3电工基础周绍敏PPT
合集下载
周绍敏《电工技术基础与技能》PPT——10 三相正弦交流电路.

高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
一、负载的星形联结
三相负载的星形联结如图 10-4 所示。
图 10-4 三相负载的星形联结
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
该接法有三根火线和一根零线,叫做三相四线制电路被图 片叠压,在这种电路中三相电源也是必须是 Y 联结,所以又叫 做 Y-Y 接法的三相电路。显然不管负载是否对称(相等),电 路中的线电压 UL 都等于负载相电压 UYP 的 3 倍,即
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
【 例 10-1】 已 知 发 电 机 三 相 绕 组 产 生 的 电 动 势 大 小 均 为 E = 220 V,试求:(1) 三相电源为 Y形 联结时的相电压 UP 与 线电压 UL;(2) 三相电源为 形联结时的相电压 UP 与线电压 UL 。 解:(1) 三相电源 Y 形联结:相电压 UP = E = 220 V,
《电工技术基础与技能》演示文稿
10 三相正弦交流电路
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
10 三相正弦交流电路
教学重点
1. 了解三相交流电源的产生和特点。 2. 掌握三相四线制电源的线电压和相电压的关系。 3. 掌握对称三相负载 Y 联结和 联结时,负载线电压 和相电压、线电流和相电流的关系。 4. 掌握对称三相功率的计算方法。
流之间的相位差。
三相电路的功率因数为 P cos
S
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
一、负载的星形联结
三相负载的星形联结如图 10-4 所示。
图 10-4 三相负载的星形联结
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
该接法有三根火线和一根零线,叫做三相四线制电路被图 片叠压,在这种电路中三相电源也是必须是 Y 联结,所以又叫 做 Y-Y 接法的三相电路。显然不管负载是否对称(相等),电 路中的线电压 UL 都等于负载相电压 UYP 的 3 倍,即
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
【 例 10-1】 已 知 发 电 机 三 相 绕 组 产 生 的 电 动 势 大 小 均 为 E = 220 V,试求:(1) 三相电源为 Y形 联结时的相电压 UP 与 线电压 UL;(2) 三相电源为 形联结时的相电压 UP 与线电压 UL 。 解:(1) 三相电源 Y 形联结:相电压 UP = E = 220 V,
《电工技术基础与技能》演示文稿
10 三相正弦交流电路
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
10 三相正弦交流电路
教学重点
1. 了解三相交流电源的产生和特点。 2. 掌握三相四线制电源的线电压和相电压的关系。 3. 掌握对称三相负载 Y 联结和 联结时,负载线电压 和相电压、线电流和相电流的关系。 4. 掌握对称三相功率的计算方法。
流之间的相位差。
三相电路的功率因数为 P cos
S
高等教育出版社 Higher Education Press
电工基础周绍敏ppt课件

第一章 电路的基本概念和基本定律
第一章 电路的基本概念和基本定律
教学难点:
1.了解电路的三种工作状态特点。 2.理解理想元件与电路模型、线性电阻与非线性电阻的 概念。
教学重点:
1. 了解电路的基本组成、电路的三种工作状态和额定电压、 电流、功率等概念。
2.掌握电流、电压、电功率、电能等基本概念。 3.掌握电阻定律、欧姆定律、焦耳定律,了解电阻与温 度的关系。
第一节 电 路
一、电路的基本组成 二、电路模型(电路图)
一、电路的基本组成
1.什ቤተ መጻሕፍቲ ባይዱ是电路
电路是由各种元器件(或电工设备)按一定方式连接起来 的总体,为电流的流通提供了路径。
动画 M1-1 电路的状态
2.电路的基本组成
电路的基本组成包括以下四个部分: (1)电源(供能元件):
为电路提供电能的设备和器件 (如电池、发电机等)。
设在 t = t2-t1 时间内,通过导体横截面的电荷量为 q = q2-q1,则在 t 时间内的电流强度可用数学公式表示为
