高中数学第二章参数方程2.4一些常见曲线的参数方程学案新人教B版选修4_4
高中数学第二章参数方程2.3.1椭圆曲线的参数方程学案新人教B版选修4_4
2.3.1 椭圆的参数方程[对应学生用书P31][读教材·填要点]椭圆的参数方程中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a cos t ,y =b sin t ,0≤t ≤2π.中心在M 0(x 0,y 0)的椭圆x -x 02a 2+y -y 02b 2=1的参数方程是⎩⎪⎨⎪⎧x =x 0+a cos ty =y 0+b sin t 0≤t ≤2π.[小问题·大思维]1.中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b2=1的参数方程是什么?提示:由⎩⎪⎨⎪⎧y 2a2=sin 2φ,x2b 2=cos 2φ,得⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ.即参数方程为⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ(0≤φ≤2π).2.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中参数θ的意义与椭圆的参数方程中参数φ的意义相同吗?提示:圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(0≤θ≤2π)中的参数θ是动点M (x ,y )的旋转角,但在椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(0≤φ≤2π)中的φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA =a (或OB =b )的旋转角,称为离心角,不是OM 的旋转角.[对应学生用书P32]利用椭圆的参数方程求最值[例1] 已知椭圆x 2100+y 264=1有一内接矩形ABCD ,求矩形ABCD 的最大面积.[思路点拨] 本题考查椭圆的参数方程的求法及应用.解答此题需要设出A 点的坐标,然后借助椭圆的对称性即可知B ,C ,D 的坐标,从而求出矩形的面积的表达式.[精解详析] ∵椭圆方程为x 2100+y 264=1, ∴可设A 点的坐标为(10cos α,8sin α), 则|AD |=20|cos α|,|AB |=16|sin α|.∴S 矩形=|AB |·|AD |=20×16|sin α·cos α|=160|sin 2α|. ∵|sin 2α|≤1,∴矩形ABCD 的最大面积为160.利用椭圆的参数方程求函数(或代数式)最值的一般步骤为: (1)求出椭圆的参数方程;(2)利用椭圆中的参数表示已知函数(或代数式); (3)借助三角函数的知识求最值.1.已知实数x ,y 满足x 225+y 216=1,求目标函数z =x -2φ的最大值与最小值.解:椭圆x 225+y 216=1的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =4sin φ,0≤φ≤2π.代入目标函数得z =5cos φ-8sin φ=52+82cos(φ+φ0)=89cos(φ+φ0)⎝ ⎛⎭⎪⎫tan φ0=85. 所以z min =-89,z max =89.[例2] 由椭圆x 24+y 29=1上的点M 向x 轴作垂线,交x 轴于点N ,设P 是MN 的中点,求点P 的轨迹方程.[思路点拨] 本题考查椭圆的参数方程及轨迹方程的求法.解答此题需要先求出椭圆的参数方程,即M 点的坐标,然后利用中点坐标公式表示出P 的坐标即可求得轨迹.[精解详析] 椭圆x 24+y 29=1的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(0≤θ≤2π),∴设M (2cos θ,3sin θ),P (x ,y ),∴⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ2,消去θ,得x 24+4y 29=1,表示中心在原点,焦点在x 轴上的椭圆.利用椭圆的参数方程求轨迹,其实质是用θ表示点的坐标,再利用sin 2θ+cos 2θ=1进行消参.本题的解决方法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.2.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程.解:(1)由椭圆上点A 到F 1,F 2的距离之和是4,得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02, 所以x +12=cos θ,2y3=sin θ.消去θ,得(x +12)2+4y23=1.[例3] 已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,求证:|OP |·|OQ |为定值.[思路点拨] 本题考查椭圆的参数方程的求法及应用.解答本题需要先确定B 1,B 2两点的坐标,并用椭圆的参数方程表示出M 点的坐标,然后用参数表示出|OP |·|OQ |即可.[精解详析] 设M (2cos φ,sin φ)(0≤φ≤2π),B 1(0,-1),B 2(0,1), 则MB 1的方程:y +1=sin φ+12cos φ·x .令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φx ,∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.(1)利用椭圆的参数方程可把几何问题转化为三角问题,便于计算或证明.(2)利用参数方程解决此类问题时,要注意参数的取值范围.3.求证:椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0,0≤θ≤2π)上一点M 与其左焦点F 的距离的最大值为a +c (其中c 2=a 2-b 2).证明:M ,F 的坐标分别为(a cos θ,b sin θ),(-c,0). |MF |2=(a cos θ+c )2+(b sin θ)2=a 2cos 2θ+2ac cos θ+c 2+b 2-b 2cos 2θ =c 2cos 2θ+2ac cos θ+a 2=(a +c cos θ)2.∴当cos θ=1时,|MF |2最大,|MF |最大,最大值为a +c .[对应学生用书P33]一、选择题1.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(0≤θ≤2π)的离心率为( )A.25B.425 C.215 D.2125解析:选C 由椭圆的参数方程可知a =5,b =2. 所以c =52-22=21, 故椭圆的离心率e =ca =215,故选C. 2.曲线⎩⎨⎧x =23cos θ,y =32sin θ(0≤θ≤2π)中两焦点间的距离是()A.6B. 3 C .26D .2 3解析:选C 曲线化为普通方程为x 212+y 218=1,∴c =6,故焦距为2 6.3.若P (x ,y )是椭圆2x 2+3y 2=12上的一个动点,则x +22y 的最大值为( ) A .26B .4 C.2+6D .2 2解析:选D 椭圆为x 26+y 24=1,设P (6cos θ,2sin θ),x +22y =6cos θ+2sin θ=22sin ⎝⎛⎭⎪⎫θ+π3≤2 2. 4.已知曲线⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ0≤θ≤π上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是()A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125解析:选D 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34.所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.二、填空题5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(0≤θ≤2π)经过点⎝ ⎛⎭⎪⎫m ,12,则m =________. 解析:将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为普通方程为x 2+y 24=1,将点⎝ ⎛⎭⎪⎫m ,12代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.答案:±1546.曲线⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(0≤θ≤2π)的左焦点的坐标是________.解析:题中曲线的普通方程为x 225+y 29=1,左焦点为(-4,0).答案:(-4,0)7.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ0≤θ≤2π,恒有公共点,则b 的取值范围是________.解析:将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解. 令f (θ)=4sin θ-2cos θ =25sin (θ+φ)(tan φ=12).∴-25≤f (θ)≤2 5. ∴-25≤b ≤2 5. 答案:[-25,25] 8.直线x +y =23被椭圆⎩⎨⎧x =23cos φ,y =2sin φ0≤φ≤2π截得的弦长为________.解析:把⎩⎨⎧x =23cos φ,y =2sin φ代入x +y =23得3cos φ+sin φ= 3.即sin(φ+π3)=32,于是φ=0或φ=π3,得两交点M (23,0),N (3,3),|MN |=3+3= 6.答案: 6 三、解答题9.在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x +y的最大值.解:椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ,0≤φ≤2π.故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ≤2π.因此S =x +y =3cos φ+sin φ=2(32cos φ+12sin φ)=2sin(φ+π3). 所以当φ=π6时,S 取最大值2.10.P 为椭圆x 216+y 29=1上的点,求P 到直线l :3x -4y -24=0的距离的取值范围.解:设P 的坐标为(4cos θ,3sin θ),则P 到l 的距离为 d =|12cos θ-12sin θ-24|5=|122cos ⎝⎛⎭⎪⎫θ+π4-24|5=24-122cos ⎝⎛⎭⎪⎫θ+π45.当cos ⎝ ⎛⎭⎪⎫θ+π4=-1时,d 取最大值24+1225; 当cos ⎝ ⎛⎭⎪⎫θ+π4=1时,d 取最小值24-1225. 综上,所求的取值范围为⎝⎛⎭⎪⎫24-1225,24+1225. 11.椭圆x 2a 2+y 2b 2=1(a >b >0)与x 轴正半轴交于点A ,若这个椭圆上总存在点P ,使OP ⊥AP (O 为坐标原点),求离心率e 的取值范围.解:由题意,知A (a,0),若存在点P ,使OP ⊥AP ,则点P 必落在第一或第四象限,故根据椭圆的参数方程可设P (a cos φ,b sin φ),φ∈⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π2,2π. 因为OP ⊥AP , 所以k OP ·k AP =-1,即b sin φa cos φ·b sin φa cos φ-a=-1.所以b 2sin 2φ+a 2cos 2φ-a 2cos φ=0, 即(a 2-b 2)cos 2φ-a 2cos φ+b 2=0. 解得cos φ=b 2a 2-b 2或cos φ=1(舍去).由φ∈⎝ ⎛⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π2,2π,得0<cos φ<1, 所以0<b 2a 2-b2<1,把b 2=a 2-c 2代入,得0<a 2-c 2c 2<1,即0<1e2-1<1,解得22<e <1.。
