且|错误!|=3,|错误!|=2.若A错误!=λ错误!+错误!,且错误!⊥错误!,则实数λ的值为________.SixE2yXPq5解读由错误!⊥错误!知错误!·错误!=0,即错误!·错误!=(λ错误!+错误!>·(错误!-错误!>=(λ-1>错误!·错误!-λA 错误!2+错误!2=(λ-1>×3×2×错误!-λ×9+4=0,解得λ=错误!.6ewMyirQFL答案错误![考题分析]题型选择题、填空题难度低档考查平面向量的有关概念(如单位向量>、数量积的运算(求模与夹角等>.中档在平面几何中,求边长、夹角及数量积等.高档在平面几何中,利用数量积的计算求参数值等.1.向量的概念(1>零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2>长度等于1个单位长度的向量叫单位向量,a的单位向量为±错误!.(3>方向相同或相反的向量叫共线向量(平行向量>.(4>如果直线l的斜率为k,则a=(1,k>是直线l的一个方向向量.(5>|b|cos〈a,b〉叫做b在向量a方向上的投影.2.两非零向量平行、垂直的充要条件设a=(x1,y1>,b=(x2,y2>,(1>若a∥b⇔a=λb(λ≠0>;a∥b⇔x1y2-x2y1=0.(2>若a⊥b⇔a·b=0;a⊥b⇔x1x2+y1y2=0.3.平面向量的性质(1>若a=(x,y>,则|a|=错误!=错误!.(2>若A(x1,y1>,B(x2,y2>,则|A错误!|=错误!.kavU42VRUs (3>若a=(x1,y1>,b=(x2,y2>,θ为a与b的夹角,则cosθ=错误!=错误!.y6v3ALoS89 4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量错误!=错误!-错误!(其中O为我们所需要的任何一个点>,这个法则就是终点向量减去起点向量.M2ub6vSTnP 5.根据平行四边形法则,对于非零向量a,b,当|a+b|=|a-b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a+b|=|a-b|等价于向量a,b互相垂直,反之也成立.0YujCfmUCw 6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.eUts8ZQVRd热点一平面向量的线性运算【例1】(2018·江苏卷>设D,E分别是△ABC的边AB,BC上的点,AD=错误!AB,BE=错误!BC.若错误!=λ1错误!+λ2错误!(λ1,λ2为实数>,则λ1+λ2的值为________.sQsAEJkW5T解读如图,错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!>=-错误!错误!+错误!错误!,则λ1=-错误!,λ2=错误!,λ1+λ2=错误!.GMsIasNXkA答案错误![规律方法]在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1>题就是把向量错误!用TIrRGchYzg 错误!,错误!表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.7EqZcWLZNX【训练1】(2018·天津卷>在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若错误!·错误!=1,则AB的长为________.lzq7IGf02E 解读在平行四边形ABCD中,取AB的中点F,则错误!=错误!,∴错误!=错误!=错误!-错误!错误!,又错误!=错误!+错误!,zvpgeqJ1hk ∴错误!·错误!=(错误!+错误!>·(错误!-错误!错误!>=错误!2-错误!错误!·错误!+错误!·错误!-错误!错误!2=|错误!|2+错误!|错误!||错误!|·cos60°-错误!|错误!|2=1+错误!×错误!|错误!|-错误!|错误!|2=1.NrpoJac3v1∴错误!|错误!|=0,又|错误!|≠0,∴|错误!|=错误!.1nowfTG4KI答案错误!热点二平面向量的数量积【例2】若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量b与a+b的夹角为( >.A.错误!B.错误!C.错误!D.错误!fjnFLDa5Zo 解读法一由已知|a+b|=|a-b|,两边平方,整理可得a·b=0.①由已知|a+b|=2|a|,两边平方,整理可得a2+b2+2a·b=4a2.②把①代入②,得b2=3a2,即|b|=错误!|a|.③而b·(a+b>=b·a+b2=b2,故cos〈b,a+b〉=错误!=tfnNhnE6e5错误!=错误!=错误!.HbmVN777sL又〈b,a+b〉∈[0,π],所以〈b,a+b〉=错误!.法二如图,作O错误!=a,O错误!=b,以OA,OB为邻边作平行四边形OACB,则O错误!=a+b,B错误!=a-b.V7l4jRB8Hs 由|a+b|=|a-b|,可知|O错误!|=|B错误!|,所以平行四边形OACB是矩形.又|a+b|=|a-b|=2|a|,可得|O错误!|=|B错误!|=2|O错误!|,故在Rt△AOB中,|错误!|=错误!83lcPA59W9=错误!|O错误!|,故tan∠OBA=错误!=错误!,所以∠BOC=∠OBA=错误!.而〈b,a+b〉=∠BOC=错误!.mZkklkzaaP答案A [规律方法]求解向量的夹角,关键是正确求出两向量的数量积与模.本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.AVktR43bpw 【训练2】(2018·湖南卷>已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是( >.ORjBnOwcEd A.[错误!-1,错误!+1] B.[错误!-1,错误!+2]2MiJTy0dTTC.[1,错误!+1] D.[1,错误!+2]解读由a,b为单位向量且a·b=0,可设a=(1,0>,b=(0,1>,又设c=(x,y>,代入|c-a-b|=1得(x-1>2+(y-1>2=1,又|c|=错误!,故由几何性质得错误!-1≤|c|≤错误!+1,即错误!-1≤|c|≤错误!+1.答案A热点三平面向量与三角函数的综合【例3】已知向量m=(sinx,-1>,n=(cosx,3>.(1>当m∥n时,求错误!的值;(2>已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,错误!c=2asin(A+B>,函数f(x>=(m+n>·m,求f错误!