圆锥曲线中三角形面积问题

合集下载

圆锥曲线中焦三角面积公式的应用

圆锥曲线中焦三角面积公式的应用

圆锥曲线中焦三角面积公式的应用在圆锥曲线中的椭圆和双曲线里,以曲线上的一点及两个焦点作为顶点的三角形我们称之为焦三角。

焦三角的面积只与b 和曲线上的这点与两个焦点的视角有关。

假设这个视角为θ,F 1、F 2分别是曲线的两个焦点,在椭圆中焦三角的面积S=b 2tan 2θ,在双曲线里焦三角的面积S=b 2cot 2θ。

下面我们给出证明:若P 是椭圆22221x y a b +=(a>b>0)上一点,F 1、F 2是两个焦点,设|PF 1|=r 1,|PF 2|=r 2,三角形PF 1F 2的面积为S ,则S=121sin 2r r θ……(1) 在三角形PF 1F 2中,由余弦定理(2c )2=222121212122cos ()2cos r r r r r r r r θθ+-=+-, (2)又r 1+r 2=2a ,……(3)代入(2)得:4c 2=4a 2-θcos 221r r ∴r 1r 2=θcos 22b 代入(1)中可得S=b 2tan2θ,同理可得双曲线中焦三角的面积S= b 2cot 2θ。

在解决圆锥曲线问题中,适当使用焦三角面积公式使解题变得很简便,运算量少且准确,下面举例予以说明。

例1(2004年高考福州)已知P 是椭圆2214x y +=的一点,F 1、F 2是椭圆的两个焦点,且∠F 1PF 2=600,则△PF 1F 2的面积是___________。

由椭圆的焦三角面积公式,这里θ=600,2θ=300得△PF 1F 2的面积是3。

例2.双曲线221916x y -=的两个焦点分别是F 1、F 2,点P 在双曲线上,且直线PF 1、PF 2倾斜角之差为3π,则△PF 1F 2的面积为( )A. C. 32 D. 42 解:由三角形外角性质可得∠F 1PF 2=3π,即θ=3π,再由双曲线的焦三角面积公式,S=b 2cot2θ=16cot 6π,故选A 。

例3.在椭圆2214520x y +=上求一点P ,使它与两焦点F 1、F 2的连线互相垂直。

圆锥曲线中求三角形面积的几种方法

圆锥曲线中求三角形面积的几种方法

圆锥曲线中求三角形面积的几种方法(宜昌市田家炳高级中学 胡爱斌)圆锥曲线中求三角形面积的问题很常见。

此类题若方法选取不当将直接影响解题的速度与准确率,如下看求三角形面积的几种有效方法。

1、 正弦定理和余弦定理相结合求面积例1:双曲线191622=-y x 上有点P ,F 1、F 2是双曲线的焦点,且∠F 1PF 2=3π,求△F 1PF 2的面积解析:设1PF =m, 2PF =n ,由双曲线的定义可知82==-a n m ,642=-n m即m 2+n 2-2mn=64 (1)在△F 1PF 2中,21F F =10,由余弦定理得m 2+n 2-2mncos3π=100 (2) (2)-(1),整理得mn=36∴21PFF S ∆=21mn ·sin 3π=93 例2:已知F 1、F 2是椭圆16410022=+y x 的两个焦点,P 是椭圆上一点,若∠F 1PF 2=3π,求△F 1PF 2的面积 解析:设1PF =m ,2PF =n ,由椭圆的定义可知m+n=20,在△F 1PF 2中,由余弦定理得m 2+n 2-2mncos3π=21F F 2=144 即()mn n m 32-+=144又m+n=20,∴mn=325621PF F S ∆=211PF ·2PF ·sin ∠F 1PF 2 =21mn ·sin 3π=21⨯3256⨯23 =3364 点评:求解焦点三角形的面积若是结合圆锥曲线的定义,用余弦定理得出三角形边与角的关系式,再用正弦定理算面积,设而不求,往往能事半功倍,极大地减少计算量。

当∠F 1PF 2=2π时用上述解法亦可,不过用圆锥曲线定义与勾股定理,再算两直角边积的一半更简便。

如下例:例3:已知F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=2π,求△F 1PF 2的面积 解析:221)(PF PF - =4a 2=16(双曲线第一定义),而由勾股定理得20)2(22221==+c PF PF ,P F 1·P F 2=21[2212221)(PF PF PF PF --+] =21⨯(20-16)=2 ∴21PF F S ∆=21⨯P F 1·P F 2=21⨯2=12、 用分割法求面积例4:一三角形以抛物线y 2=4x 的焦点弦为一边,另一个顶点在原点,若焦点弦所 在直线的斜率为1,求此三角形的面积。

有关圆锥曲线的焦点三角形面积公式的证明及其应用

有关圆锥曲线的焦点三角形面积公式的证明及其应用

圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。

弦长与面积问题

弦长与面积问题

圆锥曲线中弦长与三角形问题 一.知识点:1.直线与椭圆,双曲线,抛物线相交与A ,B 两点,则弦长|AB|=2.(1(21.已知椭圆22221(0)x y a b a b+=>>的离心率为22,过点A (0,-b )和B (a ,0)的直线与原点的距离为36。

(1)求椭圆C 的方程;(2)设直线L 经过定点(0,1),且与椭圆交于M ,N 两点,当|MN|=324时,求直线L 的方程;2.已知椭圆E :22221(0)x y a b a b+=>>的离心率为322,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+42。

(1)求椭圆C 的方程;(2)设直线L 与椭圆E 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求△ABC 的面积的最大值; 作业:1.已知动圆过定点A (p ,0),圆心C 在抛物线y 2=2px (p>0)上运动。

圆C 与y 轴上截得的弦长为MN ,求证:三角形AMN 的面积为定值。

2.设F 1,F 2分别是椭圆E :)10(1222<<=+b by x 的左,右焦点,过F 1的直线L 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列。

(1)求|AB|长;(2)若直线L 的斜率为1,求b 的值;3.如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.4.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.5.已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点⎝⎛⎭⎪⎫ 2,22. (1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.6.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D ;(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.(第21题图)。

圆锥曲线系统班12、椭圆、双曲线的焦点三角形面积公式

圆锥曲线系统班12、椭圆、双曲线的焦点三角形面积公式

第12讲椭圆、双曲线的焦点三角形面积公式知识与方法1.如图1所示,1F 、2F 是椭圆的焦点,设P 为椭圆上任意一点,记12F PF θ∠=,则12PF F 的面积2tan2S b θ=.2.如图2所示,1F 、2F 是双曲线的焦点,设P 为双曲线上任意一点,记12F PF θ∠=,则12PF F 的面积2tan2b S θ=.典型例题【例1】设1F 、2F 是椭圆22184x y +=的两个焦点,点P 在椭圆上,1260F PF ∠=︒,则12PF F 的面积为________.【解析】由焦点三角形面积公式,122tan 4tan 302PF F S b θ==⨯︒=【答案】变式1设1F 、2F 是椭圆22218x y b+=(0b <<的两个焦点,点P 在椭圆上,1260F PF ∠=︒,且12F PF 的面积为433,则b =________.【解析】由焦点三角形面积公式,1222tan tan 30223F PF S b b b θ==︒== .【答案】2变式2设1F 、2F 是椭圆22184x y +=的焦点,点P 在椭圆上,且121cos 3F PF ∠=,则12PF F 的面积为________.【解析】设12F PF θ∠=,则21221tan 12cos cos 31tan 2F PF θθθ-∠===+,所以21tan 22θ=,由1cos 03θ=>知02πθ<<,所以024θπ<<,从而2tan 22θ=,故1222tan 422PF F S b θ==⨯=【答案】变式3设1F 、2F 是椭圆22214x y a +=()2a >的焦点,点P 在椭圆上,且1260F PF ∠=︒,则12PF PF ⋅=________.【解析】记12F PF θ∠=,则60θ=︒,12243tan4tan 3023PF F S b θ==⨯︒=,又1212121sin 2PF F S PF PF PF θ=⋅⋅=⋅ ,12433PF ⋅=,故12163PF PF ⋅=.【答案】163变式4设1F 、2F 是椭圆22142x y +=的左、右焦点,点P 在椭圆上,且123PF PF =,则12PF F 的面积为________.【解析】解法1:如图,由题意,1211223341PF PF PF PF PF PF ⎧⎧==⎪⎪⇒⎨⎨+==⎪⎪⎩⎩,易求得12F F =,由余弦定理,222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,所以1222sin 3F PF ∠=,故1212121122sin 31223PF F S PF PF F PF =⋅⋅∠=⨯⨯⨯= 解法2:设()00,P x y ,由焦半径公式,123PF PF =即为002223222x x ⎛⎫+=- ⎪ ⎪⎝⎭,解得:0x =又2200142x y +=,所以22002114x y ⎛⎫=-= ⎪⎝⎭,从而01y =,易求得12F F =1212012PF F S F F y =⋅= .【答案】【反思】不是每一道题都能很方便地代公式计算焦点三角形面积,所以掌握焦点三角形面积公式的推导方法也是有必要的.【例2】已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且1260F PF ∠=︒,则12PF F 的面积为________.【解析】由焦点三角形面积公式,1223tan 30tan2PF F b S θ===︒.【答案】变式1已知双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,点P 在C 上,且121cos 3F PF ∠=,则12PF F 的面积为________.【解析】记12F PF θ∠=,则22212222cos sin 1tan 1222cos cos 3cos sin 1tan 222F PF θθθθθθθ--∠====++,所以21tan 22θ=,由1cos 03θ=>知02πθ<<,所以024θπ<<,从而tan 22θ=,故122tan 2PF F b S θ== .【答案】变式2已知1F 、2F 是双曲线22:13y C x -=的左、右焦点,P 为双曲线C 右支上的一点,12120F PF ∠=︒,则1PF =________.【解析】由焦点三角形面积公式,1223tan 60tan2PF F b S θ===︒,又121212121sin 2PF F S PF PF F PF PF =⋅⋅∠=⋅,所以12PF ⋅=故124PF PF ⋅=,由双曲线定义,122PF PF -=,解得:11PF =+【答案】1变式3(2020·新课标Ⅲ卷)双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F 、2F ,P 是C 上一点,12F P F P ⊥,若12PF F 的面积为4,则a =()A.1B.2C.4D.8【解析】解法1:22222552ce c c a a b a b a a===⇒=⇒+=⇒=,不妨设P 在双曲线C 的右支上,则122PF PF a -=,因为12F P F P ⊥,所以2221212PF PF F F +=,故()221212122PF PF PF PF F F -+⋅=,从而2212424a PF PF c +⋅=,故22212222PF PF c a b ⋅=-=,所以12212142PF F S PF PF b =⋅== ,解得:2b =,故1a =.解法2:1222242tan 45tan2PF F b b S b b θ====⇒=︒ ,222225512c be c c a a b a a a ===⇒=⇒+=⇒==.【答案】A强化训练1.(★★★)设1F 、2F 是椭圆22154x y +=的两个焦点,点P 在椭圆上,且1230F PF ∠=︒,则12PF F 的面积为________.【解析】()122tan 60tan 45tan 4tan154tan 604548421tan 60tan 45PF F S b θ︒-︒==⨯︒=⨯︒-︒=⨯=-+︒︒【答案】8-2.(★★★)设1F 、2F 是双曲线22:145x y C -=的左、右焦点,P 为C 上一点,若12PF PF ⊥,则12PF F 的面积为________.【解析】由焦点三角形面积公式,12255tan 45tan2PF F b S θ===︒.【答案】53.(★★★)设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且121cos 3F PF ∠=-,则12PF F 的面积为________.【解析】记12F PF θ∠=,则221221tan 112cos cos tan 23321tan 2F PF θθθθ-∠==-⇒=-⇒=+,由1cos 03θ=-<知2παπ<<,所以422πθπ<<,从而tan 2θ=,故121PF F S == .【答案】4.(★★★)设1F 、2F 是椭圆22142x y +=的左、右焦点,P 是椭圆在第一象限上的一点,且1260F PF ∠=︒,则点P 的坐标为________.【解析】设()00,P x y ()000,0x y >>,一方面,122tan 2233PF F S b θ==⨯=,另一方面,12120001122PF F S F F y =⋅=⋅=0=0y =,又2200142x y +=,结合00x >可得03x =,所以点P的坐标为33⎛ ⎝⎭.【答案】26633⎛ ⎝⎭5.(★★★)已知双曲线22:163x y C -=的左、右焦点分别为1F 、2F ,点P 在C 上,且123cos 4F PF ∠=,则12PF F 的面积为________.【解析】设12F PF θ∠=,则2221tan 312cos tan 4271tan 2θθθθ-==⇒=+,因为0θπ<<,所以022θπ<<,故tan 27θ=,从而122tan 2PF F b S θ== .【答案】6.(★★★)已知双曲线22142x y -=的左、右焦点分别为1F 、2F ,双曲线上一点P 满足12PF F 的面积为2,则12PF F 的周长为________.【解析】122222121222tan190242tantan22PF F b S PF PF F F θθθθ===⇒=⇒=︒⇒+== ,又124PF PF -=,所以22212121212122242164PF PF PF PF PF PF PF PF PF PF -=+-⋅=-⋅=⇒⋅=,从而12PF PF +=,故12PF F的周长1212L PF PF F F =++=.【答案】+7.(★★★)已知1F 、2F 是双曲线22:12x C y -=的左、右焦点,P 为C 在第一象限上的一点,若12120F PF ∠=︒,则点P 的坐标为________.【解析】设()00,P x y ()000,0x y >>,一方面,12120001122PF F S F F y =⋅=⋅=,另一方面,1221tan 60tan2PF F b S θ===︒0=013y =,代入双曲线方程结合00x >可解得:0253x =,所以点P 的坐标为25133⎛⎫ ⎪⎪⎝⎭.【答案】13⎫⎪⎪⎝⎭8.(2020·新课标Ⅰ卷·★★★)设1F 、2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在双曲线C 上且2OP =,则12PF F 的面积为()A.7B.3C.52D.2【解析】如图,设(),P x y ,则222243213x y y y x ⎧+=⎪⇒=⎨-=⎪⎩,由题意,124F F =,所以12134322PF F S =⨯⨯= .解法2:如图,由题意,124F F =,12212121329032tan 45tan 2PF F b OP F F F PF S θ==⇒∠=︒⇒===︒ .【答案】B9.(2010·全国Ⅰ卷·★★★)已知1F 、2F 是双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ∠=︒,则|12PF PF ⋅=()A.2B.4C.6D.8【解析】一方面,1221tan 30tan2PF F b S θ===︒,另一方面,121212121sin 2PF F S PF PF F PF PF =⋅⋅∠=⋅ ,12PF ⋅=124PF PF ⋅=.【答案】B10.(★★★)设1F 、2F 是椭圆2214x y +=的左、右焦点,点P 在椭圆上,且123PF PF =,则12PF F 的面积为________.【解析】如图,由题意,1211223341PF PF PF PF PF PF ⎧⎧==⎪⎪⇒⎨⎨+==⎪⎪⎩⎩,易求得12F F =,由余弦定理,222121212121cos 23PF PF F F F PF PF PF +-∠==-⋅,所以12sin 3F PF ∠=,故12121211sin 3122PF F S PF PF F PF =⋅⋅∠=⨯⨯⨯ 解法2:设()00,P x y ,由焦半径公式,123PF PF =即为0023222x x ⎛⎫+=- ⎪ ⎪⎝⎭,解得:0x =又220014x y +=,所以22002143x y =-=,从而0y =,易求得12F F =,如图,1212012PF F S F F y =⋅= .【答案】。