i (t) q t
式中,t 为很小的时间间隔,时间的国际单位制为 秒(s),电量 q 的国际单位制为库仑 (C)。电流 i(t) 的国际单 位制为安培 (A) 。
常用的电流单位还有毫安 (mA)、微安( A)、千安 (kA) 等,它们与安培的换算关系为
到 t2 时电阻值为 R2 ,则该电阻在 t1 ~ t2 温度范围内的(平均)温度
第三节 电 阻
一、电阻元件 二、电阻与温度的关系
一、电阻元件
电阻元件是对电流呈现阻碍作用的耗能元件,例如灯泡、
电热炉等电器。
电阻定律
R l S
——制成电阻的材料电阻率,国际单位制为欧姆·米 ( ·m) ;
第一章 电路的基本概念和基本定律
教学难点:
1.了解电路的三种工作状态特点。 2.理解理想元件与电路模型、线性电阻与非线性电阻的 概念。
教学重点:
1. 了解电路的基本组成、电路的三种工作状态和额定电压、 电流、功率等概念。
2.掌握电流、电压、电功率、电能等基本概念。 3.掌握电阻定律、欧姆定律、焦耳定律,了解电阻与温 度的关系。
第一节 电 路
一、电路的基本组成 二、电路模型(电路图)
一、电路的基本组成
1.什ቤተ መጻሕፍቲ ባይዱ是电路
电路是由各种元器件(或电工设备)按一定方式连接起来 的总体,为电流的流通提供了路径。
动画 M1-1 电路的状态
2.电路的基本组成
电路的基本组成包括以下四个部分: (1)电源(供能元件):
为电路提供电能的设备和器件 (如电池、发电机等)。
设在 t = t2-t1 时间内,通过导体横截面的电荷量为 q = q2-q1,则在 t 时间内的电流强度可用数学公式表示为
i (t) q t
式中,t 为很小的时间间隔,时间的国际单位制为 秒(s),电量 q 的国际单位制为库仑 (C)。电流 i(t) 的国际单 位制为安培 (A) 。
常用的电流单位还有毫安 (mA)、微安( A)、千安 (kA) 等,它们与安培的换算关系为
到 t2 时电阻值为 R2 ,则该电阻在 t1 ~ t2 温度范围内的(平均)温度
第三节 电 阻
一、电阻元件 二、电阻与温度的关系
一、电阻元件
电阻元件是对电流呈现阻碍作用的耗能元件,例如灯泡、
电热炉等电器。
电阻定律
R l S
——制成电阻的材料电阻率,国际单位制为欧姆·米 ( ·m) ;
周绍敏《电工技术基础与技能》PPT——1 认识电路解读

高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
三、电气设备的额定值
为了保证电气设备和电路元件能够长期安全地正常工作,都 规定了额定电压、额定电流、额定功率等铭牌数据。 额定电压——电气设备或元器件所允许施加的最大电压。 额定电流——电气设备或元器件所允许通过的最大电流。 额定功率——在额定电压和额定电流下所消耗的功率,即允 许消耗的最大功率。 额定工作状态 —— 电气设备或元器件在额定功率下的工作状 态,也称满载状态。 轻载状态 —— 电气设备或元器件在低于额定功率下的工作状 态,轻载时电气设备不能得到充分利用或根本无法正常工作。 过载 (超载 ) 状态 —— 电气设备或元器件在高于额定功率下的 工作状态,过载时电气设备很容易被烧坏或造成严重事故。 轻载和过载都是不正常的工作状态,一般是不允许出现的。
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第四节
部分电路欧姆定律
一、欧姆定律
二、线性电阻与非线性电阻
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
一、欧姆定律
电阻元件的伏安关系服从欧姆定律,即
《电工技术基础与技能》演示文稿
表 1-3 常用理想元件及符号
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第二节 电流
一、电流的基本概念 二、直流电流 三、交流电流
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
《电工技术基础与技能》演示文稿
三、电气设备的额定值
为了保证电气设备和电路元件能够长期安全地正常工作,都 规定了额定电压、额定电流、额定功率等铭牌数据。 额定电压——电气设备或元器件所允许施加的最大电压。 额定电流——电气设备或元器件所允许通过的最大电流。 额定功率——在额定电压和额定电流下所消耗的功率,即允 许消耗的最大功率。 额定工作状态 —— 电气设备或元器件在额定功率下的工作状 态,也称满载状态。 轻载状态 —— 电气设备或元器件在低于额定功率下的工作状 态,轻载时电气设备不能得到充分利用或根本无法正常工作。 过载 (超载 ) 状态 —— 电气设备或元器件在高于额定功率下的 工作状态,过载时电气设备很容易被烧坏或造成严重事故。 轻载和过载都是不正常的工作状态,一般是不允许出现的。