的取值范围.gIiSpiue7A解(1>由m∥n,可得3sinx=-cosx,于是tanx=-错误!,∴错误!=错误!=错误!=-错误!.uEh0U1Yfmh(2>在△ABC中A+B=π-C,于是sin(A+B>=sinC,由正弦定理,得错误!sinC=2sinAsinC,∵sinC≠0,∴sinA=错误!.又△ABC为锐角三角形,∴A=错误!,于是错误!<B<错误!.∵f(x>=(m+n>·m=(sinx+cosx,2>·(sinx,-1>=sin2x+sinxcosx-2=错误!+错误!sin2x-2=错误!sin错误!-错误!,IAg9qLsgBX ∴f错误!=错误!sin错误!-错误!=错误!sin2B-错误!.由错误!<B<错误!得错误!<2B<π,∴0<sin2B≤1,-错误!<错误!sin2B-错误!≤错误!-错误!,WwghWvVhPE即f(B+错误!>∈错误!.asfpsfpi4k [规律方法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.ooeyYZTjj1【训练3】(2018·江苏卷>已知向量a=(cosα,sinα>,b=(cosβ,sinβ>,0<β<α<π.BkeGuInkxI(1>若|a-b|=错误!,求证:a⊥b;(2>设c=(0,1>,若a+b=c,求α,β的值.(1>证明由|a-b|=错误!,即(cosα-cosβ>2+(sinα-sinβ>2=2,整理得cosαcosβ+sinαsinβ=0,即a·b=0,因此a⊥b.PgdO0sRlMo(2>解由已知条件得错误!3cdXwckm15 cosβ=-cosα=cos(π-α>,由0<α<π,得0<π-α<π,又0<β<π,故β=π-α.则sinα+sin (π-α>=1,即sinα=错误!,故α=错误!或α=错误!.当α=错误!时,β=错误!(舍去>h8c52WOngM 当α=错误!时,β=错误!.审题示例(四> 突破有关平面向量问题的思维障碍图1解读法一设直角三角形ABC的两腰长都为4,如图1所示,以C为原点,CA,CB所在的直线分别为x轴,y轴,建立平面直角坐标系,则A(4,0>,B(0,4>,因为D为AB的中点,所以D(2,2>.因为P为CD的中点,所以P(1,1>.故|PC|2=12+12=2,|PA|2=(4-1>2+(0-1>2=10,|PB|2=(0-1>2+(4-1>2=10,所以错误!=错误!=10.v4bdyGious图2法二如图2所示,以C为坐标原点,CA,CB所在的直线分别作为x轴,y轴建立平面直角坐标系.设|CA|=a,|CB|=b,则A(a,0>,B(0,b>,则D错误!,P错误!,J0bm4qMpJ9∴|PC|2=错误!2+错误!2=错误!+错误!,XVauA9grYP|PB|2=错误!2+错误!2=错误!+错误!,bR9C6TJscw|PA|2=错误!2+错误!2=错误!+错误!,pN9LBDdtrd 所以|PA|2+|PB|2=10错误!=10|PC|2,DJ8T7nHuGT∴错误!=10.法三如图3所示,取相互垂直的两个向量C错误!=a,C错误!=b 作为平面向量的基向量,显然a·b=0.QF81D7bvUA图3则在△ABC中,B错误!=a-b,因为D为AB的中点,所以C错误!=错误!(a+b>.4B7a9QFw9h 因为P为CD的中点,所以P错误!=-错误!C错误!=-错误!×错误!(a+b>=-错误!(a+b>.在△CBP中,P错误!=P错误!+C 错误!=-错误!(a+b>+b=-错误!a+错误!b,在△CAP中,P 错误!=P错误!+C错误!=-错误!(a+b>+a=错误!a-错误!b.所以|P错误!|2=错误!2=错误!(a2+b2+2a·b>=错误!(|a|2+|b|2>,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2.故错误!=错误!=10.ix6iFA8xoX答案D 方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征.wt6qbkCyDE [针对训练]在△ABC中,已知BC=2,错误!·错误!=1,则△ABC的面积S△ABC最大值是________.Kp5zH46zRk解读以线段BC所在直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,则B(-1,0>,C(1,0>.设A(x,y>,则错误!=(-1-x,-y>,错误!=(1-x,-y>,于是错误!·错误!=(-1-x>(1-x>+(-y>(-y>=x2-1+y2.Yl4HdOAA61由条件错误!·错误!=1知x2+y2=2,ch4PJx4BlI这表明点A在以原点为圆心,错误!为半径的圆上.当OA⊥BC时,△ABC面积最大,即S△ABC=错误!×2×错误!=错误!.(建议用时:60分钟>1.(2018·陕西卷>设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( >.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解读由|a||b||cos〈a,b〉|=|a||b|,则有cos〈a,b〉=±1.即〈a,b〉=0或π,所以a∥b.由a∥b,得向量a与b同向或反向,所以〈a,b〉=0或π,所以|a·b|=|a||b|.qd3YfhxCzo答案C 2.已知向量a与b的夹角为120°,|a|=3,|a+b|=错误!则|b|等于( >.E836L11DO5A.5B.4C.3D.1解读向量a与b的夹角为120°,|a|=3,|a+b|=错误!,则a·b=|a||b|·cos120°=-错误!|b|,|a+b|2=|a|2+2a·b+|b|2.所以13=9-3|b|+|b|2,则|b|=-1(舍去>或|b|=4.答案B 3.(2018·辽宁一模>△ABC中D为BC边的中点,已知A错误!=a,A错误!=b则在下列向量中与A错误!同向的向量是( >.S42ehLvE3MA.错误!+错误!B.错误!-错误!501nNvZFisC.错误!D.|b|a+|a|b解读∵A错误!=错误!(A错误!+A错误!>=错误!(a+b>,jW1viftGw9∴向量错误!与向量A错误!是同向向量.xS0DOYWHLP答案C 4.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( >.LOZMkIqI0wA.30°B.60°C.120°D.150°解读因为a+b+c=0,所以c=-(a+b>.所以|c|2=(a+b>2=a2+b2+2a·b=2+2cos60°=3.