圆锥曲线中的三角形问题(含解析)

圆锥曲线中的三角形问题(含解析)

专题12 圆锥曲线中的三角形问题一、题型选讲题型一 、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1B .2C .3D .9例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( )A .5B .5C .2413D .1913例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____.2、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .43、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P为抛物线上异于原点的任一点,过点P作抛物线的切线交y轴于点Q,证明:2∠=∠.PFy PQF ()2A,B是抛物线上两点,线段AB的垂直平分线交y轴于点()D(AB不与x轴平行),且0,4+=.过y轴上一点E作直线//6AF BFm x轴,且m被以AD为直径的圆截得的弦长为定值,求ABE△面积的最大值.一、题型选讲题型一、由面积求参数或点坐标等问题例1、(2020·浙江学军中学高三3月月考)抛物线22y px =(0p >)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N (点N 在轴上方),点E 为轴上F 右侧的一点,若||||3||NF EF MF ==,MNE S =△则p =( ) A .1 B .2C .3D .9【答案】C 【解析】设准线与x 轴的交点为T ,直线l 与准线交于R ,||||3||3NF EF MF a ===,则||||3NF EF a ==,||MF a =,过M ,N 分别作准线的垂线,垂足分别为,P Q ,如图,由抛物线定义知,||MP a =,||3NQ a =,因为MP ∥NQ ,所以||||||||PM RM QN RN =, 即||3||4a RM a RM a=+,解得||2RM a =,同理||||||||FT RF QN RN =,即||336FT aa a=,解得 3||2FT a =,又||FT p =,所以32a p =,23a p =,过M 作NQ 的垂线,垂足为G ,则||MG ===,所以1||||2MNES EF MG =⋅=△ 132a ⨯⨯=2a =,故332p a ==. 故选:C.例2、(2020·浙江高三)如图,过椭圆22221x y C a b+=:的左、右焦点F 1,F 2分别作斜率为C 上半部分于A ,B 两点,记△AOF 1,△BOF 2的面积分别为S 1,S 2,若S 1:S 2=7:5,则椭圆C 离心率为_____.【答案】12【解析】作点B 关于原点的对称点B 1,可得S 21'BOF B OF S =,则有11275A B y S S y ==,所以175A B y y =-. 将直线AB 1方程4x c =-,代入椭圆方程后,222241x y c x y a b ⎧=-⎪⎪⎨⎪+=⎪⎩, 整理可得:(b 2+8a 2)y 2﹣b 2cy +8b 4=0,由韦达定理解得12228A B cy y b a+=+,142288A B b y y b a -=+, 三式联立,可解得离心率12c e a ==. 故答案为:12. 例3、【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.题型二、与面积有关的最值问题例4、(2020·浙江温州中学高三3月月考)过点()2,1P 斜率为正的直线交椭圆221245x y +=于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP 分别平分ACB ∠,ADB ∠.则PCD ∆外接圆半径的最小值为( ) A.5B.5C .2413D .1913【答案】D 【解析】如图,先固定直线AB ,设()BM f M AM =,则()()()f C f D f P ==,其中()BPf P AP=为定值, 故点P ,C ,D 在一个阿波罗尼斯圆上,且PCD 外接圆就是这个阿波罗尼斯圆,设其半径为r ,阿波罗尼斯圆会把点A ,B 其一包含进去,这取决于BP 与AP 谁更大,不妨先考虑BP AP >的阿波罗尼斯圆的情况,BA 的延长线与圆交于点Q ,PQ 即为该圆的直径,如图:接下来寻求半径的表达式, 由()2,2AP BP r BP BQ r AP AQ AP AP AQ BP ⋅+==+=+,解得111r AP BP=-, 同理,当BP AP <时有,111r BP AP=-, 综上,111r AP BP=-; 当直线AB无斜率时,与椭圆交点纵坐标为1,1AP BP ==,则1912r =; 当直线AB 斜率存在时,设直线AB 的方程为()12y k x -=-,即21y kx k =-+, 与椭圆方程联立可得()()()22224548129610k x k k x k k ++-+--=,设()11,A x y ,()22,B x y ,则由根与系数的关系有,()()12221224821245961245k k x x k k k x x k ⎧-+=⎪+⎪⎨--⎪=⎪+⎩,211112r AP BP x ∴=-=-,注意到12x -与22x -异号,故1119r ===,设125t k =+,则11121226131919192419r ==≤⋅=,,当15169t =,即1695t =,此时125k =,故1913r ≥,又19191213>,综上外接圆半径的最小值为1913. 故选:D .例5、【2020年新高考全国△卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==.所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.例6、【2019年高考全国△卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.例7、(2020届浙江省温丽联盟高三第一次联考)已知1F ,2F 是椭圆2222:1x y C a b+=的左右焦点,且椭圆C,直线:l y kx m =+与椭圆交于A ,B 两点,当直线l 过1F 时2F AB 周长为8. (△)求椭圆C 的标准方程;(△)若0OA OB ⋅=,是否存在定圆222x y r +=,使得动直线l 与之相切,若存在写出圆的方程,并求出OAB 的面积的取值范围;若不存在,请说明理由.【答案】(△)223144x y +=;(△)221x y +=,⎡⎢⎣⎦.【解析】(△)由题意可得,22||48F A F B AB a ++==, 故2a =,又有3c e a ==,∴c = 椭圆的标准方程为223144x y +=;(△)法1:设||OA m =,||OB n =,∵0OA OB ⋅=,∴OA OB ⊥, 设点(cos ,sin )A m m θθ,点(sin ,cos )B n n θθ-,22222222cos 3sin 144cos 3sin 144m m n n θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相加得22131144m n +=+, 2222m n m n +=⋅,222AB OA OB =⋅,∴1r =,442222222111||1111n n AB m n n n n n -+=+===++---,24,43n ⎡⎤∈⎢⎥⎣⎦,∴AB ⎡∈⎢⎣⎦,OABS ⎡∈⎢⎣⎦△. 法2:()2222234136340x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, ()()22222236434131248160k m m k m k ∆=--+=-++>,1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++222444013m k k--==+, ∴221m k =+,∴1r ===,122||13AB xk=-==+当0k=时,||2AB=,当0k≠时,||AB=≤213k=时取到等号,此时243m=符合>0∆∴1,3OABS⎡∈⎢⎣⎦△.例8、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x=的焦点为F,准线为l,过点F 的直线交抛物线于A,B两点,点B在准线l上的投影为E,若C是抛物线上一点,且AC EF⊥.(1)证明:直线BE经过AC的中点M;(2)求ABC∆面积的最小值及此时直线AC的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y±-=.【解析】(1)由题意得抛物线24y x=的焦点()1,0F,准线方程为1x=-,设()2,2B t t,直线AB:1x my=+,则()1,2E t-,联立1x my=+和24y x=,可得244y my=+,显然40A By y+=,可得212,At t⎛⎫-⎪⎝⎭,因为EFk t=-,AB EF⊥,所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =, 所以直线BE 经过AC 的中点M .(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=,1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.二、达标训练1、(2020届浙江省杭州市高三3月模拟)设12,F F 是椭圆222:1(02)4x y C m m+=<<的两个焦点,00(,)P x y是C 上一点,且满足12PF F ∆则0||x 的取值范围是____. 【答案】[]0,1【解析】依题意,122F F =,所以120122PF F S y ∆=⨯=0y =,而2200214x y m +=,所以2200224124144y x m m m ⎛⎫=-=- ⎪-⎝⎭.由于02m <<,204m <<,根据二次函数的性质可知:()(]22424240,4m m m -=--+∈,所以241234m m -≤--,所以22412414x m m =-≤-,解得[]00,1x ∈.故答案为:[]0,12、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN = A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得M,3(,22N -,所以||3MN ==,故选B . 3、(2020届浙江省宁波市鄞州中学高三下期初)已知抛物线E :24y x =和直线l :40x y -+=,P 是直线上l 一点,过点P 做抛物线的两条切线,切点分别为A ,B ,C 是抛物线上异于A ,B 的任一点,抛物线在C 处的切线与PA ,PB 分别交于M ,N ,则PMN ∆外接圆面积的最小值为______. 【答案】258π【解析】设三个切点分别为222(,),(,),(,)444a b c A a B b C c ,若在点A 处的切线斜率存在,设方程为2()4a y a k x -=-与24y x =联立,得,222440,164(4)0ky y a k a k a k a --+=∆=--+=, 即222440,a k ak k a-+=∴=, 所以切线PA 方程为2202a x ay -+= ①若在点A 的切线斜率不存在,则(0,0)A , 切线方程为0x =满足①方程,同理切线,PB MN 的方程分别为2202b x by -+=,2202c x cy -+=,联立,PA PB 方程,22202202a x ay b x by ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得42ab x a b y ⎧=⎪⎪⎨+⎪=⎪⎩,即,42ab a b P +⎛⎫ ⎪⎝⎭同理,,,4242ac a c bc b c M N ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(),42a c b c b PM --⎛⎫= ⎪⎝⎭, ()(),,,4242b c a c a c b a b a PN MN ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设PMN ∆外接圆半径为R ,|||||||||PM b c PN a c MN a b =-=-=-,11||||sin ||||22PMN S PM PN MPN PM PN ∆=∠=21||||()2||||PM PN PM PN ===||||||1||||||1622a b b c a c MN PM PN R---==,||||||4PM PN MN R S ⋅⋅==08c =≥时取等号,点P在直线40,4,8422ab a b ab x y a b +-+=∴+=∴+=+,8R =∴≥8==4≥=, 当且仅当1,6,0a b c =-==或6,1,0a b c ==-=时等号成立, 此时PMN ∆外接圆面积最小为258π. 故答案为:258π.4、(2020届浙江省嘉兴市5月模拟)设点(,)P s t 为抛物线2:2(0)C y px p =>上的动点,F 是抛物线的焦点,当1s =时,54PF =.(1)求抛物线C 的方程;(2)过点P 作圆M :22(2)1x y -+=的切线1l ,2l ,分别交抛物线C 于点,A B .当1t >时,求PAB △面积的最小值.【答案】(1)2y x =(2)最小值 【解析】(1)当1s =时,5||24p PF s =+=, 所以12p =,故所求抛物线方程为2y x =. (2)点(),P s t 为抛物线2y x =上的动点,则2s t =,设过点2(,)P t t 的切线为2()x m y t t =-+, 21=, 得22222(1)2(2)(2)10(*)t m t t m t -+-+--=, 12,m m 是方程(*)式的两个根, 所以21222(2)1t t m m t -+=-,2123m m t =-, 设()()221122,,,A y y B y y ,因直线2:()l x m y t t =-+,与抛物线2:C y x =交于点A ,则212()x m y t t y x⎧=-+⎨=⎩得22110y m y m t t -+-=, 所以211ty m t t =-,即11y m t =-,同理22y m t =-,设直线()1212:AB x y y y y y =+-,则12||||AB y y =-,d =,又12122221t y y m m t t -+=+-=-, 2121223()()1t y y m t m t t -=--=-, 所以212121211|||||()|22PAB S AB d y y t t y y y y ==--++22222311t t t t t --=-⨯+--=令210u t=->,4(PAB S u u =++当且仅当2u =,即t =时,PAB S 取得最小值5、(2020届浙江省绍兴市4月模拟)如图,已知点(0,0)O ,(2,0)E ,抛物线2:2(0)C y px p =>的焦点F为线段OE 中点.(1)求抛物线C 的方程;(2)过点E 的直线交抛物线C 于, A B 两点,4AB AM =,过点A 作抛物线C 的切线l ,N 为切线l 上的点,且MN y ⊥轴,求ABN 面积的最小值.【答案】(1)24y x =;(2)【解析】(1)由已知得焦点F 的坐标为(1, 0), 2p ∴=,∴抛物线C 的方程为:24y x =;(2)设直线AB 的方程为:2x my =+,设()11,A x y ,()22,B x y ,()00,M x y ,联立方程224x my y x=+⎧⎨=⎩,消去x 得:2480y my --=, 216320m ∴∆=+>,124y y m +=,128y y =-,设直线l 方程为:()11y y k x x -=-,联立方程()1124y y k x x y x ⎧-=-⎨=⎩,消去x 得:2114440y y y x k k-+-=, 由相切得:112164440k k y x ⎛⎫∆=--= ⎪⎝⎭,112110y x k k ∴-+=, 又2114y x =,21121104y y k k ∴-+=, 21102y k ⎛⎫∴-= ⎪⎝⎭,12k y ∴=, ∴直线l 的方程为:11220x y y x -+=,由4AB AM →→=,得12034x x x +=,12034y y y +=, 将12034y y y +=代入直线l 方程,解得221121888N yy y y x +-==, 所以01212ABN N S x x y y =-⨯-△212112138248x x yy y +-=-⨯-2212121632y y y y ++=⨯-31232y y -=311832y y +=,又118y y +≥ 所以42ABN S △,当且仅当1y =±时,取到等号,所以ABN面积的最小值为6、(2020届浙江省台州市温岭中学3月模拟)如图,已知抛物线214y x =的焦点为F .()1若点P 为抛物线上异于原点的任一点,过点P 作抛物线的切线交y 轴于点Q ,证明:2PFy PQF ∠=∠. ()2A ,B 是抛物线上两点,线段AB 的垂直平分线交y 轴于点()0,4D (AB 不与x 轴平行),且6AF BF +=.过y 轴上一点E 作直线//m x 轴,且m 被以AD 为直径的圆截得的弦长为定值,求ABE △面积的最大值.【答案】()1证明见解析; ()2 【解析】()1由抛物线的方程可得()0,1F ,准线方程:1y =-,设200,4x P x ⎛⎫ ⎪⎝⎭, 由抛物线的方程可得2x y '=,所以在P 处的切线的斜率为:02x k =, 所以在P 处的切线方程为:()200042x x y x x -=-, 令0x =,可得204x y =-, 即2040,Q x ⎛-⎫ ⎪⎝⎭, 所以2014x FQ =+,而P 到准线的距离2014x d =+,由抛物线的性质可得PF d = 所以PF FQ =,PQF QPF ∠=∠,可证得:2PFy PQF ∠=∠.()2设直线AB 的方程为:y kx m =+,()11,A x y ,()22,B x y ,直线与抛物线联立24y kx mx y =+⎧⎨=⎩,整理可得:2440x kx m --=,216160k m ∆=+>,即20k m +>,124x x k +=,124x x m =-,()21212242y y k x x m k m +=++=+,所以AB 的中点坐标为:()22,2k k m +,所以线段AB 的中垂线方程为:()212(2)y k m x k k -+=--,由题意中垂线过()0,4D ,所以2224k m ++=,即222k m +=,① 由抛物线的性质可得:1226AF BF y y +=++=,所以24226k m ++=,即222k m +=,②设()0,E b ,()222114AD x y =+-,AD 的中点的纵坐标为142y +,所以以AD 为直径的圆与直线m 的相交弦长的平方为:2214442y AD b ⎡⎤+⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()()()222112114444444y y x b b y ⎡⎤-+=+--++⎢⎥⎢⎥⎣⎦()221111444434y b b y by b y b b ⎡⎤-+-+=-+-⎣⎦⎡⎤⎣⎦,要使以AD 为直径的圆截得的弦长为定值则可得3b =,时相交弦长的平方为定值12,即()0,3E所以E 到直线AB的距离为:d = 而弦长AB ==,所以1232EAB S AB d =⋅==-将①代入可得2322212ABE S k k =-+=+=设()6424472f k k k k =-+++为偶函数,0k >>的情况即可,()()()()5342222416142126722167f k k k k k k k k k k ++=---=-+=--' 令()0f k '=,6k =当06k <<,()0f k '>,()f k 单调递增;当k 6<<()0f k '<,()f k 单调递减,所以(k ∈且0k ≠上,66f f ⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为最大值9,所以ABE S的最大值为:212+=。