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第四节
部分电路欧姆定律
一、欧姆定律
二、线性电阻与非线性电阻
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
一、欧姆定律
电阻元件的伏安关系服从欧姆定律,即
《电工技术基础与技能》演示文稿
表 1-3 常用理想元件及符号
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第二节 电流
一、电流的基本概念 二、直流电流 三、交流电流
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
周绍敏《电工技术基础与技能》演示文稿课件——1认识电路综述

高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第四节
部分电路欧姆定律
一、欧姆定律
二、线性电阻与非线性电阻
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
一、欧姆定律
电阻元件的伏安关系服从欧姆定律,即
《电工技术基础与技能》演示文稿
1 认识电路
1.1
电路
1.2 电流 1.3 电阻 1.4 部分电路欧姆定律 1.5 电能和电功率 单元小结
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第一节
电 路
一、电路的基本组成 二、电路模型(电路图)
高 等 教 育 出 版 社 Higher Education Press
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
学时分配:
序号
1 2 绪论 第一节 电路
内
容
学 时
1
3
4 5 6
第二节
第三节 第四节 第五节
电流
电阻 部分电路欧姆定律 电能和电功率 1
7
8
单元小结
单元总学时
2 4
高 等 教 育 出 版 社 Higher Education Press
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
二、电能
电能是指在一定的时间内电路元件或设备吸收或发出的 电能量,用符号W表示,其国际单位制为焦耳(J),电能的计 算公式为 W = P ·t = U I t
《电工技术基础与技能》演示文稿
第四节
部分电路欧姆定律
一、欧姆定律
二、线性电阻与非线性电阻
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
一、欧姆定律
电阻元件的伏安关系服从欧姆定律,即
《电工技术基础与技能》演示文稿
1 认识电路
1.1
电路
1.2 电流 1.3 电阻 1.4 部分电路欧姆定律 1.5 电能和电功率 单元小结
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
第一节
电 路
一、电路的基本组成 二、电路模型(电路图)
高 等 教 育 出 版 社 Higher Education Press
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
学时分配:
序号
1 2 绪论 第一节 电路
内
容
学 时
1
3
4 5 6
第二节
第三节 第四节 第五节
电流
电阻 部分电路欧姆定律 电能和电功率 1
7
8
单元小结
单元总学时
2 4
高 等 教 育 出 版 社 Higher Education Press
高 等 教 育 出 版 社 Higher Education Press
《电工技术基础与技能》演示文稿
二、电能
电能是指在一定的时间内电路元件或设备吸收或发出的 电能量,用符号W表示,其国际单位制为焦耳(J),电能的计 算公式为 W = P ·t = U I t
周绍敏《电工技术基础与技能》——7 初识正弦交流电ppt课件

《电工技术基础与技能》演示文稿
2.有效值矢量表示法
有效值矢量表示法是用正弦量的有效值作为矢量的模(长 度大小),仍用初相角作为矢量的幅角,例如