所以|c|=错误!.ZKZUQsUJed 又c·a=-(a+b>·a=-a2-a·b=-1-cos60°=-错误!,设向量c与a的夹角为θ,则cosθ=错误!=错误!=-错误!.又0°≤θ≤180°,所以θ=150°.dGY2mcoKtT答案D5.(2018·安徽卷>在平面直角坐标系中,O是坐标原点,两定点A,B满足|错误!|=|错误!|=错误!·错误!=2,则点集{P|错误!=λ错误!+μ错误!,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( >.rCYbSWRLIA A.2错误!B.2错误!C.4错误!D.4错误!FyXjoFlMWh 解读由|错误!|=|错误!|=错误!·错误!=2,知cos∠AOB=错误!,又0≤∠AOB≤π,则∠AOB=错误!,又A,B是两定点,可设A(错误!,1>,B(0,2>,P(x,y>,由错误!=λ错误!+μ错误!,可得错误!⇒错误!TuWrUpPObX 因为|λ|+|μ|≤1,所以错误!+错误!≤1,当错误!7qWAq9jPqE 由可行域可得S0=错误!×2×错误!=错误!,所以由对称性可知点P所表示的区域面积S=4S0=4错误!,故选D.llVIWTNQFk答案D 6.(2018·新课标全国Ⅱ卷>已知正方形ABCD的边长为2,E为CD的中点,则错误!·错误!=________.yhUQsDgRT1解读由题意知:错误!·错误!=(错误!+错误!>·(错误!-错误!>=(错误!+错误!错误!>·(错误!-错误!>=错误!2-错误!错误!·错误!-错误!错误!2=4-0-2=2.MdUZYnKS8I答案2 7.(2018·江西卷>设e1,e2为单位向量,且e1,e2的夹角为错误!,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.09T7t6eTno 解读a在b方向上的射影为|a|cos〈a,b〉=错误!.∵a·b=(e1+3e2>·2e1=2e错误!+6e1·e2=5.|b|=|2e1|=2.∴错误!=错误!.答案错误! 8.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P 是腰DC上的动点,则|P错误!+3P错误!|的最小值为______.e5TfZQIUB5解读建立如图所示的直角坐标系,设DC=m,P(0,t>,t∈[0,m],由题意可知,A(2,0>,B(1,m>,P错误!=(2,-t>,P错误!=(1,m-t>,P错误!+3P错误!=(5,3m-4t>,|P错误!+3P 错误!|=错误!≥5,当且仅当t=错误!m时取等号,即|P错误!+3P错误!|的最小值是5.s1SovAcVQM答案59.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为错误!,|OB|=2,设∠AOB=θ,θ∈错误!.GXRw1kFW5s(1>用θ表示点B的坐标及|OA|;(2>若tanθ=-错误!,求O错误!·O错误!的值.UTREx49Xj9解(1>由题意,可得点B的坐标为(2cosθ,2sinθ>.在△ABO中,|OB|=2,∠BAO=错误!,∠B=π-错误!-θ=错误!-θ.由正弦定理,得错误!=错误!,8PQN3NDYyP即|OA|=2错误!sin错误!.mLPVzx7ZNw(2>由(1>,得O错误!·O错误!=|O错误!||O错误!|cosθAHP35hB02d=4错误!sin错误!cosθ.NDOcB141gT因为tanθ=-错误!,θ∈错误!,1zOk7Ly2vA所以sinθ=错误!,cosθ=-错误!.又sin错误!=sin错误!cosθ-cos错误!sinθ=错误!×错误!-错误!×错误!=错误!,fuNsDv23Kh 故O错误!·O错误!=4错误!×错误!×错误!=-错误!.tqMB9ew4YX 10.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m =(a,b>,n=(sinB,sinA>,p=(b-2,a-2>.HmMJFY05dE(1>若m∥n,求证:△ABC为等腰三角形;(2>若m⊥p,边长c=2,C=错误!,求△ABC的面积.(1>证明因为m∥n,所以asinA=bsinB,即a·错误!=b·错误!(其中R是△ABC外接圆的半径>,所以a=b.所以△ABC为等腰三角形.ViLRaIt6sk(2>解由题意,可知m·p=0,即a(b-2>+b(a-2>=0,所以a+b =ab,由余弦定理,知4=c2=a2+b2-2abcos错误!=(a+b>2-3ab,即(ab>2-3ab-4=0,所以ab=4或ab=-1(舍去>.9eK0GsX7H1所以S△AB C=错误!absinC=错误!×4×sin错误!=错误!.naK8ccr8VI11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π>,C点坐标为(-2,0>,平行四边形OAQP的面积为S.B6JgIVV9ao(1>求O错误!·O错误!+S的最大值;P2IpeFpap5(2>若CB∥OP,求sin错误!的值.3YIxKpScDM解(1>由已知,得A(1,0>,B(0,1>,P(cos θ,sin θ>,因为四边形OAQP是平行四边形,所以O错误!=O错误!+O错误!=(1,0>+(cosθ,sinθ>gUHFg9mdSs=(1+cosθ,sinθ>.所以O错误!·O错误!=1+cos θ.uQHOMTQe79又平行四边形OAQP的面积为S=|O错误!|·|O错误!|sinθ=sinθ,IMGWiDkflP 所以O错误!·O错误!+S=1+cosθ+sinθ=错误!sin错误!+1.WHF4OmOgAw又0<θ<π,所以当θ=错误!时,O错误!·O错误!+S的最大值为错误!+1.aDFdk6hhPd(2>由题意,知C错误!=(2,1>,O错误!=(cosθ,sinθ>,ozElQQLi4T因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=错误!,cosθ=错误!,所以sin2θ=2sinθcosθ=错误!,cos2θ=cos2θ-sin2θ=错误!.CvDtmAfjiA 所以sin错误!=sin2θcos错误!-cos2θsin错误!=错误!×错误!-错误!×错误!=错误!.QrDCRkJkxh申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算在数学中,平面向量是向量的一种,它在平面内具有长度和方向,可以用有向线段表示。