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)
一、选择题1.点(, )A x y 是曲线2cos 13sin x y θθ=+⎧⎨=+⎩,(θ为参数)上的任意一点,则2 -x y 的最大值为( ) AB5C .3D3+2.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±3.4sin 4πθ⎛⎫=+ ⎪⎝⎭与直线122{12x y =-=(t 为参数)的位置关系是( ) A .相切 B .相离C .相交且过圆心D .相交但不过圆心4.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)225.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD6.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( ) A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆7.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x ty t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A.⎡⎢⎣⎦ B .0tan 60x = C.D .:::2x r r q q q e αα==8.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠9.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=10.直线320{20x tsin y tcos =+=- (t 为参数)的倾斜角是( )A .20B .70C .110D .16011.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b12.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.二、填空题13.点(),M x y 为此曲线()2234x y ++=上任意一点,则x y +的最大值是______.14.已知直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),则圆心C 到直线l 的距离为___________. 15.坐标系与参数方程选做题)直线截曲线(为参数)的弦长为___________ 16.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 17.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l 的参数方程是1123x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M (03l 与曲线C 的公共点为P ,Q ,则11PM QM+=_______ 18.直线:30l x y ++=被圆14cos :24sin x C y θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为______.19.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线220x y +=的最大距离为__________.20.圆1212x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)被直线0y =截得的弦长为__________.三、解答题21.已知直线l 过定点()1,1P ,且倾斜角为4π,以坐标原点为极点,x 轴的正半轴为极轴的坐标系中,曲线C 的极坐标方程为22cos 3ρρθ=+. (1)求曲线C 的直角坐标方程与直线l 的参数方程:(2)若直线l 与曲线C 相交于不同的两点A 、B ,求AB 及PA PB ⋅的值.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.23.在直角坐标系xOy 中,直线l 经过点()3,0P,倾斜角为6π,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求PA PB +的值.24.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x x y y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<).在以O 为极点,x 轴正半轴为极轴的极坐标中,曲线C :4cos ρθ=.(1)当4πα=时,求C 与l 的交点的极坐标; (2)直线l 与曲线C 交于A ,B 两点,线段AB 中点为(1,1)M ,求||AB 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用曲线的参数方程得32co sin -32s x y θθ=+-化简求解即可 【详解】由题()32cos 3sin 23-s x y θθθϕ=+-=++ 故当()cos 1θϕ+=时,2 -x y3+ 故选D 【点睛】本题考查参数方程求最值,考查辅助角公式,是基础题2.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
高中数学第2章参数方程22.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程学案北师大版选修4_4
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学习目标:1.了解圆锥曲线参数方程的推导过程.2.掌握圆和圆锥曲线的参数方程.(易错易混点)3.能用圆、椭圆参数方程解决有关问题.(难点)教材整理1 圆的参数方程 1.标准圆的参数方程已知一个圆的圆心在原点,半径为r ,设点P (x ,y )是圆周上任意一点,连结OP ,令OP 与x 轴正方向的夹角为α,则α唯一地确定了点P 在圆周上的位置.作PM ⊥Ox ,垂足为M ,显然,∠POM =α(如图).则在Rt△POM 中有OM =OP cos α,MP =OP sin α,即⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数).这就是圆心在原点,半径为r 的圆的参数方程.参数α的几何意义是OP 与x 轴正方向的夹角.2.一般圆的参数方程以(a ,b )为圆心,r 为半径的圆,普通方程为(x -a )2+(y -b )2=r 2,它的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数,a ,b 是常数).填空:(1)圆心为(2,1),半径为2的圆的参数方程是________. (2)在圆⎩⎪⎨⎪⎧x =-1+cos αy =sin α(α为参数)中,圆的圆心是________,半径是________.(3)圆⎩⎪⎨⎪⎧x =1+cos α,y =1+sin α(α为参数)上的点到O (0,0)的距离的最大值是________,最小值是________.[解析] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数).(2)由圆的参数方程知圆心为(-1,0),半径为1. (3)由圆的参数方程知圆心为(1,1),半径为1. ∵圆心到原点的距离为2,∴最大值为2+1, 最小值为2-1.[答案] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数)(2)(-1,0) 1 (3)2+1 2-1教材整理2 椭圆与双曲线的参数方程 1.椭圆的参数方程 (1)椭圆的中心在原点标准方程为x 2a 2+y 2b 2=1,其参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).参数φ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角. (2)椭圆方程不是标准形式其方程也可表示为参数方程的形式,如(x -x 0)2a2+(y -y 0)2b2=1(a >b >0),参数方程可表示为⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数).2.双曲线的参数方程当以F 1,F 2所在的直线为x 轴,以线段F 1F 2的垂直平分线为y 轴建立直角坐标系,双曲线的普通方程为x 2a 2-y 2b2=1(a >0,b >0).此时参数方程为 (φ为参数).其中φ∈[0,2π)且φ≠π2,φ≠3π2.判断(正确的打“√”,错误的打“×”)(1)椭圆参数方程中,参数φ的几何意义是椭圆上任一点的离心角.( ) (2)在椭圆上任一点处,离心角和旋转角数值都相等.( ) (3)在双曲线参数方程中,参数φ的范围为[0,2π).( ) [解析] (1)√ 椭圆中,参数φ的几何意义就是离心角.(2)× 在四个顶点处是相同的,在其他任一点处,离心角和旋转角在数值上都不相等. (3)× 双曲线中,参数φ的范围是φ∈[0,2π)且φ≠π2,φ≠3π2.[答案] (1)√ (2)× (3)×【例1】 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[精彩点拨] 根据圆的特点,结合参数方程概念求解. [尝试解答] 如图所示,设圆心为O ′,连结O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ,∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.1.确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.2.由于选取的参数不同,圆有不同的参数方程.1.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.[解] 设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数),这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.【例2】 如图所示,已知点M 是椭圆a 2+b 2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.[精彩点拨] 本题可利用椭圆的参数方程,把面积的最大值问题转化为三角函数的最值问题求解.[尝试解答] M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,由椭圆x 2a 2+y 2b2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),故可设M (a cos φ,b sin φ),其中0<φ<π2,因此,S 四边形MAOB =S △MAO +S △MOB=12OA ·y M +12OB ·x M =12ab (sin φ+cos φ)=22ab sin ⎝⎛⎭⎪⎫φ+π4.所以,当φ=π4时,四边形MAOB 面积的最大值为22ab .本题将不规则四边形的面积转化为两个三角形的面积之和,这是解题的突破口和关键,用椭圆的参数方程,将面积表示为参数的三角函数求最大值,思路顺畅,解法简捷,充分体现了椭圆的参数方程在解决与椭圆上点有关最值问题时的优越性.2.(2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.[解] (1)因为-1<1-t 21+t 2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.【例312|PF 1|·|PF 2|=|OP |2.[精彩点拨] 将双曲线方程化为参数方程⎩⎪⎨⎪⎧x =1cos φ,y =tan φ,再利用三角运算进行证明.[尝试解答] 因为双曲线的方程为x 2-y 2=1, 所以设P ⎝⎛⎭⎪⎫1cos φ,tan φ.