u 220 2 sin(t 53) V,i 0.41 2 sint A
则它们的有效值矢量图如图 7-4 所示。
图 7-4 正弦量的有效值矢量图举例
高 等 教 育 出 1版1 社 Higher Education Press
《电工技术基础与技能》演示文稿
就平均对电阻作功的能力来说,这两个电流(i 与 I)是等效
的,则该直流电流 I 的数值可以表示交流电流 i(t) 的大小,于
是把这一特定的数值 I 称为交流电流的有效值。理论与实验均
可证明,正弦交流电流 i 的有效值 I 等于其振幅(最大值)Im 的 0.707 倍,即
例如已知某正弦交流电流的最大值是 2 A,频率为 100 Hz, 设初相位为 60 ,则该电流的瞬时表达式为
i(t) = Imsin( t i0) = 2sin(2f t 60) = 2sin(628t 60)A
高 等 教 育 出 1版8 社 Higher Education Press
因为正弦交流电的有效值与最大值(振幅值)之间有确 定的比例系数,所以有效值、频率、初相这三个参数也可 以合在一起称为正弦交流电的三要素。
高 等 教 育 出 1版3 社 Higher Education Press
《电工技术基础与技能》演示文稿
三、相位和相位差
任意一个正弦量 y = Asin( t 0 )的相位为( t 0 ),
正弦量可以用最大值矢量或有效值 矢量表示,但通常用有效值矢量表示。
最大值矢量表示法是用正弦量的最 大作为矢量的模(大小)、用初相作为 矢量的辐角;有效值矢量表示法是用正 弦量的有效值作为矢量的模(大小)、仍 用初相作为矢量的辐角。
周绍敏电工技术基础与技能电磁感应ppt讲课文档

第六页,共67页。
当穿过闭合线圈的磁通发生变化时,线圈中有电流产生。
在一定条件下,由磁产生电的现象,称为电磁感应现象,产生 的电流称为感应电流。
第七页,共67页。
二、磁感应条件
上述几个实验,其实质上是通过不同的方法改变了穿过闭合回路 的磁通。因此,产生电磁感应的条件是:
当穿过闭合回路的磁通发生变化时,回路中就有感应电流产生。
匀强磁场中,线圈平面和磁场垂直,ab 边可以在线圈平面上自由滑动。
设 ab 长为 l,匀速滑动的速度为 v,在 t 时间内,由位置 ab 滑动到 ab ,利用电磁感应定律,ab 中产生的感应电动势大小
E B SB v ltB vl
t t t
即 EBvl
第十九页,共67页。
图 6-1 导线切割磁感线产生的感应电动势
6.3 电磁感应定律
6.4 自感现象
6.5 互感现象
6.6 互感线圈的同名端和串联
6.7 涡流和磁屏蔽
本章小结
本章总学时
第三页,共67页。
学时 1 1 2 1 1 1 1 1 1 10
第四页,共67页。
6 电磁感应
第一节 电磁感应现象
第二节 感应电流的方向 第三节 电磁感应定律 第四节 自感现象
第五节 互感现象
第十页,共67页。
1.楞次定律
当磁铁插入线圈时,原磁通在增加,线圈所产生的感应电流的磁 场方向总是与原磁场方向相反,即感应电流的磁场总是阻碍原磁通的 增加;
当磁铁拔出线圈时,原磁通在减少,线圈所产生的感应电流的磁场 方向总是与原磁场方向相同,即感应电流的磁场总是阻碍原磁通的减少 。
因此,得出结论: 当将磁铁插入或拔出线圈时,线圈中感应电流所产生的磁场,总是阻碍 原磁通的变化。这就是楞次定律的内容。 根据楞次定律判断出感应电流磁场方向,然后根据安培定则,即可 判断出线圈中的感应电流方向。
当穿过闭合线圈的磁通发生变化时,线圈中有电流产生。
在一定条件下,由磁产生电的现象,称为电磁感应现象,产生 的电流称为感应电流。
第七页,共67页。
二、磁感应条件
上述几个实验,其实质上是通过不同的方法改变了穿过闭合回路 的磁通。因此,产生电磁感应的条件是:
当穿过闭合回路的磁通发生变化时,回路中就有感应电流产生。
匀强磁场中,线圈平面和磁场垂直,ab 边可以在线圈平面上自由滑动。
设 ab 长为 l,匀速滑动的速度为 v,在 t 时间内,由位置 ab 滑动到 ab ,利用电磁感应定律,ab 中产生的感应电动势大小
E B SB v ltB vl
t t t
即 EBvl
第十九页,共67页。
图 6-1 导线切割磁感线产生的感应电动势
6.3 电磁感应定律
6.4 自感现象
6.5 互感现象
6.6 互感线圈的同名端和串联
6.7 涡流和磁屏蔽
本章小结
本章总学时
第三页,共67页。
学时 1 1 2 1 1 1 1 1 1 10
第四页,共67页。
6 电磁感应
第一节 电磁感应现象
第二节 感应电流的方向 第三节 电磁感应定律 第四节 自感现象