平面向量之间可以进行线性运算,包括加法和数乘。

本文将详细介绍平面向量的线性运算及其性质。

一、平面向量的定义平面向量是指具有大小和方向的向量,它们通常用加粗的小写字母表示,如a、a等。

平面向量可以用有向线段表示,线段的起点表示向量的起点,线段的方向表示向量的方向,线段的长度表示向量的大小。

二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。

设有两个平面向量a和a,它们的加法定义为:a + a = a + a这意味着向量的加法满足交换律,顺序不影响结果。

加法的几何解释为将两个向量的起点相连,然后将它们的箭头相连,新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。

三、平面向量的数乘平面向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。

设有一个平面向量a和一个实数a,它们的数乘定义为:aa = aa数乘有以下性质:1. 数乘满足结合律:(aa)a = a(aa),其中a和a为实数。

2. 数乘满足分配律:(a + a)a = aa + aa,其中a和a为实数。

3. 数乘满足分配律:a(a + a) = aa + aa,其中a为实数,a和a为平面向量。

四、线性组合线性组合是指将一组向量与一组实数相乘并求和得到一个新的向量。

设有a个平面向量a₁、a₂、...、aa和a个实数a₁、a₂、...、aa,它们的线性组合定义为:a₁a₁ + a₂a₂ + ... + aaaa线性组合是向量加法和数乘的联合运算,这个概念在线性代数中具有重要的应用。