∵F 1(-2,0),F 2(2,0), ∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ=2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1, ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos 2φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1.与双曲线上点有关的问题,常利用其参数方程转化为三角的计算与证明问题. 2.对由参数方程给出的双曲线确定其几何性质问题,常将其化为普通方程后,再求解.3.求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.[证明] 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).[探究问题1.给定参数方程⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中a ,b 是常数.(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么? (2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?[提示] (1)参数方程表示的曲线是以(a ,b )为圆心,r 为半径的圆(r ≠0). (2)参数方程表示的曲线是过(a ,b )点,且倾斜角为α的直线. 2.圆的参数方程中,参数有什么实际意义?[提示] 在圆的参数方程中,设点M 绕点O 转动的角速度为ω(ω为常数),转动的某一时刻为t ,因此取时刻t 为参数可得圆的参数方程为:⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数),此时参数t 表示时间.若以OM转过的角度θ(∠M 0OM =θ)为参数,可得圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),此时θ具有明显的几何意义.3.利用圆的参数方程表示其上任意点坐标时有什么优越性?[提示] 将其横纵坐标只用一个参数(角)来表示,可将与点的坐标有关的问题转化为三角问题求解.【例4】 设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C .(1)判断C 与直线x +3y -2=0的位置关系; (2)求曲线C 上的动点到原点O 的距离的最小值;(3)点P 为曲线C 上的动点,当|OP |最小时(O 为坐标原点),求点P 的坐标; (4)点M 是曲线C 上的动点,求其与点Q (-1,-3)连线中点的轨迹.[精彩点拨] 本题考查圆的参数方程的应用,以及运算和转化与化归能力. (1)利用圆心到直线的距离与半径的关系判断. (2)设P 的坐标表示出|OP |,利用三角函数知识求最值. (3)利用(2)取最小值的条件即可.(4)设出点M 的坐标,进而表示出MQ 中点坐标,即得轨迹的参数方程.[尝试解答] (1)曲线C 是以(1,3)为圆心,半径为1的圆,则圆心(1,3)到直线x +3y -2=0的距离为|1+3×3-2|12+(3)2=1,故直线和圆相切. (2)设圆上的点P (1+cos θ,3+sin θ)(0≤θ<2π). |OP |=(1+cos θ)2+(3+sin θ)2=5+4cos ⎝⎛⎭⎪⎫θ-π3, 当θ=4π3时,|OP |min =1.(3)由(2)知,θ=4π3,∴x =1+cos 4π3=12,y =3+sin4π3=32,P ⎝ ⎛⎭⎪⎫12,32. (4)设MQ 的中点为(x ,y ).∵M (1+cos θ,3+sin θ),Q (-1,-3), ∴⎩⎪⎨⎪⎧x =1+cos θ-12=12cos θ,y =-3+3+sin θ2=12sin θ(θ为参数).所以中点轨迹是以原点为圆心,12为半径的圆.1.与圆的参数方程有关的问题求解时,可直接利用参数方程求解,也可转化为普通方程问题求解.2.与圆上点有关的距离最值问题,需建立目标函数求解时,常利用圆的参数方程,将圆上的点用角表示,从而将待求最值,转化为三角函数的最值问题求解,但要注意参数θ的取值范围.4.如图,设矩形ABCD 的顶点C 的坐标为(4,4),点A 在圆x 2+y 2=9(x ≥0,y ≥0)上移动,且AB ,AD 两边分别平行于x 轴,y 轴.求矩形ABCD 面积的最小值及对应点A 的坐标.[解] 设A (3cos θ,3sin θ)(0<θ<90°),则|AB |=4-3cos θ,|AD |=4-3sin θ, ∴S =|AB |·|AD |=(4-3cos θ)(4-3sin θ) =16-12(cos θ+sin θ)+9cos θsin θ.令t =cos θ+sin θ(1<t ≤2),则2cos θsin θ=t 2-1.∴S =16-12t +92(t 2-1)=92t 2-12t +232=92⎝ ⎛⎭⎪⎫t -432+72,∴t =43时,矩形ABCD 的面积S取得最小值72.此时⎩⎪⎨⎪⎧cos θ+sin θ=43,cos θsin θ=718,解得⎩⎪⎨⎪⎧cos θ=4±26,sin θ=4∓26.∴对应点A 的坐标为⎝ ⎛⎭⎪⎫2+22,2-22或 ⎝⎛⎭⎪⎫2-22,2+22.1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)[解析] 由圆的参数方程知,圆心为(2,0). [答案] D2.圆心在点(-1,2),半径为5的圆的参数方程为( ) A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B .⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D .⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π)[解析] 圆心在点C (a ,b ),半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).[答案] D3.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.[解析] 由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. [答案] 234.双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.[解析] 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0).[答案] (-5,0),(5,0)5.能否在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解] 设椭圆的参数方程为⎩⎨⎧x =4cos φ,y =23sin φ(φ是参数,0≤φ<2π).则d =|4cos φ-43sin φ-12|5=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫φ+π3-3,当cos ⎝⎛⎭⎪⎫φ+π3=1时, 即φ=53π时,d min =455,此时对应的点为(2,-3).。
高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-
二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图221,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图221【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图222所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图222【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
高中数学 第二章 参数方程 2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学案 北师大版选修44
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M(x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M的位移,可以用有(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),a,=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.对应学生用书P24][例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+t cos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a2+b 2=1时,|t |a 2+b 2≠1时,|t |的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆3+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D t t .则参数方程为⎩⎪⎨⎪⎧x =1+-t π3,y =5+-tπ3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t ,y =-t ,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110°,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +2++2t -2= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos 5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。
高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-
第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
人教版新课标B版高中数学所有目录和知识点
人教版新课标B版高中数学所有目录和知识点必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算章复习与测试本章小结第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(i)2.4函数与方程章复习与测试本章小结第三章基本初等函数(i)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(ii)章复习与测试本章小结第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例章复习与测试本章小结第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性章复习与测试本章小结第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用章复习与测试本章小结必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系章复习与测试第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系章复习与测试必修三必修四第一章基本初等函数(ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质章复习与测试第二章平面向量2.1向量的线性运算2.2向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用章复习与测试第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化.章复习与测试必修五第一章解斜角三角形1.1正弦定理和余弦定理1.2应用举例章复习与测试第二章数列2.1数列2.2等差数列2.3等比数列章复习与测试第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线.