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题
圆锥曲线焦点三角形面积问题指的是在一个圆锥曲线上,给定焦点和一个点P 的坐标,求得由焦点和该点P构成的三角形的面积。

首先,我们需要了解圆锥曲线和焦点的概念。

圆锥曲线是指在三维空间中一个由直线与一个射线共用一个端点且直线在射线上方的几何图形。

常见的圆锥曲线有椭圆、双曲线和抛物线。

焦点是指在一个几何图形或曲线上与该图形或曲线中的点有特殊关系的点。

要计算由焦点和点P构成的三角形的面积,我们可以利用三角形的面积公式。

三角形的面积可以用其底边和高来计算。

在这个问题中,底边是焦点和点P之间的距离,高是点P到焦点所在的直线的垂直距离。

首先,我们可以使用两点间距离公式计算焦点和点P之间的距离。

假设焦点的坐标为F(x1, y1, z1),点P的坐标为P(x2, y2, z2),则焦点和点P之间的距离为
√((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。

然后,我们需要计算点P到焦点所在的直线的垂直距离。

这个垂直距离也可以被称为焦距。

焦距可以通过焦点到点P之间的线段与焦点所在的直线的垂直距离来计算。

最后,我们可以利用三角形的面积公式:面积 = 1/2 * 底边 * 高,来计算出由焦点和点P构成的三角形的面积。

需要注意的是,在计算过程中,我们要保证点P在圆锥曲线上,以确保三角形的存在。

综上所述,通过给定焦点和点P的坐标,我们可以计算出由这两 points 构成的三角形的面积。

这个问题涉及到了圆锥曲线的性质和三角形面积的计算方法,通过运用相关的几何知识,我们可以解决这个问题。

高中数学之圆锥曲线之焦点三角形面积知识点

高中数学之圆锥曲线之焦点三角形面积知识点

高中数学之圆锥曲线之焦点三角形面积知识点
什么是焦点三角形?
定义:
椭圆(双曲线)上任意一点与两个焦点所组成的三角形叫做焦点三角形,它是由焦距和焦半径构成的特别的三角形。

其中焦点三角形的面积也是一个非常重要的几何量。

怎么求焦点三角形的面积呢?先看一道例题
公式推导:
同样的方法可以也可以证明得到双曲线的焦点三角形面积公式。

公式如下:
接下来在给出关于焦点三角形顶角的一个结论:
这个结论可以借助焦点三角形面积公式的推导过程来继续说明:
实战演练:。

专题3-2 圆锥曲线中的三角形面积-(人教A版2019选择性必修第一册) (教师版)

专题3-2 圆锥曲线中的三角形面积-(人教A版2019选择性必修第一册) (教师版)