五、线性运算的性质1. 交换律:向量加法满足交换律,即a + a = a + a。

2. 结合律:向量加法满足结合律,即(a + a) + a = a + (a + a),其中a、a和a为平面向量。

3. 分配律:向量加法和数乘满足分配律,即a(a + a) = aa + aa,(a + a)a = aa + aa,其中a、a为实数,a和a为平面向量。

平面向量的线性运算与应用练习题

平面向量的线性运算与应用练习题

平面向量的线性运算与应用练习题1. 问题描述:已知平面向量a = (-3, 2)和b = (5, -4),求2a - 3b的结果。

解答:根据线性运算的定义,我们可以对向量a和b进行运算。

首先计算2a:2a = 2(-3, 2) = (-6, 4)。

然后计算3b:3b = 3(5, -4) = (15, -12)。

最后,将2a和3b相加:2a - 3b = (-6, 4) - (15, -12) = (-6 - 15, 4 - (-12)) = (-21, 16)。

所以,2a - 3b的结果为(-21, 16)。

2. 问题描述:已知平面向量a = (2, -1)和b = (-3, 4),求|a + b|的值。

解答:根据线性运算的定义,我们可以对向量a和b进行运算。

首先计算a + b:a +b = (2, -1) + (-3, 4) = (2 - 3, -1 + 4) = (-1, 3)。

然后计算|a + b|的值,即求向量的模:|a + b| = √((-1)^2 + 3^2) = √(1 + 9) = √10。

所以,|a + b|的值为√10。

3. 问题描述:已知平面向量a = (4, -2),求向量a的单位向量和模。

解答:根据向量的定义,单位向量是模为1的向量。

首先计算向量a的模:|a| = √(4^2 + (-2)^2) = √(16 + 4) = √20 = 2√5。

然后,计算向量a的单位向量,即将向量a除以它的模:单位向量a' = (4, -2) / (2√5) = (2√5/2, -√5/2) = (√5, -√5/2)。

所以,向量a的单位向量为(√5, -√5/2),模为2√5。

4. 问题描述:已知平面向量a = (3, 2)和b = (-1, 4),求a与b的数量积和夹角。

解答:根据数量积的定义,a与b的数量积等于它们对应分量的乘积之和。

计算向量a与b的数量积:a·b = 3*(-1) + 2*4 = -3 + 8 = 5。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是平面上的有向线段,可以进行各种线性运算,包括加法、减法、数乘、内积和外积。

本文将详细介绍平面向量的线性运算。

一、平面向量的定义平面向量是平面上具有大小和方向的有向线段,通常用箭头表示,例如,向量AB用→AB表示,A为向量的起点,B为向量的终点。

平面向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的投影。

二、平面向量的加法设有平面向量→AB和→CD,它们的和向量为→AD=→AB+→CD。

向量的加法满足交换律,即→AB+→CD=→CD+→AB。

加法运算的几何解释是将向量→CD以→AB为起点进行平移,得到以A为起点,D为终点的向量→AD。

三、平面向量的减法设有平面向量→AB和→CD,它们的差向量为→AC=→AB-→CD。

向量的减法满足非交换律,即→AB-→CD≠→CD-→AB。

减法运算的几何解释是将向量→CD以→AB的起点为终点进行平移,得到以A为起点,C为终点的向量→AC。

四、平面向量的数乘对于平面向量→AB,实数k,k×→AB为平面向量的数乘。

数乘的结果是一个新的平面向量,它的长度为原向量的长度乘以数乘系数k,方向与原向量相同(当k>0时),或相反(当k<0时)。

五、平面向量的内积两个向量→AB和→CD的内积记作→AB·→CD,它等于向量→AB在→CD上的投影长度与→CD的模长之积,即|→AB|×|→CD|×cosθ,其中θ为→AB和→CD的夹角。

内积运算满足交换律,即→AB·→CD=→CD·→AB;和分配律,即(→AB+→CD)·→EF=→AB·→EF+→CD·→EF。

内积运算可以用来判断两个向量是否垂直,当且仅当向量的内积为0时,它们垂直。

六、平面向量的外积两个向量→AB和→CD的外积记作→AB×→CD,它是一个新的向量,它的模长等于两个向量构成的平行四边形的面积,方向垂直于所构成平行四边形的平面,并按右手法则确定。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算在数学中,平面向量是一个有大小和方向的量。

它可以表示为一个箭头,并且可以用坐标表示。

平面向量的线性运算是指对平面向量进行加法和数乘的操作。

一、平面向量的加法平面向量的加法是指将两个向量的对应分量相加,得到一个新的向量。

如果有两个向量A和B,它们的坐标分别为(Ax, Ay)和(Bx, By),则它们的加法可以表示为:A +B = (Ax + Bx, Ay + By)例如,如果有向量A(2, 3)和向量B(1, -2),则它们的加法运算为:A +B = (2 + 1, 3 + (-2)) = (3, 1)二、平面向量的数乘平面向量的数乘是指一个向量与一个实数相乘的操作。

如果有一个向量A和一个实数k,则它们的数乘可以表示为:kA = (kAx, kAy)例如,如果有向量A(2, 3)和实数k = 2,则它们的数乘运算为:2A = (2 × 2, 2 × 3) = (4, 6)三、平面向量的线性运算平面向量的线性运算是指对向量加法和数乘进行组合运算。

如果有两个向量A和B,以及两个实数k和m,则它们的线性运算可以表示为:kA + mB = (kAx + mBx, kAy + mBy)例如,如果有向量A(2, 3)、向量B(1, -2)和实数k = 2,m = 3,则它们的线性运算为:2A + 3B = (2 × 2 + 3 × 1, 2 × 3 + 3 × (-2)) = (7, 0)四、平面向量的性质平面向量的线性运算具有以下性质:1. 交换律:A + B = B + A2. 结合律:(A + B) + C = A + (B + C)3. 分配律:k(A + B) = kA + kB4. 结合分配律:(k + m)A = kA + mA这些性质使得平面向量的线性运算更加方便和灵活,可以简化运算过程并推导出更多的结论。