章复习与测试选修二(2-1)第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.章综合第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线2.5直线与圆锥曲线章综合第三章空间向量与立体几何3.1空间向量及其运算3.2空间向量在立体几何中的应用章综合选修二(2-2)选修4-1几何证明选修4-4坐标系与参数方程选修4-5不等式选讲第一章导数及其应用领域1.1导数1.2导数的运算1.3导数的应用领域1.4定分数与微积分基本定理章备考与测试第二章推理小说与证明2.1合情推理小说与演绎推理2.2直接证明与间接证明2.3数学归纳法章备考与测试第三章数系的扩展与复数3.1数系的扩展与复数的概念3.2复数的运算章备考与测试报读二(2-3)第一章计数原理1.1基本计数原理1.2排序与女团1.3二项式定理章备考与测试第二章概率2.1线性型随机变量及其原产列2.2条件概率与事件的独立性2.3随机变量的数学特征2.4正态分布章备考与测试第三章统计数据案例3.1独立性检验3.2重回分析章备考与测试每章节主要内容:必修课程1子集1.如何区分φ、{φ}、0、{();}?2.子集的运算存有哪些常用性质与结论?3.对应、态射、函数有何关系?必修课程1函数4.求函数解析式有哪些常用方法?5.判断函数单调性有哪些常用方法?6.函数的单调性有哪些应用?7.判断函数奇偶性要注意什么?判断函数奇偶性常用的方法有哪些?8.函数的奇偶性有哪些性质?9.函数一定存在反函数么?什么样的函数存在反函数?10.如何谋二次函数在区间上的最值?11.函数的零点就是函数的图像与x轴的交点吗?它与方程的根有何关系?12.分数指数幂与根式有何关系?13.指数式ab=n与对数式logon中,a,6,n三者之间有何关系?14.指数函数、对数函数存有哪些常见问题?必修课程2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式有哪些限制条件?22.两直线平行、垂直的等价条件是什么?23.什么是直线系?常见的直线系有哪些?有何应用?24.平面解析几何中常用的等距公式存有哪些?25.求圆的方程常用的方法有哪些?26.直线与圆有几种位置关系?如何判断?27.圆与圆存有几种边线关系?如何认定?28.可以写下过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在充分反映总体时存有什么意义?必修3概率39.频率和概率有何关系?40.互斥事件与对立事件有何关系?如何判断互斥事件与对立事件?15.幂函数的图像存有哪几种形式?存有哪些性质?必修2立体几何16.如何证明线线、线面、面面之间的平行和横向?17.四面体中有哪些常见的数量关系和位置关系?18.立体几何中划分与补形存有哪些常用技巧?19.经度、纬度分别指的是什么角?如何求两点间的球面距离?必修2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式存有哪些管制条件?22.两直线平行、横向的等价条件就是什么?23.什么就是直线系则?常用的直线系则存有哪些?有何应用领域?24.平面解析几何中常用的对称公式有哪些?25.求圆的方程常用的方法存有哪些?26.直线与圆存有几种边线关系?如何推论?27.圆与圆有几种位置关系?如何判定?28.会写出过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在反映总体时有什么意义?必修课程3概率39.频率和概率有何关系?40.不相容事件与矛盾事件有何关系?如何推论不相容事件与矛盾事件?……必修4三角函数必修4平面向量必修5解三角形必修5数列必修5不等式报读2-1(报读1-1)直观逻辑报读2-1(报读1-1)圆锥曲线报读2-1空间向量、角度及距离报读2-2导数、微积分定理选修2-2(选修1-2)推理与证明复数选修2-3排列组合、二项式定理、数据分布选修4-1几何证明报读4-4坐标系与参数方程报读4-5不等式选讲。
(完整word版)高中数学新教材人教版目录
高中数学目录必修一第一章1.1 会合与会合的表示方法1.1.1 会合的观点1.1.2 会合的表示方法第二章2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单一性2.1.4 函数的奇偶性2.1.5 用计算机作函数图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图像2.2.2 二次函数的性质与图像2.3 函数的应用( 1)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用( 2)必修二第一章立体几何初步1.1 空间几何体1.1.1 组成空间几何体的基本元素1.1.2 棱柱棱锥棱台的构造特点1.1.3 圆柱圆锥圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱棱锥棱台和球的表面积1.1.7 柱锥台和球的体积1.2 点线面之间的地点关系1.2.1 平面的基天性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面分析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的观点与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的地点关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的地点关系2.3.4 圆与圆的地点关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点距离公式必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的观点1.1.2 程序框图1.1.3 算法的三种基本逻辑构造和框图表示1.2 基本算法语句1.2.1 赋值输入输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法事例第二章统计2.1 随机抽样2.1.1 简单的随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的采集2.2 用样本预计整体2.2.1 用样本的频次散布预计整体的散布2.2.2 用样本的数字特点预计整体的数字特点2.3 变量的有关性2.3.1 变量间的互相关系2.3.2 两个变量的线性有关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本领件空间3.1.3 频次与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用必修四第一章基本的初等函数(2)1.1 随意角的观点与弧度制1.1.1 角的观点的推行1.1.2 弧度制和弧度制与角度制的换算1.2 随意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 引诱公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的观点2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件和轴上向量坐标运算2.2 向量的分解和向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数目积2.3.1 向量数目积的物理背景与定义2.3.2 向量数目积的运算律2.3.3 向量数目积的坐标运算与胸怀公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦余弦和正切3.3 三角函数的积化和差与和差化积必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n 项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实质应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面地区3.5.2 简单线性规划选修 2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联络词1.2.1 且与或1.2.2 非(否认)1.3 充足条件必需条件与命题的四种形式1.3.1 推出与充足条件必需条件1.3.2 命题的四种形式第二章圆锥曲线方程2.1 曲线方程2.1.1 曲线与方程的观点2.1.2 由曲线求它的方程由方程研究曲线性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与几何体3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数目积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其胸怀3.2.5 距离(选学)选修 2-2第一章导数及其应用1.1 导数1.1.1 函数的均匀变化率1.1.2 刹时速度与导数1.1.3 导数的几何1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法例1.3 导数的应用1.3.1 利用导数判断函数的单一性1.3.2 利用导数研究函数的极值1.3.3 导数的实质应用1.4 定积分与微积分的基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与剖析法2.2.2 反证法2.3 数学概括法2.3.1 数学概括法2.3.2 数学概括法应用举例第三章数系的扩大与复数3.1 数系的扩大与复数的观点3.1.1 实数系3.1.2 复数的观点3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法选修 2-3第一章计数原理1.1 基本计数原理1.2 摆列与组合1.2.1 摆列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 失散型随机变量及其散布列2.1.1 失散型随机变量2.1.2 失散型随机变量的散布列2.1.3 超几何散布2.2 条件概率与实践的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项散布2.3 随机变量的数字特点2.3.1 失散型随机变量的数学希望2.3.2 失散型随机变量的方差2.4 正态散布第三章统计事例3.1 独立性查验3.2 回归剖析选修 4-4第一章坐标系1.1 直角坐标系平面上的伸缩变换1.1.1 直角坐标系1.1.2 平面上的伸缩变换1.2 极坐标系1.2.1 平面上点的极坐标1.2.2 极坐标与直角坐标的关系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.4.1 圆心在极轴上且过极点的圆1.4.2 圆心在点( a,∏ /2 )处且过极点的圆1.5 柱坐标系和球坐标系1.5.1 柱坐标系1.5.2 球坐标系第二章参数方程2.1 曲线的参数方程2.1.1 抛射体的运动2.1.2 曲线的参数方程2.2 直线与圆的参数方程2.2.1 直线的参数方程2.2.2 圆的参数方程2.3 圆锥曲线的参数方程2.3.1 椭圆的参数方程2.3.2 双曲线的参数方程2.3.3 抛物线的参数方程2.4 一些常有曲线的参数方程2.4.1 摆线的参数方程2.4.2 圆的渐开线的参数方程。
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结。
2017年高中数学第2讲参数方程第2节直线和圆锥曲线的参数方程第3课时椭圆的参数方程课件北师大版选修4-4
1.椭圆的参数方程
普通方程 ax22+by22=1 (a>b>0) ay22+bx22=1 (a>b>0)
参数方程
x= acos φ y= bsin φ
(φ为参数)
x=bcos φ y=asin φ
(φ为参数)
2.椭圆中参数φ的意义与圆中参数θ的意义的区别是点M所 对应的圆的半径OA(或OB)的____旋__转__角_,称为____离__心__角_,不 是OM的_____旋__转__角_.
(2)利用asin θ+bcos θ= a2+b2sin(θ+φ)化简,运用三角 函数的有界性求最值.