圆锥曲线中的三角形面积圆锥曲线中三角形面积的求法①焦点三角形面积椭圆x 2a2+y2b2=1的焦点三角形∆PF1F2面积S=b2tan∠P2,双曲线x 2a2−y2b2=1的焦点三角形∆PF1F2面积S=b2tan∠P2(其中点P在椭圆或双曲线上).②直线与圆锥曲线中的三角形面积(以下以椭圆为例)(1)S∆=12×底×高,适合一切题型,属于通法,但计算量会大些,如图,S∆PAB=12∙AB∙PC(其中底为弦长AB,高为点P到直线AB的距离)(2)S∆=12absinC,适合边角已知的题型;(3) 拆补法,适合三角形某一顶点在坐标轴上的题型;情况1如图,点P在x轴上,直线AB交x轴于点C,当A,B是在x轴异侧时,S∆PAB=S∆PAC+S∆PBC=12∙PC∙|y A|+12∙PC∙|y B|=12∙PC∙|y A−y B|当A,B是在x轴同侧时,S∆PAB=S∆PAC−S∆PBC=12∙PC∙|y A|−12∙PC∙|y B|=12∙PC∙|y A−y B|注:不管A,B 在x 轴同侧还是异侧,公式S ∆PAB =12∙PC ∙|y A −y B |依然成立.若点P 在y 轴类似可得S ∆PAB =12∙PC ∙|x A −x B |. 情况2 如图,点P 在x 轴上,直线AB 的倾斜角为θ, 当AB 是在x 轴异侧时,S ∆PAB =S ∆PAC +S ∆PBC =12∙PC ∙AC ∙sin (π−θ)+12∙PC ∙BC ∙sin θ=12∙PC ∙AB ∙sin θ.当AB 是在x 轴同侧时,S ∆PAB =S ∆PAC −S ∆PBC =12∙PC ∙AC ∙sin θ−12∙PC ∙BC ∙sin θ=12∙PC ∙AB ∙sin θ.注:不管A,B 在x 轴同侧还是异侧,公式S ∆PAB =12∙PC ∙AB ∙sin θ依然成立.(点在y 轴类似)【典题1】设双曲线C :x 2−y 2b 2=1(a >0 ,b >0)的左、右焦点分别为F 1 ,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则离心率e = . 【解析】方法一 由题意可知a =1, 设|PF 2|=m ,|PF 1|=n ,可得|m -n|=2 ∵△PF 1F 2的面积为4 ∴12mn =4⇒mn =8(遇到焦点三角形△PF 1F 2,想到定义和解三角形的内容) ∵F 1P ⊥F 2P ∴m 2+n 2=4c 2∴(m −n )2+2mn =4c 2⇒4c 2=4+16=20⇒c =√5∴e =ca =√5.方法二 由双曲线焦点三角形面积公式S =b 2tan∠P 2,(椭圆焦点三角形面积公式S =b 2tan∠P 2)由题意可知b 2tan45°=4,∴b =2又∵a =1,∴c =√5, ∴e =c a=√5.【典题2】已知直线l 与双曲线E :x 2a 2−y 2b 2=1(a >0 ,b >0)的两条渐近线分别交于A (x 1 ,y 1)、 B(x 2 ,y 2)两点,且x 1x 2>0,若OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4,且△AOB 的面积为2√3,则E 的离心率为 . 【解析】∵OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4,S △AOB =2√3, ∴{OA ⋅OB ⋅cos∠AOB =−412OA ⋅OB ⋅sin∠AOB =2√3,∴tan∠AOB =−√3 , ∴∠AOB =120°, 故∠AOx =60° , 又直线OA 方程为y =ba x , ∴ba =tan60°=√3,即b =√3a , ∴e =c a =2.【点拨】本题对“OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4”的处理是用数量积的定义得到OA ⋅OB ⋅cos∠AOB =−4, 而△AOB 的面积用到S △AOB =12⋅OA ⋅OB ⋅sin∠AOB 比较合理.【典题3】已知双曲线x 2a 2−y 2b 2=1的离心率为2,焦点到渐近线的距离等于√3,过右焦点F 2的直线l 交双曲线于A 、B 两点,F 1为左焦点. (1) 求双曲线的方程;(2) 若△F 1AB 的面积等于6√2,求直线l 的方程. 【解析】(1)过程略,x 2−y 23=1.(2) 方法一 设A (x 1 ,y 1) ,B (x 2 ,y 2),当直线l 的斜率不存在,则直线l 的方程x =2, 此时易得S △F 1AB =12≠6√2, 故可设直线l 的方程为y =k(x −2),由{y =k(x −2)x 2−y 23=1,得(k 2−3)x 2−4k 2x +4k 2+3=0,∵有两个交点,∴k ≠±√3,且x 1+x 2=4k 2k 2−3,x 1x 2=4k 2+3k 2−3,∴|AB |=√1+k 2∙√(x 1+x 2)2−4x 1x 2=√1+k 2∙6√k 2+1k 2−3=6(k 2+1)k 2−3, ∵F 1(−2 ,0)到直线l 的距离d =√1+k 2,∴△F 1AB 的面积S =12∙d ∙|AB |=12∙√1+k 2∙6(k 2+1)k 2−3=12|k |∙√k 2+1k 2−3=6√2,(利用三角形面积公式S ∆=12×底×高) ∴k 4+8k 2−9=0,解得k =±1, ∴所以直线l 的方程为y =±(x −2). 方法二 设A(x 1 ,y 1) ,B(x 2 ,y 2),同方法一可得:k ≠±√3,且x 1+x 2=4k 2k 2−3,x 1x 2=4k 2+3k 2−3,∴|y 1-y 2|=|k(x 1-x 2)|=|k |∙√(4k 2)2−4(k 2−3)(4k 2+3)|k 2−3|=6|k|∙√k 2+1|k 2−3|,∴△F 1AB 的面积S =12|F 1F 2||y 1-y 2|=12∙|k|∙√k 2+1|k 2−3|=6√2,(由于点F 1在x 轴,利用S =12|F 1F 2||y 1-y 2|)化简得k 4+8k 2-9=0,解之得k 2=1,∴k =±1, 得直线l 的方程为y =±(x -2). 【点拨】① 注意分类讨论直线l 的斜率是否存在;② 因为直线过双曲线内的点,故不要看判别式∆是否大于0,但要注意k 2-3≠0⇒k ≠±√3;③ 第二问方法一是利用三角形面积公式S ∆=12×底×高,得S =12∙|AB |∙d ,其中以弦长AB 为底,点F 1到直线AB 的距离为高;方法二利用分拆三角形的方法得S =12|F 1F 2||y 1-y 2|,此时要理解“不管AB 是在x 轴同侧还是异侧,公式依然成立”.【典题4】过抛物线C :y 2=2px(p >0)的焦点F 且倾斜角为π3的直线交抛物线于A 、B 两点,交其准线于点C ,且|AF|=|FC| ,|BC|=2. (1)求抛物线C 的方程;(2)直线l 交抛物线C 于D 、E 两点,且这两点位于x 轴两侧,与x 轴交于点M , 若OD →•OE →=4,求S △DFO +S △DOE的最小值.【解析】(1)过点A 作抛物线准线的垂线,垂足为A 1,过点B 作准线的垂线,垂足为 B 1, 设准线与x 轴交于点G ,如图所示,∵∠AFx =∠CBB 1=π3,BC =2,∴BB 1=1,∴BF =1,又点F 为AC 的中点, ∴AF =CF =BC +BF =3,∴|GF|=12|AA 1|=12|AF|=32,∴p =32,所以抛物线C 的方程为y 2=3x .(注意抛物线定义和平几知识的运用) (2)设 D(x 1 ,y 1) ,E(x 2 ,y 2) , 设y 1>0 ,y 2<0, l DE :x =my +t ,(这样设方程计算简便些)联立得方程组 {x =my +ty 2=3x ,得 y 2-3my -3t =0,∴{y 1+y 2=3m y 1y 2=−3t , ∴OD →⋅OE →=x 1x 2+y 1y 2=y 123⋅y 223+y 1y 2=4,(曲线代换:利用抛物线方程消“x 1x 2”) ∴y 1y 2=3(舍去)或 y 1y 2=-12, ∴-3t =-12,∴t =4,即M(4 ,0),∴S △DFO +S △DOE =12|OF|⋅y 1+12|OM|⋅(y 1−y 2)=38y 1+2(y 1−y 2)=198y 1+(−2y 2)⩾2√198×2|y 1y 2|=2√194×12=2√57,(当且仅当198y 1=−2y 2,即y 1=8√5719,y 2=−√572时,取到等号) ∴S △DFO +S △DOE 的最小值为2√57.【点拨】在抛物线上设直线方程为l DE :x =my +t 较为常见,同时也配合上三角形面积S △DFO +S △DOE =12|OF|⋅|y 1|+12|OM|⋅|y 1−y 2|.【典题5】 已知A 、B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,B(2 ,0),过椭圆C 的右焦点F 的直线交椭圆于点M ,N ,交直线x =4于点P ,且直线PA 、PF 、PB 的斜率成等差数列,R 和Q 是椭圆上的两动点,R 和Q 的横坐标之和为2,RQ 的中垂线交x 轴于T 点 (1)求椭圆C 的方程;(2)求△MNT 的面积的最大值.【解析】(1)由题意知a =2,A(−2 ,0),设P (4 ,y 0) ,F(c ,0),∴k PA =y 06 ,k PB =y 02 ,k PF =y 04−c, 依题意可知2y 04−c=y 06+y 02,解得c =1 ,∴b 2=a 2−c 2=3,∴椭圆C 的方程x 24+y 23=1.(2)设R (x 1 ,y 1) ,Q(x 2 ,y 2),∵R 和Q 的横坐标之和为2 , ∴x 1+x 2=2, ∵R 、Q 均在椭圆上, ∴x 124+y 123=1 ① x 224+y 223=1 ② (点差法)①−②得 y 1−y 2x 1−x 2=−32(y1+y 2),设T(t ,0),由中垂线性质得TR =TQ ,即√(t −x 1)2+y 12=√(t −x 2)2+y 22,化简得2t =2+y 12−y 22x 1−x 2=2+(y 1+y 2)y 1−y 2x 1−x 2=2−32=12,∴t =14, 即T(14,0). 设M (x 3 ,y 3) ,N(x 4 ,y 4),直线MN:x =my +1与椭圆联立可得(3m 2+4)y 2+6my −9=0, ∴y 3+y 4=6m 3m 2+4 ,y 3y 4=−93m 2+4,(因为直线MN 过椭圆内一点F ,故m 可取全体实数R ,不需要考虑判别式∆>0) ∴|y 3−y 4|2=(y 3+y 4)2−4y 3y 4=36m 2(3m 2+4)2+363m 2+4=144m 2+1(3m 2+4)2,令n =m 2+1≥1,(使用换元法降次,化难为简,函数思想注意自变量的取值范围) 则|y 3−y 4|2=144∙n(3n+1)2=144∙19n+1n+6∵y =9n +1n 在[1 ,+∞)是递增的,∴y min =10,(由对勾函数图像易得,由于n ∈[1 ,+∞)不能用基本不等式) ∴|y 3−y 4|max 2=144∙110+6=9,即|y 3−y 4|max =3,故S max =12∙FT ∙|y 3−y 4|max =12×34×3=98. 【点拨】① “R 和Q 的横坐标之和为2”这条件可想到“中点弦问题”的点差法,避免设直线RQ 方程导致计算量增大; ② 本题最重要的想法是求△MNT 的面积,用到了公式S =12∙FT ∙|y 3−y 4|,同时设直线方程为MN:x =my +1,联立方程时消x 得到y 的一元二次方程较易得到|y 3−y 4|的表达式,大大减少了计算量,也避免直线斜率是否存在的分类讨论;④ 求函数形如y =a 1x 2+b 1x+c1a 2x 2+b 2x+c 2最值问题,其中涉及对勾函数或基本不等式、换元法等内容,同时要注意自变量的取值范围,这是常考的题型. 巩固练习1(★★) 设F 1 ,F 2是椭圆x 29+y 26=1的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则△F 1PF 2的面积等于 . 【答案】 2√3【解析】由|PF 1|+|PF 2|=6,且|PF 1|:|PF 2|=2:1, ∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=2√9−6=2√3 在△PF 1F 2中,cos ∠F 1PF 2=42+22−(2√3)22×4×2=12,∴sin∠F 1PF 2=√32∴S F 1F 2P =12|PF 1||PF 2|sin∠F 1PF 2=2√32(★★) 过双曲线x 23−y 2=1的右焦点F ,作倾斜角为60°的直线l , 交双曲线的渐近线于点A 、B ,O 为坐标原点,则△OAB 的面积为 . 【答案】3√32【解析】不妨设点A 在第一象限,点B 在第四象限,因为∠OFB =60°, 双曲线x 23−y 2=1的渐近线方程:y =±√33x , 所以∠AOF =30°,所以∠FOB =30°,所以∠OBA =∠OBF =90°,所以|OB|=|OF|cos30°=√3.又∠AOB =60°,则∠OAB =30°,所以|OA|=2|OB|=2√3,所以|AB|=3, 从而△OAB 的面积为:12⋅|OA||OB|sin60°=3√32. 故选:C .3 (★★) 抛物线C :y 2=8x 的焦点为F ,N 为准线上一点,M 为y 轴上一点,且NM →⋅NF →=0,若线段MF 的中点E 在抛物线C 上,则△MNF 的面积为 . 【答案】 6√2【解析】由抛物线C :y 2=8x 可得焦点F(2,0),准线方程为x =-2 由题意设N(-2,m),M(0,n),设n >0,MF 的中点E(1,n2),因为E 在抛物线C 上,所以n 24=8×1,所以n =4√2,① 因为:NM →=(2,n -m),NF →=(4,-m),又NM →⋅NF →=0,所以2×4-m(n -m)=0,即m(n -m)=8②, ① 代入②可得m =2√2,所以S △NMF =S △MFO +S 梯形NN ′OM -S △NN ′F=12×2×4√2+12(4√2+2√2)×2−12×4×2√2=6√24 (★★) 已知双曲线C:x 2a 2−y 2b 2=1(a >0 ,b >0)的离心率为√5,虚轴长为4. (1)求双曲线的标准方程;(2)过点(0 ,1),倾斜角为45°的直线l 与双曲线C 相交于A 、B 两点,O 为坐标原点,求∆OAB 的面积. 【答案】 (1) x 2−y 24=1 (2) 43【解析】(Ⅰ)依题意可得{ca=√5 2b=4c2=a2+b2,解得a=1,b=2,c=√5,∴双曲线的标准方程为x2−y24=1.(Ⅰ)直线l的方程为y=x+1设A(x1,y1),B(x2,y2)由{y=x+1x2−y24=1可得3x2−2x−5=0,由韦达定理可得x1+x2=23,x1x2=−53即|AB|=√1+k2∙√(x1+x2)2−4x1x2=√2∙√49+203=8√23原点到直线l的距离为d=√22于是S∆OAB=12∙|AB|∙d=12∙8√23∙√22=43∴∆OAB的面积为43.5(★★) 椭圆C:x2a2+y2b2=1(a>b>0)过点A(1 ,32),离心率为12,左、右焦点分别为F1 ,F2,过F1的直线交椭圆于C ,D两点.(1)求椭圆C的方程;(2)当△F2CD的面积为12√27时,求直线的方程.【答案】(1)x24+y23=1(2)x-y+1=0或x+y+1=0【解析】(1)∵椭圆C:x 2a2+y2b2=1(a>b>0)过点A(1,32),∴1a2+94b2=1①,又∵离心率为12,∴ca=12, ∴b2a2=34②,联立①②得a2=4,b2=3.∴椭圆的方程为:x24+y23=1(2)①当直线的倾斜角为π2时,取C(−1,32),D(−1,−32).S△ABF2=12|CD|•|F1F2|=12×3×2≠12√27,不适合题意.②当直线的倾斜角不为π2时,设直线方程l:y=k(x+1),代入x 24+y23=1得:(4k2+3)x2+8k2x+4k2-12=0设C(x1,y1),D(x2,y2),则x1+x2=−8k24k2+3,x1x2=4k2−124k2+3,∴|CD|=√(1+k2)[(x1+x2)2−4x1x2]=√(1+k2)[64k4(4k2+3)2−4(4k2−12)4k2+3]=12(1+k2)4k2+3.点F2到直线l的距离d=√1+k2∴S△ABF2=12|AB|•d=12|k|√1+k24k2+3=12√27,化为17k4+k2-18=0,解得k2=1,∴k=±1,∴直线方程为:x-y+1=0或x+y+1=0.6(★★★)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1 ,F2,线段OF1 ,OF2的中点分别为B1 ,B2,且△AB1B2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B1作直线交椭圆于P ,Q两点,使PB2⊥QB2,求△PB2Q的面积.【答案】(1)e=25,x220+y24=1(2)169√10【解析】(Ⅰ)设椭圆的方程为x 2a2+y2b2=1(a>b>0),F2(c,0)∵△AB1B2是的直角三角形,|AB1|=|AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即b=c2∵c2=a2-b2,∴a2=5b2,c2=4b2,∴e=ca =25√5在△AB1B2中,OA⊥B1B2,∴S=12|B1B2||OA|=c2⋅b=b2∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为x220+y24=1;(Ⅰ)由(Ⅰ)知B1(-2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my-2代入椭圆方程,消元可得(m2+5)y2-4my-16=0①设P(x1,y1),Q(x2,y2)∴y1+y2=4mm2+5,y1y2=−16m2+5∵B 2P →=(x 1−2,y 1),B 2Q →=(x 2−2,y 2) ∴B 2P →⋅B 2Q →=(x 1−2)(x 2−2)+y 1y 2=−16m 2−64m 2+5∵PB 2⊥QB 2,∴B 2P →⋅B 2Q →=0 ∴−16m 2−64m 2+5=0,∴m =±2当m =±2时,①可化为9y 2±8y -16=0, ∴|y 1-y 2|=√(y 1+y 2)2−4y 1y 2=89√10 ∴△PB 2Q 的面积S =12|B 1B 2||y 1-y 2|=12×4×89√10=169√10.7 (★★★) 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的焦点, 点A(0 ,-2),直线AF 的斜率为2√33,O 为坐标原点.(1)求椭圆C 的方程;(2)设过点A 的直线与C 相交于P 、Q 两点,当△OPQ 的面积最大时,求l 的方程.【答案】(1)x 24+y 2=1 (2) y =±√72x -2【解析】(1)设F(c,0),由题意k AF =2c =2√33, ∴c =√3,又∵离心率ca =√32,∴a =2,∴b =√a 2−c 2=1,椭圆C 的方程为x 24+y 2=1;(2)由题意知,直线的斜率存在,设直线的斜率为k ,方程为y =kx -2, 联立直线与椭圆方程:{x 24+y 2=1y =kx −2,化简得:(1+4k 2)x 2-16kx +12=0,由△=16(4k 2-3)>0,∴k 2>34,设P(x 1,y 1),Q(x 2,y 2),则 x 1+x 2=16k1+4k 2,x 1x 2=121+4k 2,∴|PQ|=√1+k 2|x 1−x 2|=√1+k 2⋅4√4k 2−31+4k 2,坐标原点O到直线的距离为d=√k2+1S△OPQ=12√1+k2∙4√4k2−31+4k2∙√k2+1=4√4k2−31+4k2,令t=√4k2−3(t>0),则S△OPQ=4tt2+4=4t+4t,∵t+4t ≥4,当且仅当t=4t,即t=2时等号成立,∴S△OPQ≤1,故当t=2,即√4k2−3=2,k2=74>34,∴k=±√72时,△OPQ的面积最大,此时直线的方程为:y=±√72x-2.8(★★★★) 已知双曲线C的一个焦点为(−√5 ,0),且过点Q(2√5 ,2).如图,F1,F2为双曲线的左、右焦点,动点P(x0 ,y0)(y0≥1)在C的右支上,且∠F1PF2的平分线与x轴、y轴分别交于点M(m ,0)(−√5<m<√5)、N,设过点F1 ,N的直线l与C交于D ,E两点.(1) 求C的标准方程;(2) 求△F2DE的面积最大值.【答案】(1)x24−y2=1(2) 4√30【解析】(Ⅰ)知双曲线的左、右焦点分别为F1(−√5,0),F2(√5,0),又∵双曲线过点Q(2√5,2),∴2a=||QF1|−|QF2||=√(2√5+√5)2+(2−0)2−√(2√5−√5)2+(2−0)2=4,解得a=2,b=√5−4=1,则双曲线C的标准方程为x 24−y2=1;(Ⅰ)由F1、F2为C 的左右焦点,F1(−√5,0),F2(√5,0),直线PF1方程为y=0x+√5+√5),直线PF2方程为y=0x−√5−√5),即直线PF1方程为y0x-(x0+√5)y+√5y0=0,直线PF2方程为y0x-(x0−√5)y−√5y0=0,由点M(m,0)在∠F1PF2的平分线上,则点M到直线PF1与到直线PF2的距离相等,故0√5y0√y02+(x0+√5)2=0√5y0√y02+(x0−√5)2由−√5<m <√5,y 0≥1,以及y 02=14x 02-1,解得x 0≥2√2,∴y 02+(x 0+√5)2=54x 02+2√5x 0+4=(√52x 0+2)2,∴√5+m √52x 0=√5−m √52x 0m =4x 0,即M(4x 0,0),直线PM 的方程为:y −y 0−0x 0−4x 0(x −4x 0),令x =0,得y =−4y 0x 02−4=−1y 0,故点N(0,−1y 0),∴k NF 1=0+1y 0−√5=√5y 0由{y =√5y +√5)x 2−4y 2=4,消去x 得(5y 02-4)y 2+10y 0y +1=0,设D(x 1,y 1),E(x 2,y 2),则y 1+y 2=−10y 05y2−4,y 1y 2=15y2−4,∴|y 1-y 2|=√(y 1+y 2)2−4y 1y 2=4√5y 02+1|5y 02−4|,∴△F 2DE 的面积S =S △F 1EF 2−S △F 1DF 2=12|F 1F 2|×|y 1-y 2|=12×2√5×4√5y 02+1|5y 02−4|=4√5√t +5t,设5y 02-4=t,∵y 0≥1 ∴t ≥1,则△F 2DE 的面积S =4√5•√t+5t=4√5×√5t 2+1t =4√5×√5(1t +110)2−120,∴t =1时,即P 为(2√2,1)时,△F 2DE 的面积最大值为4√30.。