总结:平面向量的线性运算包括加法和数乘两种操作。

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是解析几何中的重要概念,它不仅可以表示方向和大小,还可以进行各种运算。

其中,线性运算是指向量之间基于线性关系进行的运算,包括向量的加法、减法和数量乘法。

下面将详细介绍这些线性运算。

1. 向量的加法向量的加法是指将两个向量相加得到一个新的向量。

设有向量A和向量A,它们的加法运算是指将向量A的终点与向量A的起点重合,将向量A的终点与此位置的终点相连接得到一个新的向量A。

表示为:A = A + A。

2. 向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量。

设有向量A和向量A,它们的减法运算是指将向量A取反后与向量A进行加法运算,即A = A - A,等价于A = A + (-A)。

3. 数量乘法数量乘法是指将一个向量与一个实数相乘得到一个新的向量。

设有向量A和实数A,它们的数量乘法运算是指将向量A拉长或缩短,与实数A的绝对值成正比。

当A > 0时,方向与原向量相同;当A < 0时,方向与原向量相反。

表示为:AA。

在进行向量的线性运算时,需要特别注意以下几点:1. 矢量的起点和终点在进行向量的线性运算时,需要明确矢量的起点和终点。

起点表示向量的起始位置,终点表示向量的结束位置。

2. 向量的方向向量的方向是指从起点指向终点的方向。

加法和减法运算中,可以通过将向量的起点重合来确定新向量的方向。

3. 向量的大小向量的大小是指向量的长度或模。

表示为 |A|,可以通过勾股定理来计算:|A| = √(A²+A²),其中A和A分别为向量的水平和垂直分量。

4. 向量的单位向量单位向量是指长度为1的向量。

可以通过将向量除以它的模来得到单位向量。

表示为:A = A/|A|。

5. 向量的平行和垂直性向量A与向量A平行等价于A = AA(A为实数),向量A与向量A垂直等价于A ·A = 0(·表示向量的数量积)。

通过以上介绍,我们了解了平面向量的线性运算和相关概念。

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义

2.2_平面向量的线性运算2.2.1_向量加法运算及其几何意义
(
答案:8 2
北偏东 45°
答案:8 2 北偏东 45° 答案:8 2 北偏东 45°
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
首页
Байду номын сангаас
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点一:准确理解向量加法的三角形法则和平行四边形法则 1.两个法则的使用条件不同 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量 求和.
3.以同一点 O 为起点的两个已知向量 a,b 为邻边作▱OACB,则以 O 为起点的对角线 OC― →就是 a 与 b 的和,这种作两个向量和的方法叫做向量加法的平行四边形法则. 4.对任意两个向量 a、b,均有|a+b|≤|a|+|b|. 当 a、b 同向时有|a+b|=|a|+|b|;当 a、b 反向时有|a+b|=|a|-|b|(或|b|-|a|). 5.向量的加法满足交换律和结合律, 即 a+b=b+a;(a+b)+c=a+(b+c). a+0=0+a=a.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
知识要点二:向量 a+b 与非零向量 a,b 的模及方向的关系 1.当向量 a 与 b 不共线时,a+b 的方向与 a,b 都不相同,且|a+b|<|a|+|b|,几何背 景是三角形两边之和大于第三边. 2.当 a 与 b 同向时,a+b 与 a,b 的方向相同,且|a+b|=|a|+|b|. 3.当 a 与 b 反向时,若|a|≥|b|,则 a+b 与 a 的方向相同,且|a+b|=|a|-|b|. 若|a|<|b|,则 a+b 与 b 的方向相同,且|a+b|=|b|-|a|. 知识要点三:向量加法的运算律 1.向量加法的交换律:将 a 的起点移至 A 点,将 b 的起点移至 a 的终点,则由 a 的起 点 A 指向 b 的终点 C 的向量 AC― →=a+b;同样将 b 的起点移至 A 点,将 a 的起点移至 b 的终点,则由 b 的起点 A 指向 a 的终点 C′的向量 AC′― →=b+a,由平行四边形法则知 C 必然和 C′重合,即 a+b=b+a. 2.向量的加法满足交换律和结合律,因此在进行多个向量的加法运算时,就可以按照 任意的次序和任意的组合去进行.如(a+b)+(c+d)=(a+d)+(b+c). 3.向量加法运算满足:A1A2―→+A2A3― →+„+An- 1An― →=A1An―→.