[变式训练]
1.求椭圆
x2 9
+
y2 4
=1的内接矩形中,面积最大
的矩形的长和宽及其最大面积.(如图)
解析:
已知椭圆
x2 9
+y42
=1的参数方程为
x=3cosφ, y=2sinφ
(φ
消去参数θ得到x-422+(y-1)2=1.
[规律方法] 本题的解法体现了椭圆的参数方程对于解决 相关问题的优越性,运用参数方程显得很简单,运算更简便.
[变式训练] 2.已知线段AB=4,直线l垂直平分AB,垂足 为点O,在属于l并且以O为起点的同一射线上取两点P,Q,使 OP·OQ=9,求直线AP与直线BQ的交点M的轨迹方程.
第三课时 椭圆的参数方程
[学习目标]
1.掌握椭圆的参数方程,并解决一些长度、面积问题. 2.掌握利用椭圆的性质来解决实际问题. 3.通过对具体问题的解决,体会运用数形结合的思想方 法去分析问题和解决问题.
[学法指要]
1.理解椭圆参数方程的意义.(重点) 2.常与方程、三角函数和圆锥曲线结合命题.(难点)
最新北师大版高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)
一、选择题1.设直线1l 的参数方程为113x ty t =+⎧⎨=+⎩(t 为参数),直线2l 的方程为34y x =+,则1l 与2l 的距离为( )A .1BCD .22.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD3.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±4.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( ) A.BC.D.25.直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2212x y -+=上,则ABP ∆面积的取值范围是A .[]26,B .[]39,C. D.6.直线4x 1t 5(t 3y 1t5⎧=+⎪⎪⎨⎪=-+⎪⎩为参数)被曲线πρθ4⎛⎫=+ ⎪⎝⎭所截的弦长为( ) A .15B .710C .75D .577.曲线的参数方程为2211x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),则曲线是( ).A .抛物线B .双曲线的一支C .圆D .直线8.直线34x ty t=-⎧⎨=+⎩,(t 为参数)上与点()3,4P 的距离等于2的点的坐标是( )A .()4,3B .()4,5-或()0,1C .()2,5D .()4,3或()2,59.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为原来的34,得到的曲线2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=10.曲线C 的参数方程为{2x sin cos y sin cos αααα=-=(α为参数),则它的普通方程为( )A .21y x =+B .21y x =-+C .21y x =-+, 2,2x ⎡⎤∈-⎣⎦D .21y x =+, 2,2x ⎡⎤∈-⎣⎦11.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) A .14B .214C .2D .2212.极坐标系中,由三条曲线围成的图形的面积是( )A .B .C .D .二、填空题13.设,P Q 分别为直线,62x t y t =⎧⎨=-⎩(为参数)和曲线C :15,25x y θθ⎧=⎪⎨=-⎪⎩(θ为参数)的点,则PQ 的最小值为_________.14.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐标方程为()4R πθρ=∈,它与曲线1222x cos y sin αα=+⎧⎨=+⎩(α为参数),相交于两点A 和 B ,则AB =__________.15.直线170{?270x tsin y tcos =+=+(t 为参数)的倾斜角为_________16.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l的参数方程是112x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M(0l 与曲线C 的公共点为P ,Q ,则11PM QM +=_______ 17.直线:30l x y ++=被圆14cos :24sin x C y θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为______.18.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最大距离是__________________.19.已知圆C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 2ρθ=,则直线l 与圆C 的公共点的直角坐标为 .20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.[选修4—4:坐标系与参数方程]以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是3x ty t =⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.22.在极坐标系中,圆C 的极坐标方程为2cos ρθ=.以极点O 为原点,极轴Ox 所在的直线为x 轴建立平面直角坐标系,直线l的参数方程为2(12x t y t ⎧=⎪⎪⎨⎪=⎪⎩为参数),求直线l 被圆C 截得的弦长.23.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x ty t =+⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为(0)6πθρ=>. (1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积.24.在平面直角坐标系xOy 中,直线l经过点(P -,其倾斜角为α,设曲线S 的参数方程为1x k y ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=. (1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围. 25.在直角坐标系xOy 中,直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<),以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为24cos 6sin 120ρρθρθ--+=,已知直线l 与曲线C 交于不同的两点A ,B .(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设()1,2P ,求22PA PB +的取值范围.26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C消掉参数t ,得出直线1l 的普通方程,再由两平行线的距离公式求解即可. 【详解】∵1:32l y x =-,234l x =+,∴105d ===. 故选:C 【点睛】本题主要考查了参数方程化普通方程,求两平行线间的距离,属于中档题.2.C解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.3.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
高中数学第二讲参数方程2.4渐开线与摆线课件新人教A版选修4_4
-6-
四 渐开线与摆线
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画
“×”. (1)只有圆才有渐开线. ( × )
(2)渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以
变式训练 1 已知圆的渐开线的参数方程是
������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数),则此渐开线对应的基圆的直径
是
,当参数 φ=π4时对应的曲线上的点的坐标
为
.
答案:2
√2 2
+
√2π 8
,
√2 2
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
变式训练 若半径为5的圆的摆线上某点的纵坐标为0,则其横坐
标可能是( )
A.π B.5π C.10πD.12π
������ = 5������-5sin������,
π4,则对应
的点的直角坐标分别为 .
答案:
2π 3
-√3,1
,
π 2
-√2,2-√2
-12-
四 渐开线与摆线 探究一
探究二
思维辨析
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 2.3.1 椭圆的参数方程》9
椭圆的参数方程教学设计绥中一高中王红静一、教材分析1、内容人民教育出版社B版数学选修4-4第二章第三大节第一节:椭圆的参数方程2、地位与作用参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。
本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。
在建立椭圆方程过程中,展示引进参数的意义和作用。
以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。
二、教学目标1、知识与技能:(1)理解椭圆的参数方程及其参数的几何意义。
(2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。
(3)会根据条件构造参数方程实现问题的转化,达到解题的目的。
2、过程和方法:(1)通过以熟悉的椭圆为载体,进一步学习建立参数方程的基本步骤,加深对参数方程的理解,同时引导学生从不同角度认识椭圆的几何性质,体会参数对研究曲线问题的作用。
(2)通过利用信息技术从参数连续变化而形成椭圆的过程中认识参数的几何意义。
3、情感、态度和价值:通过师生共同探究进一步学习建立参数方程的基本步骤,加深对参数方程的理解,体会参数法的应用。
同时引导学生从不同角度认识椭圆的几何性质。
以及用参数方程解决某些曲线问题的过程中分享体会类比思想、数形结合的思想、构造转化思想。
培养学生用“联系”的观点看问题,进一步增强“代数”与“几何”的联系,培养学生学好数学的信心。
三、教学重点、难点重点:椭圆参数方程的推导参数方程与普通方程的相互转化难点:1椭圆的参数方程与普通方程的互化;2椭圆参数方程的建立及应用四、学情分析“坐标法 ”是现代数学最重要的基本思想之一。
坐标系是联系几何与代数的桥梁,是数形结合的有力工具。
虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。
高中数学第二章参数方程2.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程课件北师大版选修4_4
圆 , 则 圆 心 (1 , 3 ) 到 直 线 x + 3 y - 2 = 0 的 距 离 为
|1+ 3× 12+
33-2 2|=1,故直线和圆相切.
(2)设圆上的点 P(1+cos θ, 3+sin θ)(0≤θ<2π).
|OP|= 1+cos θ2+ 3+sin θ2= 当 θ=43π时,|OP|min=1.
的参数方程为xy==23scions
φ, φ
(φ 为参数),
设 P(x,y)是椭圆上在第一象限内的一点,
则 P 点的坐标是 P(3cos φ,2sin φ),
内接矩形面积为
S=4xy=4×3cos φ·2sin φ=12sin 2φ.
当 sin 2φ=1,即 φ=45°时,面积 S 有最大值 12,
这时 x=3cos 45°=322,y=2sin 45°= 2.