第五节 互感现象
第十页,共67页。
1.楞次定律
当磁铁插入线圈时,原磁通在增加,线圈所产生的感应电流的磁 场方向总是与原磁场方向相反,即感应电流的磁场总是阻碍原磁通的 增加;
当磁铁拔出线圈时,原磁通在减少,线圈所产生的感应电流的磁场 方向总是与原磁场方向相同,即感应电流的磁场总是阻碍原磁通的减少 。
因此,得出结论: 当将磁铁插入或拔出线圈时,线圈中感应电流所产生的磁场,总是阻碍 原磁通的变化。这就是楞次定律的内容。 根据楞次定律判断出感应电流磁场方向,然后根据安培定则,即可 判断出线圈中的感应电流方向。
周绍敏《电工技术基础与技能》PPT——4 电容

《电工技术基础与技能》演示文稿
【例 4-1】将一个电容为 6.8 F 的电容器接到电动势为 1000 V 的直流电源上,充电结束后,求电容器极板上所带 的电荷量。
解: 根据电容定义式 ,则 Q = CU = (6.8 106 1000) C = 0.0068 C
高等教育出版社 Higher Education Press
电容器所带电荷量与两极板间电压之比,称为电容器的电
容
CQ
U
电容反映了电容器储存电荷能力的大
小,它只与电容器本身的性质有关,与电
容器所带的电荷量及电容器两极板间的电
压无关。
图 4-2 平行板电容器
2.单位:电容的单位有F (法)、 F (微法)、 pF (皮法),
它们之间的关系为1 F = 10 6 F = 10 12 F
图 4-2 平行板电容器
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
二、电容
1.电容 C:如图 4-2 所示,当电容器极板上所带的电荷量 Q 增加或减少时,两极板间的电压 U 也随之增加或减少,但 Q 与 U 的比值是一个恒量,不同的电容器,Q / U 的值不同。
电容器充电后,极板间有电场和电压。 用一根导线将电容器两极板相连,两极板上正、负电荷 中和,电容器失去电荷量,这个过程称为电容器的放电过程。
高等教育出版社 Higher Education Press
《电工技术基础与技能》演示文稿
4.平行板电容器:由两块相互平行、靠得很近、彼此绝缘的 金属板所组成的电容器,称为平行板电容器。它是一种最简单的电 容器。图 4-2 给出了平行板电容器的示意图。
《电工技术基础与技能》演示文稿
电工基础课件周绍敏

目的:通过实验与实训,掌握电工基本操作技能,提高实践能力和综合素质。 内容:基础实验、综合实验和拓展实训。 方法:通过实验与实训平台,学生自主完成实验和实训任务,教师指导与评价。
基本电工仪表的使用和测量误差分析
仪表分类:电压表、电流表、万用表等 使用方法:正确连接线路,选择合适的量程,掌握读数方法 误差分析:仪表本身误差、测量操作误差、环境影响等 减小误差的方法:选择高精度仪表,规范操作流程,多次测量求平均值等
注意事项:在分析过程中 需要注意一些细节问题
应用范围:适用于各种不 同类型电路的分析
戴维南定理、诺顿定理等基本电路等效方法
戴维南定理:将一个有源二端网络等效为一个理想电压源和内阻串联的电路 诺顿定理:将一个有源二端网络等效为一个理想电流源和内阻并联的电路 等效电阻:戴维南定理中的等效电阻 诺顿定理的应用:用于分析复杂电路中的分支电流和电压降
集成电路的应用和设计方法
集成电路的基本组成 集成电路的分类及特点 集成电路的应用范围及优势 集成电路的设计流程和方法
基于EDA的电路设计方法简介
电路设计的基本 流程
EDA工具在电路 设计中的应用
基于EDA的电路 设计电工基础实践案例分析
家庭用电安全案例分析
案例一:乱拉电线导致的火灾
电路故障检查与排除方法
电压测量法:通过测量电路中各 点电压,判断故障原因
替代法:用已知完好的元件替代 可疑元件,判断故障原因
添加标题
添加标题
添加标题
添加标题
电阻测量法:通过测量电路中各 点电阻,判断故障原因
直接观察法:通过观察电路中是 否有明显损坏的元件或连接线, 判断故障原因
电气安全与电工操作规范
暂态电路的分析方法
初始值计算:根据换路定则 求出电路的初始值。
基本电工仪表的使用和测量误差分析
仪表分类:电压表、电流表、万用表等 使用方法:正确连接线路,选择合适的量程,掌握读数方法 误差分析:仪表本身误差、测量操作误差、环境影响等 减小误差的方法:选择高精度仪表,规范操作流程,多次测量求平均值等
注意事项:在分析过程中 需要注意一些细节问题
应用范围:适用于各种不 同类型电路的分析
戴维南定理、诺顿定理等基本电路等效方法