6.3平面向量线性运算的应用

6.3平面向量线性运算的应用

B
A
AE AB BE, FC FD DC.
E
又 AB DC, BE FD,
C
F D
例 2.如图所示,已知平行四边形 ABCD 中,E, F 在对角线
BD上,并且 BE FD ,求证:四边形 AECF 是平行四边形.
证明 如题图,由向量加法法则知
B
A
AE AB BE, FC FD DC.
BD上,并且 BE FD ,求证:四边形 AECF 是平行四边形.
证明 如题图,由向量加法法则知
B
A
AE AB BE, FC FD DC.
E
F
C
D
例 2.如图所示,已知平行四边形 ABCD 中,E, F 在对角线
BD上,并且 BE FD ,求证:四边形 AECF 是平行四边形.
证明 如题图,由向量加法法则知
2
2
从而 DE AE AD 1 (AC AB) .
2
例 1. 如图,DE 是∆ABC 的中位线,证明:DE//BC,DE= 1 BC .
A
A
2
D
E
D
E
B
C
B
C
证明 因为 AC AB=BC ,所以 DE= 1 BC .
2
例 1. 如图,DE 是∆ABC 的中位线,证明:DE//BC,DE= 1 BC .
平面向量
平面向量既有大 小,又有方向;
向量及向量运算 均具有物理背景; 利用向量,可以 借助代数运算研 究物理问题.
思考 1 为什么要用平面向量来解决物理问题? 思考 2 平面向量主要用来解决哪些物理问题?
思考 1 为什么要用平面向量来解决物理问题?
思考 2 平面向量主要用来解决哪些物理问题?

平面向量的线性运算

平面向量的线性运算

平面向量的线性运算平面向量是平面上的有向线段,具有大小和方向,可以进行线性运算。

本文将介绍平面向量的加法、减法、数量乘法以及其他相关的线性运算。

一、平面向量的加法平面向量的加法满足以下性质:1. 交换律:对于任意两个向量a和b,a+b=b+a。

2. 结合律:对于任意三个向量a、b和c,(a+b)+c=a+(b+c)。

3. 零向量:对于任意向量a,存在一个特殊的向量0,称为零向量,满足a+0=a。

4. 相反向量:对于任意向量a,存在一个特殊的向量-b,称为a的相反向量,满足a+(-a)=0。

二、平面向量的减法平面向量的减法可以看作是向量加上其相反向量的过程。

即,对于任意向量a和b,a-b=a+(-b)。

三、平面向量的数量乘法平面向量的数量乘法即将一个向量乘以一个实数。

具体来说,对于任意向量a和实数k,ka是一个新的向量,满足以下性质:1. 数量乘法的结合律:对于任意向量a和实数k、l,(kl)a=k(la)。

2. 数量乘法与向量加法的分配律:对于任意向量a和实数k、l,(k+l)a=ka+la。

3. 数量乘法与实数加法的分配律:对于任意向量a和实数k、l,(k+l)a=ka+la。

4. 数量乘法与实数乘法的分配律:对于任意向量a和实数k、l,(kl)a=k(la)。

四、线性组合线性组合是指将若干个向量按照一定比例进行加法和数量乘法运算得到的向量。

具体来说,对于给定的向量a1、a2、...、an和实数k1、k2、...、kn,线性组合为k1a1+k2a2+...+knan。

五、平面向量的点积平面向量的点积也称为数量积或内积。

对于任意向量a和b,其点积记作a·b,满足以下性质:1. 交换律:对于任意向量a和b,a·b=b·a。

2. 分配律:对于任意向量a、b和c,(a+b)·c=a·c+b·c。

3. 结合律:对于任意向量a和b以及实数k,(ka)·b=k(a·b)=a·(kb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量线性运算的应用
例题1 已知:任意四边形ABCD 中,E ,F 分别为AD ,BC 的中点。

求证:=
2
1
(+)。

证明:因为EF =EA +AB +BF ,EF =ED ++,
所以
2EF =EA +ED +AB +DC +BF +CF 。

因为E ,F
分别为AD ,BC 的中点,所以AE =ED ,BF =FC , 所以EA +ED =0,BF +CF =0,所以2EF =AB +DC ,EF =2
1
(AB +DC )。

所以命题成立。

总结提升:
用向量方法解决几何问题的步骤:
−−−→−−−→−−−→设向量运算还原
平面几何问题向量问题解决向量问题解决几何问题
典例二:向量的线性运算在物理中的应用
例题2 (1)在重300 N 的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°(如图),求重物平衡时,两根绳子拉力的大小。

(2)帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30°,速度为20 km/h ,此时水的流向是正东,流速为20 km/h 。

若不考虑其他因素,求帆船的速度与方向。

解:(1)如图,两根绳子的拉力之和OA +OB =OC ,
且||=||=300 N ,∠AOC =30°,∠BOC =60°。

在△OAC 中,∠ACO =∠BOC =60°,∠AOC =30°, 则∠OAC =90°,
F
E D C
B
A
从而|OA |=|OC |·cos 30°=1503(N ), |AC |=|OC |·sin 30°=150(N ), 所以|OB |=|AC |=150(N )。

答:与铅垂线成30°角的绳子的拉力是1503N ,与铅垂线成60°角的绳子的拉力是150 N 。

(2)建立如图所示的平面直角坐标系,风的方向为北偏东30°,速度为|v 1|=20(km/h ),水流的方向为正东,速度为|v 2|=20(km/h ),
设帆船行驶的速度为v , 则v =v 1+v 2。