故面积最大的内接矩形的长为 3 2,宽为 2 2,最大面积为
12.
与椭圆上的动点 M 有关的最值、定值、轨迹等 问题一般利用其参数方程求解.
2.在平面直角坐标系 xOy 中 ,设 P(x,y)是椭圆x32+y2=1 上一个动点,求 x+y 的最大值. 解:椭圆方程x32+y2=1 的参数方程为xy==sin3cθos θ, (θ 为参数). 设椭圆上任一点 P( 3cos θ,sin θ), 则 x+y= 3cos θ+sin θ=2sinθ+π3. ∵sinθ+π3∈[-1,1], ∴当 sinθ+π3=1 时,x+y 取最大值 2.
x=rcos α, OM=OPcos α,MP=OPsin α,即 y=rsin α (α 为参
数).这就是圆心在原点、半径为 r 的圆的参数方程.参数
α 的几何意义是 OP 与 x 轴正方向的夹角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4一些常见曲线的参数方程[对应学生用书P37][读教材·填要点]1.摆线的概念一圆周沿一直线无滑动滚动时,圆周上的一定点的轨迹称为摆线,摆线又叫旋轮线. 2.渐开线的概念把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆.3.圆的渐开线和摆线的参数方程(1)摆线的参数方程:⎩⎪⎨⎪⎧x =a t -sin t ,y =a -cos t.(2)圆的渐开线方程:⎩⎪⎨⎪⎧x =at +t sin t ,y =a t -t cos t.[小问题·大思维]1.摆线的参数方程中,字母a 和参数t 的几何意义是什么? 提示:字母a 是指定圆的半径,参数t 是指圆滚动时转过的角度. 2.渐开线方程中,字母a 和参数t 的几何意义是什么?提示:字母a 是指基圆的半径,参数t 是指OA ―→和x 轴正向所成的角(A 是绳拉直时和圆的切点).[对应学生用书P38][例1] 已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程.[思路点拨] 本题考查圆的摆线的参数方程的求法.解答本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数据代入即可.[精解详析] 令y =0,可得a (1-cos t )=0, 由于a >0,即得cos t =1,所以t =2k π(k ∈Z ).代入x =a (t -sin t ),得x =a (2k π-sin 2k π). 又因为x =2,所以a (2k π-sin 2k π)=2, 即得a =1k π(k ∈Z ). 又a >0,所以a =1k π(k ∈N +). 易知,当k =1时,a 取最大值为1π.代入即可得圆的摆线的参数方程为 ⎩⎪⎨⎪⎧x =1πt -sin t ,y =1π-cos t(t 为参数).由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.要确定圆的半径,通常的做法有:①根据圆的性质或参数方程(普通方程)确定其半径;②利用待定系数法,将摆线上的已知点代入参数方程,从而确定半径.1.圆的半径为r ,沿x 轴正向滚动,圆与x 轴相切于原点O .圆上点M 起始处沿顺时针已偏转φ角.试求点M 的轨迹方程.解:x M =r ·θ-r ·cos(φ+θ)-π2=r [θ-sin(φ+θ)],y M =r +r ·sin ⎝ ⎛⎭⎪⎫φ+θ-π2=r [1-cos(φ+θ)].∴点M 的参数方程为⎩⎪⎨⎪⎧x =r [θ-φ+θ,y =r [1-φ+θ(θ为参数).[例2] 求半径为4的圆的渐开线的参数方程.[思路点拨] 本题考查圆的渐开线的参数方程的求法.解答本题需要搞清圆的渐开线的参数方程的一般形式,然后将相关字母的取值代入即可.[精解详析] 以圆心为原点O ,绳端点的初始位置为M 0x 轴正方向,建立坐标系.设渐开线上的任意点M (x ,y ),绳拉直时和圆的切点为A ,故OA ⊥AM .按渐开线定义,AM 0的长和线段AM x 轴正向所夹的角为θ(以弧度为单位),则|AM |=AM 0=4θ.作AB 垂直于x 轴,过M 点作AB 的垂线.由三角和向量知识,得(4cos θ,4sin θ).由几何知识知∠MAB =θ,(4θsin θ,-4θcos θ),=(4cos θ+4θsin θ,4sin θ-4θcos θ)=(4(cos θ+θsin θ),4(sin θ-θcos θ)).(x ,y ),所以有⎩⎪⎨⎪⎧x =θ+θsin θ,y =θ-θcos θ这就是所求圆的渐开线的参数方程.解本题,关键是根据渐开线的生成过程,归结到向量知识和三角的有关知识,建立等式关系.用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为M (x ,y ). (2)取定运动中产生的某一角度为参数.(3)用三角、几何知识写出相关向量的坐标表达式.(4)用向量运算得到OM ―→的坐标表达式,由此得到轨迹曲线的参数方程.2.渐开线⎩⎪⎨⎪⎧x =t +t sin t ,y =t -t cos t(0≤t ≤2π)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的焦点坐标为________________.解析:根据圆的渐开线方程可知基圆的半径a =6,其方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为⎝ ⎛⎭⎪⎫12x 2+y 2=36,整理可得x 2144+y 236=1.这是一个焦点在x 轴上的椭圆,其中c =a 2-b 2=144-36=63,故焦点坐标为(63,0)和(-63,0).答案:(63,0),(-63,0)[例3] 设圆的半径为8,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M ,它随圆的滚动而改变位置.写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上点的纵坐标y 的最大值,说明该曲线的对称轴.[思路点拨] 本题考查摆线的参数方程的求法及应用.解答本题需要先分析题意,搞清M 点的轨迹的形状,然后借助图象求得最值.[精解详析] 轨迹曲线的参数方程为⎩⎪⎨⎪⎧x =t -sin t ,y =-cos t ,0≤t ≤2π.当t =π时,即x =8π时,y 有最大值16. 曲线的对称轴为x =8π.摆线的参数方程是三角函数的形式,可考虑其性质与三角函数的性质有类似的地方.3.已知圆C 的参数方程是⎩⎪⎨⎪⎧x =1+6cos α,y =-2+6sin α和直线l 对应的普通方程是x -y -62=0.(1)如果把圆心平移到原点O ,请问平移后圆和直线满足什么关系? (2)写出平移后圆的摆线方程. (3)求摆线和x 轴的交点.解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得摆线方程是⎩⎪⎨⎪⎧x =6t -6sin t ,y =6-6cos t .(3)令y =0,得6-6cos t =0⇒cos t =1. 所以t =2k π(k ∈Z ). 代入x ,得x =12k π(k ∈Z ),即圆的摆线和x 轴的交点为(12k π,0)(k ∈Z ).[对应学生用书P39]一、选择题1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 解析:选C 本题主要考查渐开线和摆线的基本概念.不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线,渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同.对于同一个圆,不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同.2.⎩⎪⎨⎪⎧r =t -sin t ,y =-cos t(t 为参数)表示的是( )A .半径为5的圆的渐开线的参数方程B .半径为5的圆的摆线的参数方程C .直径为5的圆的渐开线的参数方程D .直径为5的圆的摆线的参数方程解析:选B 根据圆的渐开线与摆线的参数方程可知B 正确.3.已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ,0≤φ≤2π,那么圆的摆线方程中参数取π2对应的点A 与点B (3π2,2)之间的距离为( ) A.π2-1 B. 2 C.10D.3π2-1 解析:选 C 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为⎩⎪⎨⎪⎧x =φ-sin φ,y =-cos φ把φ=π2代入参数方程中可得⎩⎪⎨⎪⎧x =3⎝ ⎛⎭⎪⎫π2-1,y =3,即A⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫π2-1,3,∴|AB |=3⎝ ⎛⎭⎪⎫π2-1-3π22+-2=10.4.