戴维南定理:将一个有源二端网络等效为一个理想电压源和内阻串联的电路 诺顿定理:将一个有源二端网络等效为一个理想电流源和内阻并联的电路 等效电阻:戴维南定理中的等效电阻 诺顿定理的应用:用于分析复杂电路中的分支电流和电压降
集成电路的应用和设计方法
集成电路的基本组成 集成电路的分类及特点 集成电路的应用范围及优势 集成电路的设计流程和方法
基于EDA的电路设计方法简介
电路设计的基本 流程
EDA工具在电路 设计中的应用
基于EDA的电路 设计电工基础实践案例分析
家庭用电安全案例分析
案例一:乱拉电线导致的火灾
电路故障检查与排除方法
电压测量法:通过测量电路中各 点电压,判断故障原因
替代法:用已知完好的元件替代 可疑元件,判断故障原因
添加标题
添加标题
添加标题
添加标题
电阻测量法:通过测量电路中各 点电阻,判断故障原因
直接观察法:通过观察电路中是 否有明显损坏的元件或连接线, 判断故障原因
电气安全与电工操作规范
暂态电路的分析方法
初始值计算:根据换路定则 求出电路的初始值。
周绍敏《电工技术基础与技能》PPT——1 认识电路精编版

电阻定律
R l
S
—— 制 成 电 阻 元 件 的 材 料 电 阻 率 , 国 际 单 位 制 单 位 为
·m(欧·米) ;
l ——绕制成电阻的导线长度,国际单位制为m (米) ;
S ——绕制成电阻的导线横截面积,国际单位制为 m2 (平方米);
R ——电阻值,国际单位制为 (欧) 。
经常用的电阻单位还有k (千欧 ) 、 M (兆欧) 1 k = 103 ; 1 M = 106
《电工技术基础与技能》演示文稿
3.电路的状态
(1)通路(闭路):电源与负载接通,电路中有电流通过, 电气设备或元器件获得一定的电压和电功率,进行能量转换。
(2)开路(断路):电路断开,电路中没有电流通过,又称 为空载状态。
(3)短路(捷路):电源两端或电路中某些部分被导线直接 相连,输出电流过大对电源来说属于严重过载,如没有保护措 施,电源或电器会被烧毁或发生火灾,所以通常要在电路或电 气设备中安装熔断器、保险丝等保险装置,以避免发生短路时 出现不良后果。
《电工技术基础与技能》演示文稿
(2)负载(耗能元件):
使用(消耗)电能的设备和 器件(如灯泡等用电器)。
(3)控制器件: (4)连接导线:
控制电路工作状态的器件或设备(如 开关等)。
将电器设备和元器件按一定方式连接 起来(如各种铜、铝电缆线等)。
高等教育出版社 Higher Education Press
P = UI 功率的国际单位制单位为 W(瓦特),常用的单位还有mW (毫瓦)、 kW (千瓦),它们与 W 的换算关系是
1 mW = 103 W; 1 kW = 103 W
高等教育出版社 Higher Education Press
电工基础 第二版 周绍敏主编 《叠加定理》 说课 PPT

2 . 学生根据下面的电路图进行实验。 实验 电路
实验要求:
根据实验电路图1,变 换开关S1、S2,形成三个 电路:电源E1单独工作, 测R1、R2、R3支路电流, 用I1’、I2’、I3’表示;电源 E2单独工作,测R1、R2、 R3支路电流,用I1’’、I2’’、 I3’’表示;两电源E1、E2共 同工作,测R1、R2、R3支 路电流,用I1、I2、I3表示。
第二节 支路电流法
第三节 叠加定理
第四节 戴维宁定理
第五节 两种电源模型 的等效变换
是本章节的一个重点内容之一。 是分析和计算复杂直流电路的支路电流或电压的一种重要方法。
有利于帮助学生简洁快速的求出某一支路的电流或电压。
培养学生的探索精神、逻辑思维能力和分析问题、解决问题的能力。
根据以上对教材和学生的分析,决定实施以“任务”为线索, 以“学生”为主体,以“教师”为主导的任务驱动法
注重例题选择的 典型性,最好能 涵盖所有的知识 点。 对教学内容进行 整合,使学生在 课堂教学中有更 多的参与。
总 教师提问 设想所提出的,正是叠加定理。 结 引导学生 在线性电路中,如果有多个线性独立电源同时作用时, 任何一个元件中的电流(或电压)等于各电源单独作用时, 在此元件中产生的电流(或电压)的代数和。
解题示范
用叠加定理求解复杂直流 电路,概括出用叠加定理解题
的步骤。
例题
如图,已知E1=12V,E2=6V, R1=2,R2=1 ,R3=2 , 用叠加定理求I3。
巩固练习
课堂练习,巩固叠加定理
设计意图
电路。US=10V,IS=2A,R1=2,R2=2,
R3=3,R4=1.求电流I1和I4。 通过练习,让学 生实际运用叠加定理解 题的步骤和方法求解复 杂直流电路,达到掌握 的目的。 学生自主思考解 答,教师巡回指导。小 组之间讨论,提高学生 应用知识的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 3-11 求开路电压 Uab