由一道题谈求解圆锥曲线中三角形面积问题的思路

由一道题谈求解圆锥曲线中三角形面积问题的思路

产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产探索探索与与研研究究圆锥曲线中三角形的面积问题通常较为复杂,且解题时的运算量较大.这类问题侧重于考查同学们的运算和逻辑思维能力.下面结合一道例题,谈一谈圆锥曲线中三角形的面积问题的解法.例题:已知斜率为的直线l 过点M (0,3),交椭圆x 24+y 23=1于A ,B 两点,求三角形AOB 的面积.一、直接法直接法是指根据题意,利用相关的公式、定理、定义等直接求解.在运用直接法求解圆锥曲线中三角形的面积问题时,只需根据已知条件,以及三角形的位置、形状求得三角形的底边长、高线长、角的大小,利用三角形的面积公式S=12×底×高、S =12ab sin θ,就可以直接求得问题的答案.解法1.设A (x 1,y 1),B (x 2,y 2),由题意知直线AB 的方程为x =+3,联立直线和椭圆的方程,得ìíîïïïïx =+3,x 24+y 23=1.消去x ,得116y 2-32y +5=0,由韦达定理得y 1+y 2=11y 1y 2=3011.根据弦长公式得AB =1+k 2||y 1-y 2=∙()y 1+y 22-4y 1y 2=65,由点到直线的距离公式得O 到AB 的距离为:d =3,可得三角形AOB 的面积为S =12×65×3.我们先将直线与椭圆的方程联立;然后根据韦达定理和弦长公式求得弦AB 的长;再根据点到直线的距离公式求得O 到AB 的距离,即可根据三角形的面积公式S =12×底×高,直接求得三角形AOB 的面积.二、割补法割补法是解答几何图形的面积问题的重要方法.运用割补法求解圆锥曲线中三角形的面积问题,通常要将不规则的图形分割、填补成规则的几何图形,如三角形、梯形、平行四边形等,以运用规则图形的性质、面积公式求圆锥曲线中三角形的面积.解法2.由解法1知y 1+y 2y 1y 2=3011.将x 轴作为分割线,把三角形OAB 分割成两个三角形OPA 和OPB ,可得直线与x 轴的交点P,即OP =,则S =S △OPA +S △OPB =12×OP ×|y 1-y 2|=.通过观察图形并分析,很容易求得OP 以及|y 1-y 2|,于是采用割补法,将三角形OAB 分割成两个三角形OPA 和OPB.再根据三角形的面积公式求两个三角形的面积之和,就能快速求得问题的答案.三、利用海伦公式海伦公式为:S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2.该公式主要用于求三角形的面积.在解题时,常需利用两点间的距离公式、弦长公式、点到直线的距离公式、勾股定理、正余弦定理分别求得三角形的边长,再将三边的边长代人公式中进行求解.解法3.由解法1知y 1+y 2y 1y 2=3011.由两点之间的距离公式可得OA =x 12+y 12,OB =x 22+y 22,AB =(x1-x 2)2+(y 1-y 2)2,代入即可算出S .海伦公式是一个拓展公式,同学们在使用前要对其作具体的说明.运用海伦公式求解圆锥曲线中三角形的面积问题,往往能简化运算.可见,圆锥曲线中三角形的面积问题的解法较多.但需注意根据题意和三角形的形状选用合适的面积公式和距离公式,这样才能规避繁琐的运算,提升解题的效率.(作者单位:华东师范大学盐城实验中学)47Copyright ©博看网. All Rights Reserved.。

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

第18讲 三角形面积公式的坐标形式知识与方法公式1:设点()11,A x y ,()22,B x y ,O 为原点,则122112OABS x y x y =−. 公式2:设点()11,A x y ,()22,B x y ,()33,C x y , 则()()()()2131312112ABCSx x y y x x y y =−−−−−. 典型例题【例题】在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,则OAB 的面积为______.【解析】解法1:如图,易求得OA OA 的方程为2 0x y −=,所以点B 到直线OA 的距离d ==,从而1722OABS==解法2:()17231122OABS =⨯−−⨯=. 【答案】72变式1 在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,()1,1C −,则ABC 的面积为______.【解析】解法1:直线AC 的斜率()11221k −−==−,所以直线AC 的方程为()122y x −=−,即230x y −−=,从而点B 到直线AC 的距离d =,又AC ==,所以11422ABCSAC d =⋅==.解法2:如图,将A 、B 、C 三点同时向左移1个单位,向上移1个单位,则C 移到原点,A 、B 分别移到()1,2A ',()2,4B '−, 所以()1142242ABCOA B SS''==⨯−−⨯=. 【答案】4 【反思】当三角形的三个顶点都不在原点时,可以通过平移转化为有一个顶点在原点的情形来计算面积.变式2 在平面直角坐标系xOy 中,已知A 、B 为抛物线2:2C y x =上的两点,若OA OB ⊥,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠),设()11,A x y ,()22,B x y ,联立22x my ty x=+⎧⎨=⎩消去x 整理得:2220y my t −−=,判别式()242m t ∆=+, 由韦达定理,122y y t =−,所以222121222y y x x t =⋅=,因为OA OB ⊥,所以121221OA OB y y k k x x t⋅=⋅=−=−,从而2t =,满足0∆>,故直线AB 过定点()2,0D ,所以1211124222OABSOD y y OD =⋅−=⋅=⨯=, 当且仅当0m =时取等号,所以OAB 的面积的最小值为4.解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为1y x k=−,联立22y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或222x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以222,A k k ⎛⎫ ⎪⎝⎭,将k 换成1k −即得()22,2B k k −,所以()2212222222242OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当22k k=,即1k =±时取等号,故OAB 的面积的最小值为4. 解法3:设()211A y,()222B y ,则由题意,1222121221y y y y ⋅==−,所以122y y =−,212y y =−,从而()2212211212111112242OABSy y y y y y y y ⎫=−=−=+=+≥=⎪⎪⎭ 当且仅当112y y =,即1y =时取等号,故OAB 的面积的最小值为4. 【答案】4强化训练1.(★★)在平面直角坐标系xOy 中,已知点()1,0A ,()2,2B ,()1,3C −,则ABC 的面积为______.【解析】如图,()()()()172130112022ABCS=⨯−⨯−−−−⨯−=.【答案】722.(★★★)设直线:22l y x =−与抛物线2:4C y x =相交于A 、B 两点,若点()0,1D ,则DAB 的面积为______.【解析】解法1:如图,设()11,A x y ,()22,B x y ,联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=,不难发现直线l 过抛物线C 的焦点F ,所以1225AB x x =++=, 而点D 到直线l 的距离d ==11522DABSAB d =⋅=⨯=. 解法2:如图,由题意,可设()11,22A x x −,()22,22B x x −, 联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=判别式()234115∆=−−⨯⨯=, 所以()()()()12211213302210221222DABSx x x x x x =−−−−−−−=−==.3.(★★★★)在平面直角坐标系xOy 中,已知A 、B 为抛物线2:4C y x =上的两点,若直线OA 、OB 的斜率之积等于2−,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠,设()11,A x y ,()22,B x y ,联立24x my t y x=+⎧⎨=⎩消去x 整理得:2440y my t −−=,判别式()216m t ∆=+,由韦达定理,124y y m +=,124y y t =−,所以222121244y y x x t =⋅=,故直线OA 、OB 的斜率之积为12124y y x x t⋅=−,由题意,42t−=−,故2t =,满足0>,从而直线AB 过定点()2,0D ,故1211122212OABSOD y y OD =⋅−=⋅⋅=⨯= 当且仅当0m =时取等号,所以OAB的面积的最小值为解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为2y x k=−,联立24y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或244x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以244,A k k ⎛⎫ ⎪⎝⎭,将k 换成2k −即得()2,2B k k −,所以()22144442222OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当42k k=,即k =OAB的面积的最小值为 解法3:设()211,2A y y ,()222,2B y y ,则由题意,122112122242y y y y y y ⋅==−,所以122y y =−,212y y =−,从而 ()22122112121111122222222OABSy y y y y y y y y y y y ⎛⎫=⋅−⋅=−=+=+≥⨯= ⎪ ⎪⎝⎭当且仅当112y y =,即1y =时取等号,故OAB的面积的最小值为【答案】。

数学复习:圆锥曲线双变量型三角形面积最值问题

数学复习:圆锥曲线双变量型三角形面积最值问题

最值问题——数学复习:圆锥曲线双变量型三角形面积最值问题构造函数最值问题的基本解法有几何法和代数法:几何法是根据已知的几何量之间的相互关系、平面几何和解析几何知识加以解决的(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等);代数法是建立求解目标关于某个或两个变量的函数,通过求解函数的最值普通方法、基本不等式方法、导数方法等解决的.【例题选讲】[例1] (2020·新全国Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.[规范解答] (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立{x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×16(3m 2-48)=0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离,即d+由两点之间的距离公式可得|AM |所以△AMN 的面积的最大值为12×318.[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b>0)的离心率为12,点M在椭圆C 上.(1)求椭圆C 的方程;(2)若不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.[规范解答] (1)由椭圆C :x 2a 2+y2b 2=1(a>b >0)的离心率为12,点M在椭圆C 上,得{c =1,1,a 2=b 2+c 2,解得{a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)易得直线OM 的方程为y =12x .当直线l 的斜率不存在时,AB 的中点不在直线y =12x 上,故直线l 的斜率存在.设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2,由y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2,所以AB 的中点N (-4km3+4k 2,3m 3+4k 2),因为N 在直线y =12x 上,所以-4km3+4k 2=2×3m 3+4k 2,解得k =-32,所以Δ=48(12-m 2)>0,得-mm ≠0,|AB |2-x 1|又原点O 到直线l 的距离d所以S △OAB =12×当且仅当12-m 2=m 2,即m =m m ≠0,所以△OAB [例3] 已知平面上一动点P 到定点F0)的距离与它到直线x P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 的面积的最大值.[规范解答] (1)设P (x ,y ),化简,得x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立{y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简,得m 2<4k 2+1, ①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km (-8km 4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54, ②|MN |1-x 2|∵原点O 到直线l 的距离d ∴S △MON =12|MN|·d =12设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12=12,∴当1t =12,即k =±12时,△MON 的面积取得最大值为1.[例4] 已知动圆过定点F (0,14),且与定直线l :y =-14相切.(1)求动圆圆心的轨迹曲线C 的方程;(2)若点A (x 0,y 0)是直线x -y -1=0上的动点,过点A 作曲线C 的切线,切点记为M ,N ,求证:直线MN 恒过定点,并求△AMN 面积S 的最小值.[规范解答] (1)根据抛物线的定义,由题意可得,动圆圆心的轨迹C 是以点F (0,14)为焦点,以定直线l :y =-14为准线的抛物线.设抛物线C :x 2=2py (p >0),因为点F (0,14)到准线l :y =-14的距离为12,所以p =12,所以圆心的轨迹曲线C 的方程为x 2=y .(2)证明:因为x 2=y ,所以y ′=2x ,设切点M (x 1,y 1),N (x 2,y 2),则x 21=y 1,x 22=y 2,则过点M (x 1,y 1)的切线方程为y -y 1=2x 1(x -x 1),即y =2x 1x -x 21,即y =2x 1x -y 1.同理得过点N (x 2,y 2)的切线方程为y =2x 2x -y 2.因为过点M ,N 的切线都过点A (x 0,y 0),所以y 0=2x 1x 0-y 1,y 0=2x 2x 0-y 2,所以点M (x 1,y 1),N (x 2,y 2)都在直线y 0=2xx 0-y 上,所以直线MN 的方程为y 0=2xx 0-y ,即2x 0x -y -y 0=0.又因为点A (x 0,y 0)是直线x -y -1=0上的动点,所以x 0-y 0-1=0,所以直线MN 的方程为2x 0x -y -(x 0-1)=0,即x 0(2x -1)+(1-y )=0,所以直线MN 恒过定点(12,1).联立{2x 0x -y -y 0=0,y =x 2,得x 2-2x 0x +y 0=0,又x 0-y 0-1=0,所以x 2-2x 0x +x 0-1=0,则Δ=4x 20-4(x 0-1)>0,x 1+x 2=2x 0,x 1·x 2=x 0-1,所以MN又因为点A (x 0,y 0)到直线2x 0x -y -y 0=0的距离为d|2x 0·x 0-y 0-y 0||2x 20-2x 0-1|2|x 20-x 0+1|所以S =12MN·d20-0+x 20-x 0+1|.令tS =2t 3所以当点A 的坐标为(12,-12)时,△AMN 的面积S[例5] 已知抛物线Γ:x 2=2py (p >0),直线y =2与抛物线Γ交于A ,B (点B 在点A 的左侧)两点,且|AB |=(1)求抛物线Γ在A ,B 两点处的切线方程;(2)若直线l 与抛物线Γ交于M ,N 两点,且M ,N 的中点在线段AB 上,MN 的垂直平分线交y 轴于点Q ,求△QMN 面积的最大值.[规范解答] (1)由x 2=2py,令y =2,得x =p =3,即x 2=6y .由y =x 26,得y ′=x3,故y ′|x =所以在A 点的切线方程为y -2x -,即2x-0;同理可得在B 点的切线方程为2x +0.(2)由题意得直线l 的斜率存在且不为0,故设l :y =kx +m ,M (x 1,y 1),N (x 2,y 2),由x 2=6y 与y =kx +m 联立,得x 2-6kx -6m =0,又Δ=36k 2+24m >0,故x 1+x2=6k ,x 1x 2=-6m ,故|MN |又y 1+y 2=k (x 1+x 2)+2m =6k 2+2m =4,所以m =2-3k 2,所以|MN |=由Δ=36k 2+24m >0k k ≠0.因为M ,N 的中点为(3k ,2),所以M ,N 的垂直平分线方程为y -2=-1k (x -3k ),令x =0,得y =5,即Q (0,5),所以点Q 到直线kx -y +2-3k 2=0的距离d2所以S △QMN =12·2令1+k 2=u ,则k 2=u -1,则1<u <73,故S △QMN =设f (u )=u 2(7-3u ),则f ′(u )=14u -9u 2,结合1<u <73,令f ′(u )>0,得1<u <149;令f ′(u )<0,得149<u <73,所以当u =149,即k =(S △QMN )max =【对点训练】1.如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.1.解析 (1)由{y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA → +OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以{-2pk =-4,-2pk 2-4=-12,解得{p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d----由{y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |所以△ABP 面积的最大值为52=2.椭圆C :x 2a2+y 2b 2=1(a >b >0)(1)求椭圆C 的方程;(2)设斜率存在的直线l 与椭圆C 交于A ,B 两点,坐标原点O 到直线l△AOB 面积的最大值.2.解析 (1)设椭圆的半焦距为c ,依题意知{ca =a∴c b =1,∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =kx +m .|m |m 2=34(k 2+1).把y =kx+m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0.Δ=36k 2m 2-4(3k 2+1)(3m 2-3)=36k 2-12m 2+12>0.∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)[36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1]=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4.当且仅当9k 2=1k 2,即k =3k =0时,|AB||AB |max =2.∴当|AB |最大时,△AOB 的面积取得最大值S =12×|AB |max223.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.(1)求椭圆E 的方程;(2)若不过原点O 的直线l 与椭圆交于A ,B 两点,求△OAB 面积的最大值.3.解析 (1)由题意知{bc =a -c =1,又a2=b 2+c 2,所以a =2,b 所以椭圆E 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =kx +m (m ≠0),代入椭圆方程,整理,得(4k 2+3)x 2+8kmx +4m 2-12=0.由Δ>0,得4k 2-m 2+3>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+3,x 1·x 2=4m 2-124k 2+3.于是|AB |3又坐标原点O到直线l 的距离d |m |所以△OAB 的面积S =12·|AB |·d =m因为|m33≤m 2+(4k 2-m 2+3)24k 2+3=12,所以S =12·|AB |·d当直线l 的斜率不存在时,设其方程为x =t ,同理可求得S =12·|AB |·d =12|t综上,△OAB 4.已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM → .(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.4.解析 (1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2,所以P 2)或P (-2),由PF → =3FM →,得M (,23)或M ,23).(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由{y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 中点M 的坐标为(2k ,2k 2+m ).由PF → =3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以{x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |点F (0,1)到直线AB 的距离为d |m -1|所以S △ABP =4S △ABF =8|m -记f (m )=3m 3-5m 2+m +1(-13<m ≤43),令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1,可得f (m )在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数,又f(19)=256243>f (43)=59.所以当m =19时,f (m )取到最大值256243,此时k =所以△ABP。