由题意,可得向量v 1=(20cos 60°,20sin 60°)=(10,103),向量v 2=(20,0), 则帆船的行驶速度为
v =v 1+v 2=(10,103)+(20,0)=(30,103),
所以|v |=2231030)
(+=203(km/h )。

因为tan α=
30310=3
3
(α为v 和v 2的夹角,且为锐角), 所以α=30°,
所以帆船向北偏东60°的方向行驶,速度为203 km/h 。

总结提升:
利用向量法解决物理问题有两种思路,第一种是几何法,选取适当的基底,将题中涉及的向量用基底表示,利用向量运算法则,运算律或性质计算。

第二种是坐标法,通过建立平面直角坐标系,实现向量的坐标化,转化为代数运算。

1. 平面向量线性运算在平面几何中的应用 问题类型
所用知识 公式表示
线平行、点共线等问题
共线向量定理
1221//0a b a b x y x y λ⇔=⇔-=,
其中1122(,),(,),0a x y b x y b ==≠
(2)用向量方法处理平面几何问题的“三步曲”
①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题。

②通过向量运算,研究几何元素之间的关系,如距离、夹角等问题。

③把运算结果“翻译”成几何关系。

注意:向量是数学中证明几何命题的有效工具之一。

在证明几何命题时,可先把已知条件和结论表示成向量的形式,再通过向量的运算就很容易得出结论。

一般地,利用实数与向量的积可以解决共线、平行、长度等问题。

向量的坐标表示把点与数联系了起来,这样就可以用代数方程研究几何问题,同时也可以用向量来研究某些代数问题。

2. 用向量理论讨论物理学中的相关问题,一般来说分为四个步骤:
(1)问题转化,即把物理问题转化为数学问题;
(2)建立模型,即建立以向量为载体的数学模型;
(3)求解参数,即求出数学模型的有关解——理论参数值;
(4)回答问题,即把所得的数学结论回归到物理问题。

(答题时间:30分钟)
1. 用两条成120°角的等长的绳子悬挂一个灯具,如图所示,已知灯具重10 N,则每根绳子的拉力大小为______ N。

2. 一条河宽为800 m,一船从A处出发垂直到达河正对岸的B处,船速为20 km/h,水速为12 km/h,则船到达B处所需时间为________ min。

3. 一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态,已知F1,F2成90°角,且F1,F2的大小分别为2和4,则F3的大小为()
A. 6 N
B. 2 N
C. 25N
D. 27N
4. 人骑自行车的速度是v1,风速为v2,则逆风行驶的速度为()
A. v 1-v 2
B. v 1+v 2
C. |v 1|-|v 2|
D. |
2
1
v v | 5. 已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F 4,则F 4等于( )
A. (-1,-2)
B. (1,-2)
C. (-1,2)
D. (1,2)
6. 已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 1的大小为( )
A. 53N
B. 5 N
C. 10 N
D. 52N
7. 已知作用在点A 的三个力f 1=(3,4),f 2=(2,-5),f 3=(3,1),且A (1,1),则合力f =f 1+f 2+f 3的终点坐标为( )
A. (9,1)
B. (1,9)
C. (9,0)
D. (0,9)
8. 河水的流速为5 m/s ,若一艘小船沿垂直于河岸方向以12 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )
A. 13 m/s
B. 12 m/s
C. 17 m/s
D. 15 m/s
1. 答案:10
解析:设重力为G ,每根绳的拉力分别为F 1,F 2,则由题意得F 1,F 2与-G 都成60°角,
且|F 1|=|F 2|。

∴|F 1|=|F 2|=|G |=10 N , ∴每根绳子的拉力都为10 N 。

2. 答案:3
解析:∵v 实际=v 船+v 水=v 1+v 2, |v 1|=20 km/h ,|v 2|=12 km/h , ∴|v |=2221||||v v - =2
2
1220-=16(km/h )。

∴所需时间t =
16
8
.0=0. 05(h )=3(min )。

∴该船到达B 处所需的时间为3 min 。

3. 答案:C 4. 答案:B 5. 答案:D
解析:∵物体平衡,∴F 1+F 2+F 3+F 4=0,
∴F 4=-F 1-F 2-F 3=-(-2,-1)-(-3,2)-(4,-3)=(1,2)。

故选D 。

6. 答案:B
解析:如图,有|F 1|=|F |cos 60°
=10×
2
1
=5(N ) 7. 答案:A
解析:f =f 1+f 2+f 3=(3,4)+(2,-5)+(3,1)=(8,0),设合力f 的终点为P (x ,y ),
则=+f =(1,1)+(8,0)=(9,1)。

8. 答案:A
解析:设小船在静水中的速度为v 1, 河水的流速为v 2, v 1与v 2的合速度为v ,
∵为了使航向垂直河岸,船头必须斜向上游方向,
即小船在静水中的速度v 1斜向上游方向,河水速度v 2平行于河岸, 合速度v 指向对岸,
∴静水速度|v 1|=222||||v v +=2
2
512+=13(m/s )。

相关文档
最新文档