Uab = E2 + R2I1 = (6.2 + 0.4)V = 6.6 V = E0
(2) 将电压源短路去掉,如图 3-12 所示,求等效电阻 Rab:
Rab = R1∥R2 = 0.1 = R0
(3) 画出戴维宁等效电路,如 图 3-13 所示,求电阻 R 中的电流 I :
代入已知数据,解得:I1 = 4 A,I2 = 5 A,I3 = -1 A。 电流 I1 与 I2 均为正数,表明它们的实际方向与图中所标定的 参考方向相同,I3 为负数,表明它们的实际方向与图中所标定的参 考方向相反。
第三节 叠加定理
一、叠加定理的内容 二、应用举例
一、叠加定理的内容
动画 M3-1 叠加定理
通常所说的电压源一般是指理想电压源,其基本特性是其 电动势(或两端电压) US 保持固定不变 或是一定的时间函数 e(t),但电压源输出的电流却与外电路有关。
R1I1 - R2I2 + R3I3 = - E1 + E2 对于电阻电路来说,任何时刻,在任一闭合回路中,各段电 阻上的电压降代数和等于各电源电动势的代数和,即
RIE
2.利用 RI = E 列回路电压方程的原则
(1) 标出各支路电流的参考方向并选择回路绕行方向(既可沿 着顺时针方向绕行,也可沿着逆时针方向绕行);
第三章 复杂直流电路
第三章 复杂直流电路
教学重点:
1.掌握基尔霍夫定律及其应用,学会运用支路电流法分析计 算复杂直流电路。
2.掌握叠加定理及其应用。
3.掌握戴维宁定理及其应用。
4.掌握两种实际电源模型之间的等效变换方法并应用于解决 复杂电路问题。
教学难点:
1.应用支路电流法分析计算复杂直流电路。 2.运用戴维宁定理解决复杂直流电路问题。
(2) 电阻元件的端电压为 ±RI,当电流 I 的参考方向与回路 绕行方向一致时,选取“+”号;反之,选取“-”号;
(3) 电源电动势为 E,当电源电动势的标定方向与回路绕行 方向一致时,选取“+”号,反之应选取“-”号。
第二节 支路电流法
以各支路电流为未知量,应用基尔霍夫定律列出节点电流 方程和回路电压方程,解出各支路电流,从而可确定各支路(或 各元件)的电压及功率,这种解决电路问题的方法叫做支路电流 法。
(3)叠加时要注意电流或电压的参考方向,正确选取各分量 的正、负号 。
二、应用举例
【例 3-3】如图 3-8(a) 所示电路,已知 E1 = 17 V,E2 = 17 V,R1 = 2 ,R2 = 1 ,R3 = 5 ,试应用叠加定理求各支路电 流 I1、I2、I3 。
图 3-8 例题3 -3
解:(1) 当电源 E1 单独作用时,将 E2 视为短路,设 R23 = R2∥R3 = 0.83 。
图 3-2 电流定律的举例说明
在使用电流定律时,必须注意:
(1) 对于含有 n 个节点的电路,只能列出 (n - 1) 个独立的电 流方程。
(2) 列节点电流方程时,只需考虑电流的参考方向,然后再带 入电流的数值。
为分析电路的方便,通常需要在所研究的一段电路中事先选 定(即假定)电流流动的方向,叫做电流的参考方向,通常用“→” 号表示。
R3 R1 R3
I 2''
5
A
I 3''
R1 R1 R3
I 2''
2
A
(3) 当电源 E1、E2 共同作用时(叠加),若各电流分量与原 电路电流参考方向相同时,在电流分量前面选取“+”号,反之, 则选取“-”号:
I1 = I1′- I1″ = 1 A;I2 = - I2′ + I2″ = 2 A;I3 = I3′ + I3″ = 3 A
5.网络:在电路分析范 围内网络是指包含较多元件的 电路。
图 3-1 常用电路名词的说明
二、基尔霍夫电流定律(节点电流定律)
1.电流定律(KCL)内容
电流定律的第一种表述:在 任何时刻,电路中流入任一节点 中的电流之和,恒等于从该节点 流出的电流之和,即
I流入 I流出
例如图 3-2 中,在节点 A 上:
图 3-12 求等效电阻 Rab
I E0 6.6A2A R0R 3.3
图 3-13 求电阻 R 中的电流 I
【例3-5】如图 3-14 所示的电路, 已知 E = 8 V,R1= 3 ,R2 = 5 , R3 = R4 = 4 ,R5 = 0.125 ,试应用 戴维宁定理求电阻 R5 中的电流 I 。
第四节 戴维宁定理
一、二端网络的有关概念 二、戴维宁定理
一、二端网络的有关概念
1. 二端网络:具有两个引出端与外电路相连的网络。又叫