【市级公开课】《圆锥曲线中的三角形面积问题》教学设计

【市级公开课】《圆锥曲线中的三角形面积问题》教学设计

人教A版高中数学高三一轮复习立足基础,提升时效——圆锥曲线中的三角形面积问题授课学生:高三1班(高三文科班)一、教学内容分析近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长、定值、面积等。

分析这类问题,往往利用数形结合、函数与方程、化归与转化等思想和“设而不求”的方法及韦达定理等。

本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探索、敢于创新的精神,进一步提高学生“应用数学”的水平.二、预测高考会出现1道关于直线与圆锥曲线的位置关系的综合题。

三、教学目标1.会选择合理的方法求圆锥曲线中三角形面积。

2.能利用函数与方程、数形结合、转化与化归等思想解决圆锥曲线中的三角形面积问题。

四、教学重难点1.教学重点:掌握圆锥曲线中三角形面积的计算方法。

2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力。

五、教学策略选择自主学习、小组讨论法、师生互动教学流程教师活动学生活动设计意图环节一:环节二:一.解法回顾前几节课我们复习了直线与圆锥曲线的位置关系,以及直线与圆锥曲线相交的弦长问题。

这节课我们一起来探究圆锥曲线中的三角形面积问题(板书课题)。

下面请一位同学来谈谈他平时是怎样解答<<解析几何>>这类问题的。

师:教师针对学生的回答给予评价。

师:对于<<解析几何>>这类问题的解答,归纳起来,有以下几个步骤:1.分析几何对象的几何特征。

理解题意,并画出图像。

2.进行代数化。

包括几何元素的代数化、位置关系代数化、问题目标代数化。

3.进行代数运算。

包括联立方程组、消参、运用函数性质等。

4.得出几何结论。

师:接下来我们一起将此步骤实施到具体的题目中。

圆锥曲线内接三角形的面积公式及其应用

圆锥曲线内接三角形的面积公式及其应用

46中学数学研究2021年第1期(上)圆锥曲线内接三角形的面积公式及其应用广西防城港市东兴市东兴中学(538100)吴中伟摘要求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•经过推导,发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.关键词圆锥曲线;内接三角形;面积表达式求三角形面积的方法有很多,但对于无法确定形状的三角形,其面积没有统一的求法•笔者发现在参数方程条件下圆锥曲线(圆,椭圆,双曲线与抛物线)的内接三角形的面积都有统一的表达式,并且这些表达式结构非常相似.引理在4ABC中,已知一B—(x i,y i),一1—(血,y2),则4ABC的面积S a abc—2|x i y2—血y i|.(x a cos a(a为y—b sin a参数)的三点,它们对应的参数分别为a i,a2,a3,则S a abc——|sin(a2— a i)+sin(a i—a3)+sin(a3— a2)|.证明易知A(a cos a i,b sin a i),B(a cos a2,b sin a2), C(a cos a3,b sin a3),贝V a B—(a(cos a2—cos a i),b(sin a2—sin a i)),一1—(a(cos a3— cos a i),b(sin a3—sin a i)),由引理得,S a abc=2ab(cos a2— cos a i)(sin a3—sin a i)—ab(cos a3— cos a i)(sin a2—sin a i)ab=—cos a2sin a3— cos a2sin a i— cos a i sin a3+cos a i sin a i—(cos a3sin a2— cos a3sin a i S a abc-fx—a sec a,厶定理3已知A,B,C是双曲线|(a为参y—b tan a数)的三点,它们对应的参数分别为a i,a2,a3,则sin(a2—a i)+sin(a i—a3)+sin(a3—a2)cos a i cos a2cos a3x b tan a 同理可证,焦点在y轴的双曲线=(a为参y—a sec a数)的内接三角形的面积表达式与焦点在x轴的双曲线的完全一样.接下来推导在参数方程条件下,抛物线的内接三角形的面积的统一表达式.x—2p t2定理4已知A,B,C是抛物线{(t为参y=2pt数p>0)上的三点,它们对应的参数分别为t i,t2,t3,则S a abc—2p2|(t i—t2)血—t3)(t3—t i)|.特别的,若点C 为坐标原点,则S a abc—2p2|(t i—t2)t i t21证明易知A(2pt f,2pt i),B(2pt2,2pt2),C(2pt|,2pt3),则S a abc=2a B—a1=2p2|(t2—ti)(t3—t1)—(t3一ti)(t2一t1)=2p2(t i一 t2)(t2一t3)(t3一t i).显然,若C为原点,则S a abc—2p2|(t i— t2)t i t2〔.同理可证,其他情形的抛物线的内接三角形的面积表达式与定理4相同.基于以上的结论,本文从—cos a i sin+cos a i sin a i)豊|sin(a2-a i)+sin(a i— a3)+sin(a3-a2)同理可证,焦点在y轴的椭圆的内接三角形的面积表达式与焦点在x轴的椭圆的完全一样.利用类似的方法也易证得以下定理.亠.—x—a+r cos a「厶“定理2对于圆(a为参数),A,B,Cy—b+r sin a是其三点,对应的参数分别为a i,a2,a3,则S a abc r2—|sin(a2— a i)+sin(a i— a3)+sin(a3— a2)|.实例的角度,阐述这些公式在解决圆锥曲线的内接三角形面积问题的作用.例1已知椭圆C1:x+务=1(a>b>0)的左、右焦点为F i、F2,|F i F2—l/l,若圆Q方程(x—/l)l+(y—1尸=1,且圆心Q满足|QF i+|QF2=2a.(I)求椭圆C i的方程;(II)过点P(0,1)的直线l i:y—kx+1交椭圆C1于A、B两点,过P与l i垂直的直线h交圆Q于C、D两点, M为线段CD中点,若4MAB的面积为第1,求k的值.5解(I)略;(II)由(I)可知椭圆的参数方程为2021年第1期(上)中学数学研究47x—2cos ay=sin a(a为参数),与y—kx+1联立得V2sin a—2k cos a+1t i+t2—号,t i t2———.因为点M对应的参数为t—1,所以由定理3,得①S a ABM=8|(t i—t2)(t2—1)(1—t i)|代入sin2a+cos2a—1,整理得(2+4k2)cos2a+4k cos a—1=0.设A(2cos a.sin a i),B(2cos a2,sin a2)贝J-2k cos a i十cos a2=1+2k2联立①1①2得,■,■/2 sin a1十sin a2=1+2k2由①2①3得,|sin(a i-a2)|=|sin a2—sin a i|cos a i—cos a2—1 cos a i cos a2=2+4k2..1-4k2 sin a i sin a2=2+4k2V1+4k21+2k2,_2k/1+4k2=1+2k2,/2•/1+4k21+2k2因为Q(血,1)对应的参数为4,所以由定理1得①2①3S a qab=血 |sin(a i-a2)+sin(a2-寸)+sin(寸-a i)| =/2Lin(a i—a2)+(sin a2—sin a i)(cos a i—cos a2)=8J(t i+t2)2—4t i t2|—t i t2—1+t i+t2=\/(m2+4)(2m-3)2°令f(x)—(m2+4)(2m—3)2,贝」f z(m)—2(2m-3)(4m2-3m+8),33所以f z(m)—0的解为m=2,m e(—x>,2)时,f z(x)<0,322f(x)单调递减;m e$,+x>)时,f z(x)>0,f(x)单调递增;又因为m22,所以f(m)——f⑵—8,故三角形ABM面积的最小值为2/2.x2例3已知点F i是双曲线C:忑-y2—1的左焦点,点M为其右顶点,过点F i的斜率为1的直线交双曲线的左支于A,B两点,求AABM的面积.解由已知可知点F i(-/5,0),M(2,0),直线I ab:x—fx2sec a(a为参数),y—tan a得2sec a—tan a—a/5,即sin a—a/5cos a—2依题意得,sin(a i—a2)与cos a i—cos a2异号,所以①1S a qab—|sin a2-sin a i2W1+4k21+2k2因为M在线代入sin2a+cos2a—1,整理得6cos2a+cos a+3=0.段CD中点,所以MQ丄l2,又因为l i丄l2,所以MQ//l i,所以S a mab—S a qab,从而覚十誓—半,解得k—±/2.此时I2:y—士冷2x+1,圆心Q到^2的距离h=±畔x/2-1+1/<-,成立.例2在平面直角坐标系xOy中,已知抛物线C:x2—设A(2sec a i,tan a i),B(2sec a2,tan02),贝」2/5一"3cos a i+cos a2联立①1①2得,sin a i+sin a2cos a i cos a212①24y,点P是C的准线I上的动点且其横坐标m22,过点P 作C的两条切线,切点分别为A,B.若点M的坐标为(4,4),求三角形ABM面积的最小值.{x—4t(t为参y=4t2数),准线l:y——1,y z—1x.设A(4t i,4t f),B(4t2,4t2),点P(m,—1),则切线PA的方程为:y+1=2t i(x-m),把点A(4t i,4t f)代入上式,得4t f+1=2t i(4t i-m),即4t i-2mt i-1=0.同理可得,4t2-2mt2-1=0,故t i,t2是方程4t2-2mt-1—0的两个解.由根与系数关系得,23,2血I••=3,|s i n a2—sin a i1sin a i sin a2—------6①3^10因为由已知得M对应的参数为0,且sin(a i-a2)与由①①得,|sin(a i-a2)|sin a2—sin a i同号,所以由定理2,|sin(a i—a2)+sin a2+sin(—a i) S a abm—1----------------------------------------------|cos a i cos a22/2/10-丁;丁-竿(2+/5)2参考文献[1]吴中伟•一个三角形面积公式在解析几何中的应用[J].中学数学研究(华南师范大学版),2020(3):40-42.。

圆锥曲线中求三角形面积取值范围问题

圆锥曲线中求三角形面积取值范围问题

圆锥曲线中求三角形面积取值范围问题1、已知为坐标原点,定点,点分别在,轴上运动且.动点满足.设点的轨迹为曲线.直线交曲线于另外一点.(1)求曲线的方程, (2)求面积的最大值.解:的轨迹方程即为曲线整理可得:,相关点法求解析式、、设点C y x y x AB y n x m y n y x m x y n x PB y m x AP y x P n B m A 19256496425648)(3858)(5353),(),,(),(),0()0,()1(2222=+=+∴=⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧-=-=-∴--=-=∴ )37116195.72418024169211619(1161911801161991180259190225910081368164812259)259(814722)1(25981,2597208172)259(19254)1(2)(4214),,(),,()2(222222222222222222221221222221212211”成立时“即当且仅当,式可得:带入联立的面积方程为:设直线设点=±=+=+=≤=⨯≥++++++⨯=++++⨯=++⨯⨯=+⨯+⨯+⨯⨯=++⨯⨯+⨯=+-=⋅+-=+∴=-++⇒⎪⎩⎪⎨⎧=++=-=+⨯⨯=∆∴+=k k k k k k k k k k k k k k k k k k S k y y k k y y ky y k y x ky x y y y y S OPQ ky x PM y x Q y x P求面积最值问题,需要先把面积表示出来,之后就可以看出如何计算更加简洁。

此题列出式子后可以看出直线反设O )0,4(M B A ,x y 8=AB P →→=PB AP 53PC PM C Q C OPQ ∆会更加简单,另外计算时数字比较大,但是找出公因数再计算就会非常简单,切忌硬来。

2、在平直角坐标系中,已知椭圆的离心率,且椭圆过点(1)求椭圆的方程;(2)直线的斜率为,直线与椭圆交于两点,求面积的最大值。

圆锥曲线中三角形面积的最值求法探析

圆锥曲线中三角形面积的最值求法探析

置关 系 , 有较 大 的计 算 量 , 须 具 备 足 够 的数 学 素 养 和
计 算 功底 才 能解答 完 整. 变 式练 习 已知 F 、 F 2 分别 是 椭 圆 c: + 一1
合思 想 、 化 归与转 化 思想 , 符 合考 试 大纲 中 “ 对数 学能
力 的 考 查 要 以数 学 基 础 知 识 、 数 学 思 想 和 方 法 为 基 础” 的要 求 . 下 面 以椭 圆 为 载 体 例 析 圆 锥 曲线 中三 角 形 面积 的最 值求 法 , 帮 助 同学们 归纳 总结 .
( 1
) [

] 一
3 ( 忌 +1 ) ( 9 k + 1 ) ( 3 k2 +1 ) 0 ‘
当k : / : o时 , 式① 等 价于 3 +
则式 ① ≤3 +


过定点 D( 1 2 / 5 , 0 ) , 从而选择 s △ 仙 一÷ f D C f f y 一
f 一 √ 2 时, 等式成立 , 故( S △ P F F 2 ) 一√ 2 . 此时 , 椭z + 代 入椭 圆方 程 , 整理 得
( 3 k 十 1 ) z +6 k m x+ 3 m 一3 —0 .
由根 与 系数 的关 系得
1 ) 、