已知一个圆的摆线过点(1,0),则摆线的参数方程为( ) A.⎩⎪⎨⎪⎧x =12k πt -sin t ,y =12k π-cos tB.⎩⎪⎨⎪⎧x =1k πt -sin t ,y =1k π-cos tC.⎩⎪⎨⎪⎧x =12k πt -sin t ,y =12k π+cos tD.⎩⎪⎨⎪⎧x =1k πt -sin t ,y =1k π-cos t解析:选A 圆的摆线的参数方程为⎩⎪⎨⎪⎧x =at -sin t ,y =a-cos t令a (1-cos t )=0,得t=2k π.代入x =a (t -sin t )得x =a (2k π-sin 2k π). 又过(1,0),∴a (2k π-sin 2k π)=1.∴a =12k π.又a >0,∴k ∈N *. 二、填空题5.给出圆的渐开线的参数方程⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ,根据参数方程可以看出该渐开线的基圆半径是________;当参数φ取π2时,对应的曲线上的点的坐标是________.解析:所给的圆的渐开线的参数方程可化为⎩⎪⎨⎪⎧x =φ+φsin φ,y =φ-φcos φ,所以基圆半径r =3.然后把φ=π2代入方程,可得⎩⎪⎨⎪⎧x =3⎝ ⎛⎭⎪⎫cos π2+π2sin π2,y =3⎝ ⎛⎭⎪⎫sin π2-π2 cos π2,即⎩⎪⎨⎪⎧x =3π2,y =3.所以当参数φ取π2时,对应的曲线上的点的坐标是⎝ ⎛⎭⎪⎫3π2,3.答案:3 ⎝⎛⎭⎪⎫3π2,3 6.我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线⎩⎪⎨⎪⎧x =rφ-sin φ,y =r -cos φ关于直线y =x 对称的曲线的参数方程为________.解析:关于直线y =x 对称的函数互为反函数,而求反函数的过程主要体现了x 与y 的互换,所以要写出摆线方程关于y =x 对称的曲线方程,只需把其中的x ,y 互换.答案:⎩⎪⎨⎪⎧x =r -cos φ,y =r φ-sin φ7.在圆的摆线上有一点(π,0),那么在满足条件的摆线的参数方程,使圆的半径最大的摆线上,参数φ=π4对应的点的坐标为________.解析:首先根据摆线的参数方程⎩⎪⎨⎪⎧x =rφ-sin φ,y =r -cos φ(φ为参数),把点(π,0)代入可得⎩⎪⎨⎪⎧π=r φ-sin φ,0=r-cos φ⇒cos φ=1,则sin φ=0,φ=2k π(k ∈Z ),所以,r =π2k π=12k (k ∈Z ),又r >0,所以k ∈N +,当k =1时r 最大为12,再把φ=π4代入即可. 答案:⎝⎛⎭⎪⎫π-228,2-248.圆的渐开线⎩⎨⎧x =2t +t sin t ,y =2t -t cos t上与t =π4对应的点的直角坐标为________.解析:对应点的直角坐标为x =2⎝ ⎛⎭⎪⎫cos π4+π4sin π4=2⎝ ⎛⎭⎪⎫22+π4·22=1+π4,y =2⎝ ⎛⎭⎪⎫sin π4-π4·cos π4=2⎝ ⎛⎭⎪⎫22-π4·22=1-π4.∴t =π4对应的点的直角坐标为⎝ ⎛⎭⎪⎫1+π4,1-π4.答案:⎝ ⎛⎭⎪⎫1+π4,1-π4三、解答题9.当φ=π4,π2时,求出圆的渐开线⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ上的对应点A ,B ,并求出A ,B 的距离.解:把φ=π4,π2分别代入参数方程得⎩⎪⎨⎪⎧x =22⎝ ⎛⎭⎪⎫1+π4,y =22⎝ ⎛⎭⎪⎫1-π4和⎩⎪⎨⎪⎧x =π2,y =1.即A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫22⎝ ⎛⎭⎪⎫1+π4,22⎝ ⎛⎭⎪⎫1-π4,⎝ ⎛⎭⎪⎫π2,1, ∴|AB |=⎣⎢⎡⎦⎥⎤22⎝⎛⎭⎪⎫1+π4-π22+⎣⎢⎡⎦⎥⎤22⎝ ⎛⎭⎪⎫1-π4-12=14-22π2-42π+32-16 2.10.如图,ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE ,EF ,FG ,GH …的圆心依次按B ,C ,D ,A 循环,将它们依次相连接,求曲线AEFGH 的长.解:根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π2,继续旋转可得EF是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π2;GH 是半径为4的14圆周长,长度为2π.所以曲线AEFGH 的长是5π. 11.如图,若点Q 在半径AP 上(或半径AP 的延长线上),当车轮滚动时,点Q 的轨迹称为变幅平摆线,取|AQ |=r 2或|AQ |=3r2,求点Q 的轨迹的参数方程.解:设Q (x ,y ),P (x 0,y 0).若A (r θ,r ),则⎩⎪⎨⎪⎧x 0=r θ-sin θ,y 0=r -cos θ当|AQ |=r2时,有⎩⎪⎨⎪⎧x 0=2x -r θ,y 0=2y -r .代入⎩⎪⎨⎪⎧x 0=r θ-sin θ,y 0=r-cos θ∴点Q 的轨迹的参数方程为⎩⎪⎨⎪⎧x =r ⎝ ⎛⎭⎪⎫θ-12sin θ,y =12r -cos θ当|AQ |=3r2时,有⎩⎪⎨⎪⎧x 0=2x +r θ3,y 0=2y +r3.代入⎩⎪⎨⎪⎧x 0=rθ-sin θ,y 0=r-cos θ∴点Q 的轨迹方程为⎩⎪⎨⎪⎧x =r ⎝ ⎛⎭⎪⎫θ-32sin θ,y =12r -3cos θ对应学生用书P41][对应学生用书P41](1)建立直角坐标系,设曲线上任一点P 坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式; (4)证明这个参数方程就是所要求的曲线的方程.[例1] 过点P (-2,0)作直线l 与圆x 2+y 2=1交于A ,B 两点,设A ,B 的中点为M ,求M 的轨迹的参数方程.[解] 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =ty -2.由⎩⎪⎨⎪⎧x =ty -2,x 2+y 2=1消去x 得(1+t 2)y 2-4ty +3=0.∴y 1+y 2=4t 1+t 2,即y =2t1+t2, x =ty -2=2t 21+t 2-2=-21+t 2.由Δ=(4t )2-12(1+t 2)>0得t 2>3. ∴M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =-21+t 2,y =2t1+t 2,t 2>3.在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法.但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意x ,y 的取值范围在消参前后应该是一致的.也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.[例2] 参数方程⎩⎪⎨⎪⎧x =1-t 21+t2,y =2t1+t2化为普通方程为( )A .x 2+y 2=1B .x 2+y 2=1去掉(0,1)点C .x 2+y 2=1去掉(1,0)点 D .x 2+y 2=1去掉(-1,0)点[解析] x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1, 又∵x =1-t 21+t 2=-1+21+t 2≠-1,故选D.[答案] D[例3] 已知参数方程⎩⎪⎨⎪⎧x =t +1tθ, ①y =t -1tθ, ②t ≠0.(1)若t 为常数,θ为参数,方程所表示的曲线是什么? (2)若θ为常数,t 为参数,方程所表示的曲线是什么? [解] (1)当t ≠±1时,由①得sin θ=x t +1t,由②得cos θ=yt -1t. ∴x 2⎝ ⎛⎭⎪⎫t +1t 2+y 2⎝ ⎛⎭⎪⎫t -1t 2=1. 它表示中心在原点,长轴长为2|t +1t|,短轴长为2|t -1t|,焦点在x 轴上的椭圆.当t =±1时,y =0,x =±2sin θ,x ∈[-2,2]. 它表示在x 轴上[-2,2]的一段线段. (2)当θ≠k π2(k ∈Z )时,由①得x sin θ=t +1t. 由②得ycos θ=t -1t.平方相减得x 2sin 2θ-y 2cos 2θ=4,即x 24sin 2θ-y 24cos 2θ=1. 它表示中心在原点,实轴长为4|sin θ|,虚轴长为4|cos θ|,焦点在x 轴上的双曲线. 当θ=k π(k ∈Z )时,x =0,它表示y 轴; 当θ=k π+π2(k ∈Z )时,y =0,x =±⎝ ⎛⎭⎪⎫t +1t .