做一端口网络。
2. 无源二端网络:内部
不含有电源的二端网络。
3. 有源二端网络:内部
含有电源的二端网络。
图 3-9 二端网络
二、戴维宁定理
任何一个线性有源二端电阻网络,对外电路来说,总可以 用一个电压源 E0 与一个电阻 R0 相串联的模型来替代。电压源的 电动势 E0 等于该二端网络的开路电压,电阻 R0 等于该二端网络 中所有电源不作用时(即令电压源短路、电流源开路)的等效电 阻(叫做该二端网络的等效内阻)。该定理又叫做等效电压源定 理。
对于具有 b 条支路、n 个节点的电路,可列出(n - 1)个独 立的电流方程和 b-(n - 1)个独立的电压方程。
【例3-2】如图 3-7 所示电路,已知:E1 = 42 V,E2 = 21 V,R1 = 12 ,R2 = 3 ,R3 = 6 ,试求:各支路电流I1、I2、I3 。
图 3-7 例题 3-2
解:该电路支路数 b = 3、节点数 n = 2,所以应列出 1 个节点
电流方程和 2 个回路电压方程,并按照 RI = E 列回路电 I3
( 任一节点 )
(2) R1I1 + R2I2 = E1 + E2 ( 网孔 1 )
(3) R3I3 -R2I2 = -E2 ( 网孔 2 )
说明:电流 I2 与 I5 均为正数,表明它们的实际方向与图中 所标定的参考方向相同,I6 为负数,表明它的实际方向与图中 所标定的参考方向相反。
三、基尔霍夫电压定律(回路电压定律)
1. 电压定律(KVL)内容
在任何时刻,沿着电路中的 任一回路绕行方向,回路中各段 电压的代数和恒等于零,即
U0
如图 3-6 电路说明基夫尔霍 电压定律。
学时分配:
序号 1 2 3 4 5 6 7 8 9 10
内
容
第一节 基尔霍夫定律
第二节 支路电流法
实验 3.1 基尔霍夫定律的验证
第三节 叠加定理
实验 3.2 叠加定理的验证 第四节 戴维宁定理
实验 3.3 戴维宁定理的验证 第五节 实际电源模型之间的等效变换
本章小结
本章总学时
学时 3 1 2 2 2 2 2 2 2 18
(3) 根据戴维宁定理画出等效电路,如图 3-17 所示,求电阻
R5 中的电流
I5R 0E 0R 5 ( 1 4) A0.2A 5
图 3-16 求等效电阻 Rab
图 3-17 求电阻 R 中的电流 I
第五节 两种电源模型的等效变换
一、电压源 二、电流源 三、两种实际电源模型之间的等效变换
一、电压源
图 3-6 电压定律的举例说明
沿着回路 abcdea 绕行方向,有 Uac = Uab + Ubc = R1I1 + E1, Uce = Ucd + Ude = -R2I2 - E2, Uea = R3I3, 则
Uac + Uce + Uea = 0 即
R1I1 + E1 - R2I2 - E2 + R3I3 = 0 上式也可写成
【例 3-4】如图 3-10 所示电路,已知 E1 = 7 V,E2 = 6.2 V, R1 = R2 = 0.2 ,R = 3.2 ,试应用戴维宁定理求电阻 R 中的电 流I 。
图 3-10 例题 3-4
解:(1) 将 R 所在支路开路去 掉,如图 3-11 所示,求开路电压 Uab :
I1E R1 1 -E R2 20 0..4 8A2A
(2)对于网络 (电路)之间的电流关系,仍然可由电流定律判定。 如图 3-4 中,流入电路 B 中的电流必等于从该电路中流出的电流。
图 3-3 电流定律的应用举例(1)
图 3-4 电流定律的应用举例(2)
(3)若两个网络之间只有一 根导线相连,那么这根导线中一 定没有电流通过。
(4)若一个网络只有一根导 线与地相连,那么这根导线中一 定没有电流通过。
则 I1'R1E 1R2321 .87A 36A
I2
R3 R2R3
I1
5A
I'3
R2 R2R3
I1'
1A
(2) 当 电 源 E2 单 独 作 用 时 , 将 E1 视 为 短 路 , 设 R13 =R1∥R3 = 1.43 , 则
I 2''
E2 R 2 R13
17 2 .43
A
7
A
I 1''
图 3-14 例题 3-5
解:(1) 将 R5 所在支路开路去掉,如图 3-15 所示,求开路电 压 Uab:
I1I2R1E R2 1A I3I4R3E R4 1A
Uab = R2I2 -R4I4 = (5 - 4)V = 1 V = E0
图 3-15 求开路电压 Uab
(2) 将电压源短路去掉,如图 3-16 所示,求等效电阻 Rab: Rab = (R1∥R2) + (R3∥R4) = (1.875 + 2 ) = 3.875 = R0