) . 联立 方程
消去 z得
当 时 若 不 登 高 望 , 谁 知 东 流 海 样 深
吖I . . 数 2 3

( 3 ) 当 n - - 2 时 , S △ P F F 。 一 1 l F F 1 . 譬 6 一 譬 c b ,
走 z 由 已 知
一 , 得 m 一导 + 1 ) .
所 以 S A P F 1 F 2 ≤ 譬 × 一 n z 一 , 当 且 仅 当 6 一

圆锥曲线中一类三角形面积的最值问题

圆锥曲线中一类三角形面积的最值问题

圆锥曲线中一类三角形面积的最值问题圆锥曲线中一类三角形面积的最值问题是一个关于几何学的主题,它是关于在特定几何结构和条件下确定三角形面积最大值和最小值的问题。

问题的描述:
求解一类圆锥曲线上定义三角形的面积的最值。

问题的分析:
1.首先该问题的结构存在一个圆锥曲线,其上定义三角形,该三角形的面积是需要求解的最值。

2.其次,在求解最值的过程中,需要确定三角形的形状及尺寸,包括三边的长度及锥角的内切圆和外接圆的半径。

3.此外,在确定三角形面积的最值时,需要考虑到所在圆锥曲线的几何结构及其内接圆的大小,以确定最合适的三角形及其面积最优值。

求解方法:
1.采用穷举和搜索的方法,在一类圆锥曲线上逐步去确定目标三角形的形状及尺寸,其面积最小或最大符合条件;
2.在该类圆锥曲线上,启发式搜索也可以用于最值问题,进行穷举时可以根据当前搜索状态而进行学习及调整;
3.此外,还可以采用以下几种数学方法去求解:(1)利用微积分中极大值极小值的概念,结合拉格朗日乘子法;(2)利用数学规划方法,比如模拟退避法;(3)用贪婪算法去寻找最优解;(4)还可以用神经网络技术去求解。

结论:
以上求解最值问题的方法都可以有效地求出圆锥曲线上三角形面积的
最值,通过不同的搜索方法可以解决规模越大问题所对应的最值问题。

圆锥曲线面积最值问题

圆锥曲线面积最值问题

面积最值问题1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。

这样可以使函数解析式较为简单,便于分析例1已知椭圆()的一个顶点为,离心率为,直线()与椭圆交于,两点,若存在关于过点的直线,使得点与点关于该直线对称. (I )求椭圆的方程; (II )求实数的取值范围;(III )用表示的面积,并判断是否存在最大值.若存在,求出最大值;若不存在,说明理由.,可得:C:22221x y a b+=0a b >>()0,1M-3:l y kx m =+0k ≠C A B M AB C m m ∆MAB SS ()()()()()()2121212121212020x x x x y y y y x x k y y +-+++-=⇔++++=,则有:(),故(III )法一(面积转化为弦长):,到的距离,2262203131km m k k k ⎛⎫-++= ⎪++⎝⎭22311m k =+>0k ≠()1122022m m m ∆=->⇔<<()()()22212122122131m m x x y y kk -AB =-+-=++A :l y kx m =+d =1122S d ∆MAB=AB =,设,,则,所以在上是减函数,所以面积无最大值.法二(面积坐标化公式):易得向量,,则有,因,在上均为减函数,则在上均为减函数,所以面积无最大值.可得的面积的取值范围为.点评:(1)第二小问分为两个操作程序:①据对称性得到直线斜率与截距之间的关系;②据位置关系构建直线斜率与截距之间的不等关系.点关于直线对称的转化为对称轴为垂直平分线,法一进一步转化为等腰三角形,从而线段相等,利用两点距离公式进行坐标化,化简后得到交点坐标纵横坐标之和及弦的斜率,故可以使用韦达定理整体代入.实际上所有使用韦达定理整体代入这个处理方式的标准是题意韦达定理化:①条件与目标均能化为交点坐标和与积的形式;②横坐标纵坐标;法二则点差法处理弦中点问题.均可得到直线的斜率与截距之间的关系.构建不等式的方式:法一根据直线与椭圆的位置关系,利用判别式构建参数的不等式;法二根据点与椭圆的位置关系,利用中点在椭圆内构建参数的的不等式;故直线与椭圆相交可与点在椭圆内等价转化;(2)第三小问分成两个操作程序:①构建面积的函数关系;②求函数的值域.法一利用底与高表示三角形面积,三角形的底则为弦长,三角形高则为点线距离.法二利用三角形面积的坐标公式,不管哪种面积公式,均会出现交点坐标之差,故从整道题223234S m m ⎛⎫=+- ⎪⎝⎭()223f m m m =+-122m <<()2220f m m m '=--<()f m 1,22⎛⎫ ⎪⎝⎭S ()11,1x y MA =+()22,1x y MB =+()()()12121212122112111222m x x S x y x x y x x kx m x kx m x x ∆MAB +-=+--=+-++-=223234S m m ⎛⎫=⇒=+- ⎪⎝⎭122m <<2m 2m -1,22⎛⎫ ⎪⎝⎭223234S m m ⎛⎫⇒=+- ⎪⎝⎭1,22⎛⎫ ⎪⎝⎭S ∆MAB S 810,16⎛⎫⎪⎝⎭AB k m AB k m AB ←−−→交点在直线上AB k m m m 122112S x y x y =-全局来说,第二问使用韦达定理显得更流畅,时分比更高,所以要注意方法的选择与整合.关于分式型函数求最值,常见思路为:以分母为整体,分子常数化,往往化简为反比例函数、对勾函数及二次函数的复合函数,本题这个函数形式并不常见.特别要注意基本函数的和与差这种结构的函数,特殊情况可以直接判断单调性,这样可以避免导数过程. 变式与引申:若过点的直线交椭圆于,求四边形的面积的取值范围.例2、已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.(1)求椭圆的方程;(2)点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点, 的延长线与椭圆交于点,求面积的最大值. 【思路引导】M D D MAB ()222210x y a b a b+=>>12,F F 22e =A 2AF B AO C ABC ∆(1) 由题意得,再由, 标准方程为;(2)①当的斜率不存在时,不妨取 ; ②当的斜率存在时,设的方程为,联立方程组,又直线的距离点到直线的距离为.解析:(1) 由题意得,解得,1b =2222c e a b c a a ===+=1c =⇒2212x y +=AB ,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭122ABC S ∆=⨯=AB AB ()1y k x =-()221{ 12y k x x y =-+=⇒()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++⇒AB =0kx y k --=d ==⇒C AB2d =⇒2211122221ABCk S AB d ABCk ∆⎛⎫+=⋅=⋅=≤ ⎪+⎝⎭22b =1b =化简得,设点到直线的距离因为是线段的中点,所以点到直线的距离为,∴()2222214220k x k x k +-+-=()()221122121222422,,,,,2121k k A x y Bx y x x x x k k-+=⋅=++AB ===O 0kx y k --=d ==O AC C AB 2d =2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭综上,.【点评】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为;(2)利用分类与整合思想分当的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得 ,再求得点到直线的距离为.例3、已知点A (﹣4,4)、B (4,4),直线AM 与BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C . (1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D 、E ,求△QDE 的面积S 的最小值. 【思路引导】(Ⅰ)设,由题意得,化简可得曲线的方程为 ; (Ⅱ)设,切线方程为,与抛物线方程联立互为,由于直线与抛物线相切可得,解得,可切点==ABC ∆22x y 12+=AB 2121224k x x ,x x 2k 1+=⋅=⇒+22k 1AB 222k 1+=+C AB 22k 2d k 1=+⇒()2ΔABC22222k 11k 111S AB 2d 22222ΔABC222k 14k 142k 1⎛⎫+=⋅=⋅=- ⎪++⎝⎭+2(),M x y 44244y y x x ---=-+-C 24x y =()4x ≠±().1Q m -()1y k x m +=-()24410x kx km -++=0∆=2x k =,由,利用韦达定理,得到,得到为直角三角形,得出三角形面积的表达式,即可求解三角形的最小值.考点:直线与圆锥曲线的综合问题;轨迹方程的求解.【点评】本题主要考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点间的距离公式、三角形的面积公式、二次函数的性质等知识点的综合应用,着重考查了分析问题和解答问题的能力、推理与运算能力,试题有一定的难度,属于难题,本题的解答中把切线的方程代入抛物线的方程,利用根与系数的关系,表示出三角形的面积是解答问题的关键.例4、已知椭圆的焦距为2,离心率为.(Ⅰ)求椭圆的标准方程;()22,k k QD QE ⊥QDE∆2222:1(0)x y C a b a b+=>>e 12C(Ⅱ)过点作圆的切线,切点分别为,直线与轴交于点,过点作直线交椭圆于两点,点关于轴的对称点为,求面积的最大值. 【思路引导】(Ⅰ)由椭圆的焦点为,离心率为,求出,由此能求出椭圆的标准方程;(Ⅱ) 由题意,得、 、、 四点共圆,该圆的方程为,得的方程为,直线的方程为,设,则,从而最大, 就最大,可设直线的方程为,由,得,由此利用根的判别式、韦达定理、弦长公式,能求出的面积的最大值. 试题解析:(Ⅰ)由题意, ,解得,由,解得; 所以椭圆的标准方程为. 1,12P ⎛⎫⎪⎝⎭2212x y +=M N 、MN x E E l C A B 、E y G ΔGAB 2e 12,a b O M P n 221154216x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭O2212x y +=MN 210x y +-=()()1122,,,A x y B x y 121212GAB S GE y y y y ∆=-=-GAB S ∆12y y -l 1x my =+221{ 143x my x y =++=()2234690m y my ++-=GAB ∆22c =1c =12c e a ==2a =22143x y +=又直线与椭圆交于不同的两点,则,即,,令,则,令,则函数在上单调递增, 即当时, 在上单调递增,因此有; 所以,当时取等号. 故面积的最大值为3.【点评】本题主要考查待定系数法求椭圆的方程、韦达定理和三角形面积公式及单调性求最值,属于难题. 解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函l C 0∆>()()22636340,m m m ++>∈R 121212GABS GF y y y y ∆=⋅-=-==t =221241,134313GABt t S m t t t∆≥===+++()13f t t t =+()f t 3,3⎫+∞⎪⎢⎪⎣⎭1t ≥()f t [)1,+∞()()413f t f ≥=3GAB S ∆≤0m =GAB ∆数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、以及均值不等式法,本题(2)就是用的这种思路,利用函数单调法面积的最大值的.已知椭圆()22211x y a a+=>,(),P m n 为圆2216x y +=上任意一点,过P作椭圆的切线,PA PB ,设切点分别为()()1122,,,A x y B x y . (1)证明:切线PA 的方程为1114x xy y +=; (2)设O 为坐标原点,求OAB ∆面积的最大值.解:(1)由题,c e a ===,解得2a =.................2分 ①当10y =时,12x =± ,直线2x =±,∴24x =,代入椭圆方程得到0y =, ∴切线PA 的方程是2x =±.②当10y ≠时,联立2211440440x y x x y y ⎧+-=⎨+-=⎩,消y ,得到2211114404xx x y y ⎛⎫+--= ⎪⎝⎭,即2211222111241404x x x x y y y ⎛⎫+-+-= ⎪⎝⎭,.........................5分 所以222221111142242421111111441444144x x x x x y y y y y y y ⎛⎫⎛⎫⎛⎫∆=-+-=--+- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()2211222211114444161616160y x y y y y -=-++=-++= ∴切线PA 的方程为1114x xy y +=........................8分 (2)根据(1)可得切线PA 的方程为1114x x y y +=,切线PB 的方程为2114x xy y +=,∴11221414x my n x m y n ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线AB 方程为14mx ny +=........................9分 GAB ∆∴2214440mxny x y ⎧+=⎪⎨⎪+-=⎩,消y 得到22222241404m m x x n n n ⎛⎫+-+-= ⎪⎝⎭,∴22222221641611414m m n n AB ka n m n -++∆⎛⎫=+=+- ⎪⎝⎭+..............11分又∵原点O 到直线AB 的距离22214d mn =+,∴222222222164161111224144OABm m n nS AB d n m m n n∆-++⎛⎫==+- ⎪⎝⎭++22224444n m n m +-=+............................................13分又∵(),P m n 为圆2216x y +=上任意一点,∴2216m n +=.∴224312316OABn S n ∆+=+,令231223t n =+≥,则24444OAB t S t t t∆==++在)23,⎡+∞⎣上单调递减,所以32OAB S ∆≤...................................15分已知抛物线24y x =,焦点为F ,过点(2,0)且斜率为正数的直线交抛物线于,A B 两点,且11FA FB =-.( I ) 求直线AB 的方程;(II )设点C 是抛物线上()AB A B 不含、两点上的动点, 求ABC △面积的最大值.解:( I )设直线AB 为2(0)x my m =+>,221212(,), B(,)44y y A y y ,(1,0)F [来224x my y x =+⎧⎨=⎩ ,消x ,得2480y my --=,则212121632048m y y m y y ⎧=+>⎪+=⎨⎪=-⎩则2222222212121212121212(1,)(1,)(1)(1)14444164y y y y y y y y FA FB y y y y y y +=--=--+=-++ 21616418114m +=-+-=- 得21m =,又因为0m >,故1m =,即直线AB 的方程2xy =+,即20x y --=(II )设20(,)4y C y ,224x y y x=+⎧⎨=⎩,解得1,22y =±,故022y -<<+设点C 到直线AB的距离为022001|2||(2)3|y yy d ----== 当02y =,max d =,而||AB ==故max 1||ABC S AB d ==△ OA OB 的最大值.4OA OB =;.)()2kx m +=)22222642121m km km m k k --+=++2OA OB =)()222228221221k k k +-++,32OA OB ≤OA OB 的最大值为椭圆22221(0)x y a b a b +=>>的离心率为13,左焦点F 到直线l :9x =的距离为10,圆G :22(1)1x y -+=,(1)求椭圆的方程;(2)若P 是椭圆上任意一点,EF 为圆N :22(1)4x y -+=的任一直径,求PE PF ⋅的取值范围;(3)是否存在以椭圆上点M 为圆心的圆M ,使得圆M 上任意一点N 作圆G 的切线,切点为T ,都满足||||NF NT =若存在,求出圆M 的方程;若不存在,请说明理由。

选择合适的方法,求圆锥曲线中三角形的面积

选择合适的方法,求圆锥曲线中三角形的面积

备考指南圆锥曲线中的三角形面积问题具有较强的综合性.解答此类问题,需要灵活运用圆锥曲线的定义、方程、几何性质、三角形的面积公式、弦长公式等.求解圆锥曲线中三角形面积问题主要有三种方法:公式法、割补法、利用正余弦定理等.下面,结合例题来探讨一下这三种方法.一、公式法三角形的面积公式主要有两种:(1)S =12×底×高;(2)S =12ab sin C .对于简单的圆锥曲线中三角形的面积问题,可采用公式法求解,先求出三角形底边所在直线的方程,然后运用弦长公式求得三角形底边的长,用点到直线的距离公式求得三角形顶点到底边的距离,即可得到高线的长度,最后运用三角形的面积公式S =12×底×高求解.例1.过P (0,2)的直线l 与椭圆x 22+y 2=1相交于A ,B 两点,O 为坐标原点,若△AOB 的面积为23,求直线l 的方程.解:设直线l 的方程为y =kx +2.由ìíîïïy =kx +2,x 22+y 2=1,得(1+2k 2)x 2+8A (x y 1),B (x2,y 2),则|AB |=1+k 2|x 1-x2|=,又因为d,所以S △12|AB |⋅d=23,解得k =或k =,所以直线l 的方程为y =x +2或y =+2.将AB 视为三角形的底边、O 视为三角形的顶点,然后运用弦长公式和点到直线的距离公式分别求得△AOB 的底边边长和高,就能运用公式法求得问题的答案.二、割补法割补法常常用于求解一些不规则图形的面积问题.有些圆锥曲线中的三角形面积不易求得,此时可以采用分割法,将三角形分割为几个便于计算面积的三角形、梯形、矩形、平行四边形,再将几个图形的面积相加减,即可求得三角形的面积.例2.已知过抛物线y 2=4x 焦点M 的直线L 与抛物线交于A ,B 两点,|AM |=3,O 为坐标原点,求△AOB的面积.解:由题意知点F (1,0),抛物线的准线方程为x =-1.设A (x A ,y A ),B (x B ,y B ),而|AF |=3,则x A +1=3,解得x A =2,将其代入抛物线方程可得y A =22,所以L AB :y =22(x -1),可得ìíîy =22(x -1),y 2=4x ,消去y 得2x 2-5x +2=0,得B (12,-2),所以S △AOB =S △AOM △BOM =12⋅|OM |⋅|y A |+12⋅|OM |⋅|y B |=12⋅|OM |⋅|y A +y B |=.在求三角形底边的边长时,除了要用到了弦长公式,还需运用韦达定理.三、利用正余弦定理运用正余弦定理能够快速建立三角形的三边、三角之间的关系.在求解圆锥曲线中的三角形面积问题时,可运用正余弦定理求得三角形某个角的正弦值以及两边的长,这样就可利用三角形的面积公式S =12ab sin C ,求得三角形的面积.例3.已知F 1,F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上的一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.解:设|PF 1|=m ,|PF 2|=n ,由椭圆的定义可知m +n =20,在△F 1PF 2中,由余弦定理得m 2+n 2-2mn cos π3=|F 1F 2|=144,即(m +n )2-3mn =144,又m +n =2a =20,所以mn =2563,S △F 1PF 2=12|PF 1|⋅|PF 2|⋅sin ∠F 1PF 2=12mn ⋅sin π3.求解焦点三角形的面积问题,可结合圆锥曲线的定义以及正余弦定理建立三角形的边与角的关系式,再用公式S =12ab sin C 求得面积.采用这种设而不求的方法解题,往往能极大地减少计算量.相比较而言,公式法应用的范围较广一些,另外两种方法均有一定的局限性.同学们在解题时要根据题目的特点选用合适的方法求解,这样就能尽可能地简化运算,减少计算量,提升解题的效率.(作者单位:安徽省阜阳市临泉第二中学)刘喜兰51。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知椭圆2212x y +=,12,F F 分别是椭圆的左右焦点,过点B(0,-2)作直线1BF 交椭圆于,C D ,求2F CD S ∆(9)4.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为3,短轴一个端点到右焦点的距离为。

(1)求椭圆C 的方程(2213x y +=) (2)设直线l 与椭圆C 交于A,B 两点,坐标原点O 到直线l,求AOB ∆面积最大值。

) ()的方程求直线时当的最大值的条件下求在的面积为记两点、交于与椭圆直线浙江AB ,S AB ,S b k S AOB ,B A y x b kx y 1,2)2(;10,0)1(.1407.122==<<=∆=++= (Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得12x =±, 所以1212S b x x =-221b b =-2211b b +-=≤. 当且仅当b =S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,211||||AB x x =-22224214k b k -==+. ②设O 到AB 的距离为d ,则21||S d AB ==,又因为d =221b k =+, 代入②式并整理,得42104k k -+=,解得212k =,232b =,代入①式检验,0∆>, 故直线AB 的方程是22y x =+或22y x =-或22y x =-+,或22y x =-- 7.已知方向向量为()3,1=v 的直线l过点()32,0-和椭圆)0(1:2222>>=+b a by a x C 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1)求椭圆C 的方程; (2)是否存在过点()0,2-E 的直线m交椭圆C于点M 、N ,满足().0tan 1364为原点O MONON OM ≠=⋅若存在,求直线m 的方程;若不存在,请说明理由.解:(1)椭圆C 的方程为12622=+y x(2)直线l 的方程为2,33233,33233-=--=+=x x y x y ()的面积的最小值求四边形证明点的坐标为设垂足为且两点、的直线交椭圆于过两点、的直线交椭圆于过、的左、右焦点分别为已知椭圆ABCD y x ,y x P P BD AC ,C A F ,D B F F F y x )2(;123:,)1(.,.123.32020*******2<+⊥=+(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. 21.(本题满分15分)如图,点P (0,−1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (Ⅰ)求椭圆C 1的方程;(Ⅱ)求△ABD 面积取最大值时直线l 1的方程.【命题意图】本题考查椭圆的几何性质,直线与圆的位置关系,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力 【答案解析】 (Ⅰ)由题意得⎩⎨⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx −1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24−d 2=24k 2+3k 2+1 .又l 1⊥l 2,故直线l 2的方程为x +ky +k =0.由⎩⎨⎧x +ky +k =0, x 24+y 2=1. 消去y ,整理得(4+k 2)x 2+8kx =0故x 0=−8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |⋅|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3 ⋅134k 2+3=161313,当且仅当k =±102时取等号 所以所求直线l 1的方程为y =±102x −1题目:已知圆221:(1)F x y r ++=与圆2222:(1)(4)F x y r -+=-(04)r <<的公共点的轨迹为曲线E ,且曲线E 与y 轴的正半轴相交于点M .若曲线E 上相异两点,A B 满足直线,MA MB 的斜率之积为14.(1)求曲线E 的方程;(2)证明直线AB 恒过定点,并求定点的坐标; (3)求ABM 面积的最大值.解:(1)设12,F F 的公共点为Q ,由已知得,12||2=F F ,1||QF r =,2||4QF r =-.故1212||||4||QF QF F F +=>, 因此,曲线E 是长轴长24a,焦距22c的椭圆,且2223b a c .所以,曲线E的方程为22143x y .(2)由曲线E 的方程,得上顶点M ,记1122(,),(,)A x y B x y ,由题意知,120,0x x ≠≠. 若直线AB 的斜率不存在,则直线AB 的方程为1xx ,故12y y ,且222112314x yy ,因此2121212133334MA MB y y y k k x x x ,与已知不符,因此直线AB 的斜率存在,设:AB ykxm ,因为直线AB 与曲线E 有公共点,A B ,由22143ykx m x y 得方程222(34)84(3)0k x kmxm 有两非零不等实根12,x x ,所以2221222122(8)4(34)4(3)08344(3)034km k m kmx x k m x x k;又112211223333,MA MBy kx m y kx m k k x x x x ,且14MA MBk k , 故12124(3)(3)x x kx mkx m , 即221212(41)4(3)()4(3)0k x x k mx x m,则22224(3)(41)4(3)(8)4(3)(34)0mk k m km mk ,整理得,23360m m ,即3m 或23m .由120x x ≠知,23m ,即直线AB 恒过定点(0,N . (3)由0∆>且23m得32k >或32k <-, 又212121213||||||()422ABMANMBNMSSSMN x x x x x x22222222384(3)64963412234343424949km m k k k kk k . 所以,当且仅当24912k -=,2k =±时,ABM 的面积最大为2. 考查目标 本题考查的知识点主要有椭圆的定义、直线与椭圆的位置关系、圆锥曲线中的定点问题及基本不等式的简单应用;同时考查学生的运算求解能力与分类讨论及解析几何计算中的设而不求、整体运算等基本思想方法.22.如图所示,椭圆22122:1(0)x y C a b a b+=>>的离心率为2,曲线22:C y x b =-经过椭圆1C 的右焦点. (1)求12,C C 的方程;(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点,A B .直线,MA MB分别与1C 相交于,D E . (i )证明:MD ME ⊥;(ii )记,MAB MDE ∆∆得面积分别是12,S S .问:是否存在直线l ,使得1258S S =?请 说明理由.22.(1)由题意知:2c e b c a ==∴=,又从而1a b ==,故12,C C 的方程分别为2221,12x y y x +==-. (2)(i )由题意知:直线l 的斜率存在,设为k ,则直线l 的方程为y kx =,由21y kx y x =⎧⎨=-⎩,消去y 得:210x kx --=,设1122(,),(,)A x y B x y ,则 1212,1x x k x x +=⋅=-, 又点M 的坐标为(0,1)-,所以21212121212121211(1)(1)()11MA MB y y kx kx k x x k x x k k x x x x x x ++++⋅+++⋅=⋅===-⋅⋅所以 MA MB ⊥,即MD ME ⊥.(ii )设直线MA 的斜率为1k ,则直线MA 的方程为11y k x =-由1211y k x y x =-⎧⎨=-⎩,消去y 得:210x k x -⋅=,解得01x y =⎧⎨=-⎩,或1211x k y k =⎧⎨=-⎩ 即点A 的坐标为211(,1)A k k -.又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)B k k --于是21111122k S MA MB k +===由122112y k x x y =-⎧⎪⎨+=⎪⎩,消去y 得:2211(12)40k x k x +-⋅=,解得01x y =⎧⎨=-⎩,或12121214122112k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,即点D 的坐标为2112211421(,)1212k k D k k -++ 因为直线MB 的斜率为11k -,同理可得点E 的坐标为211221142(,)22k k E k k --++.于是211222118(1)12(12)(2)k k S MD ME k k +===++ 因此:22421111122211(12)(2)1(252)1616S k k k k S k k ++==++ 由题意知424211112115(252),2520168k k k k k ++=∴-+=,212k ∴=或2112k =. 又由点,A B 的坐标可知21211111111k k k k k k k -==-+,2k ∴=± 故满足条件的直线l存在且有两条,其方程分别为,y x y x ==. 22.(本题满分15分)已知斜率为(0)k k的直线l 交椭圆22:14x C y 于1122(,),(,)M x y N x y 两点.(1)记直线,OM ON 的斜率分别为12,k k ,当123()8k k k 时,证明:直线l 过定点;(2)若直线l 过点(1,0)D ,设OMD ∆与OND ∆的面积比为t ,当2512k <时,求t 的取值范围.(3)在(2)的条件下,求OMN ∆面积的最大值. 解: (1)解法1:依题意可设直线l 的方程为y kx n ,其中0k .代入椭圆方程得:222(14)8440k x knxn ,则有12221228144414kn x x k n x x k .……………2分 则121221211212121212()()y y y x y x x kx n x kx n k k x x x x x x12122122()844kx x n x x kx x n .……………5分由条件有224844k k n ,而0k,则有12n, 从而直线l 过定点1(0,)2或1(0,)2-.……………8分 解法2:依题意可设直线l 的方程为x myn ,代入椭圆方程得:222(4)240my mnyn ,则有12221222444mn y y m n y y m .……………2分 则121221122112121212()()()()y y y x y x y my n y my n k k x x x x my n my n1212222212122()2()my y n y y mm y y mn y y n m n .……………5分由条件有2268mm n m ,得12n m .……………7分 则直线l 的方程为12x my m ,从而直线l 过定点1(0,)2或1(0,)2-.……………8分(2)依题意可设直线l 的方程为(1)y k x ,其中0k .代入椭圆方程得:2222(14)8440k x k xk ,则有212221228144414k x x k k x x k .……………9分从而有121222(2)14ky y k x x k …………① 2221212121223(1)(1)()114k y y k x x k x x x x k…………② 由①②得212212()43(14)y y y y k ,……………11分由25012k <<,得244133(14)2k .……………13分 又12OMD OND y St S y ∆∆==,因120y y ,故12y ty ,又212121221()122y y y y ty y y y t,从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 解法2:依题意可设直线l 的方程为x my n ,代入椭圆方程得:22(4)230my my ,则有1221222434m y y m y y m .……………2分由①②得22212212()4(1)3(4)y y m t y y m t,……………11分 222222444448,1,13(1)3(1)3(1)3m ttt m t m t t 从而有411232tt,得22310302520t t t t ⎧-+<⎨-+>⎩, 解得23t <<或1132t <<.……………15分 21.(本小题满分15分)已知椭圆222210)x y a b a b+=>>(的离心率3e =,过点A (0,)b -和B (,0)a的直线与原点的距离为2. (1)求椭圆的方程;(2)设12F F 、为椭圆的左、右焦点,过2F 的内切圆半径r 的最大值.21、(理)()221 1 3xy += ()22213x PQ x ty y =++=设:并整理得22(3)10t y ++-=,22)4(3)0t ∆=++>()()1,12,2,P x y Q x y 设,1212213y y y y t +=-+则 =12|y y -==|==212max2111|34t y y t ∴==-=+当,即时,|1121211|||22PQF s F F y y ∆∴=-≤⋅=|11111(||||||)22PQF s PF QF PQ r ∆=++=⋅=又,max 12r ∴==。

相关文档
最新文档