∵t +1t ≥2(t >0时)或t +1t≤-2(t <0时),∴|x |≥2.∴方程为y =0(|x |≥2).它表示x 轴上以(-2,0)和(2,0)为端点的向左、向右的两条射线.求直线的参数方程,根据参数方程参数的几何意义,求直线上两点间的距离,求直线的倾斜角,判断两直线的位置关系;根据已知条件求圆的参数方程,根据圆的参数方程解决与圆有关的最值、位置关系等问题.[例4] 设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4[解析] 曲线C 的标准方程为(x -2)2+(y +1)2=9. 它表示以(2,-1)为圆心,3为半径的圆.因为圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010,且3-71010<71010,故过圆心且与l 平行的直线与圆相交的两点为满足题意的点.[答案] B[例5] 直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ,0≤θ≤2π交于A ,B 两点,则直线AD 与BD 的倾斜角之和为( )A.7π6B.5π4C.4π3D.5π3[解析] 由已知得圆D :(x -3)2+(y -1)2=3, 则圆心D 到直线y =33x +2的距离等于 ⎪⎪⎪⎪⎪⎪33×3-1+213+1=62, 故cos 12∠ADB =d 3=22,12∠ADB =π4,∠ADB =π2. 又AD =BD ,所以有∠DBA =π4. 而直线y =33x +2的倾斜角是π6,因此结合图形可知,在直线AD ,BD 中必有一条直线的倾斜角等于π6+π4,另一条直线的倾斜角等于π6+π4+π2.因此AD ,BD 的倾斜角之和为2⎝ ⎛⎭⎪⎫π6+π4+π2=4π3.[答案] C[例6] 设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(0≤θ≤2π).(1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. [解] (1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率为k =52.(2)法一:由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ得圆C 的圆心是C (1,-1),半径为2. 由直线l的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),知直线l 的普通方程为y -4=k (x -3)(斜率存在),即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,由此解得k >2120. 即直线l 的斜率的取值范围为⎝⎛⎭⎪⎫2120,+∞.法二:将圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ,化成普通方程为(x -1)2+(y +1)2=4,① 将直线l 的参数方程代入①式,得t 2+2(2cos α+5sin α)t +25=0.②当直线l 与圆C 交于两个不同的点时, 方程②有两个不相等的实数解, 即Δ=4(2cos α+5sin α)2-100>0,即20sin αcos α>21cos 2α,两边同除以cos 2α, 由此解得tan α>2120,即直线l 的斜率的取值范围为⎝⎛⎭⎪⎫2120,+∞.[例7] 直线⎩⎪⎨⎪⎧x =-1+t2,y =32t与圆x 2+y 2=a (a >0)相交于A ,B 两点,设P (-1,0),且|PA |∶|PB |=1∶2,求实数a 的值.[解] 法一:直线参数方程可化为y =3(x +1).联立方程⎩⎨⎧y =3x +,x 2+y 2=a .消去y ,得4x 2+6x +3-a =0.设A (x 1,y 1),B (x 2,y 2)(不妨设x 1<x 2),则 Δ=36-16(3-a )>0,①x 1+x 2=-32,② x 1·x 2=3-a4,③ |PA ||PB |=-1-x 1x 2+1=12.④ 由①②③④解得a =3.法二:将直线参数方程代入圆方程得t 2-t +1-a =0.设方程两根为t 1,t 2,则 Δ=1-4(1-a )>0⇒a >34.t 1+t 2=1,t 1·t 2=1-a .由参数t 的几何意义知|PA ||PB |=-t 1t 2=12或|PA ||PB |=-t 2t 1=12.解得a =3.能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题.[例8] 已知点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长. [解] 设弦AB 所在的直线方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).代入方程y 2=4x 整理得t 2sin 2α+4(sin α-cos α)t -8=0.①点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1,t 2满足关系t 1+t 2=0.sin α-cos α=0∴0≤α<π.∴α=π4.∴|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=4·8sin2π4=8.[例9] 已知抛物线y 2=2px (p >0),过顶点的两弦OA ⊥OB ,求以OA ,OB 为直径的两圆的另一个交点Q 的轨迹方程.[解] 设A (2pt 21,2pt 1),B (2pt 22,2pt 2), 则以OA 为直径的圆的方程为x 2+y 2-2pt 21x -2pt 1y =0,以OB 为直径的圆的方程为x 2+y 2-2pt 22x -2pt 2y =0.所以t 1,t 2为方程2pxt 2+2pyt -x 2-y 2=0的两个根. 由根与系数的关系,得t 1·t 2=-x 2+y 22px.又OA ⊥OB4p 2t 21t 22+4p 2t 1t 2=0,即t 1t 2=0(舍)或t 1t 2=-1.所以x 2+y 2-2px =0,即(x -p )2+y 2=p 2.所以点Q 的轨迹是以(p,0)为圆心,以p 为半径的圆.对应学生用书P43]一、选择题1.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为( )A .23B .-2 3 C.33D. 3解析:选A ∵t =π3,∴x =1,y =23,∴k OM =yx=2 3.2.设r >0,那么直线x cos θ+y sin θ=r (θ是常数)与圆⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ,0≤φ≤2π的位置关系是()A .相交B .相切C .相离D .视r 的大小而定 解析:选B 心到直线的距离d =|0+0-r |cos 2θ+sin 2θ=|r |=r ,故相切.3.已知双曲线⎩⎨⎧x =3tan θ,y =sec θ,那么它的两条渐近线所成的锐角是()A .30° B.45° C .60° D.75°解析:选C 由⎩⎨⎧x =3tan θ,y =sec θ⇒y 2-x 23=1,两条渐近线的方程是y =±33x ,所以两条渐近线所夹的锐角是60°.4.若动点(x ,y )在曲线x 24+y 2b 2=1(b >0)上变化,则x 2+2y 的最大值为( )A.⎩⎪⎨⎪⎧b 24+b ,2b b B.⎩⎪⎨⎪⎧b 24+b <,2b bC.b 24+4 D .2b解析:选A 设动点的坐标为(2cos θ,b sin θ),代入x 2+2y 得x 2+2y =4cos 2θ+2b sin θ=-⎝⎛⎭⎪⎫2sin θ-b 22+4+b 24.当0<b <4时,(x 2+2y )max =b 24+4;当b ≥4时,(x 2+2y )max=-(2-b2)2+4+b 24=2b .二、填空题5.直线⎩⎪⎨⎪⎧x =1+t sin 70°,y =2+t cos 70°(t 为参数)的倾斜角的大小为________.解析:原参数方程变为⎩⎪⎨⎪⎧x =1+t cos 20°,y =1+t sin 20°(t 为参数),故直线的倾斜角为20°.答案:20°. 6.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)被圆x 2+y 2=4截得的弦长为________.解析:直线为x +y -1=0,圆心到直线的距离d =12=22,弦长d =2 22-⎝⎛⎭⎪⎫222=14.答案:147.圆的渐开线参数方程为⎩⎪⎨⎪⎧x =π4cos φ+π4φsin φ,y =π4sin φ-π4φcos φ(φ为参数),则基圆的面积为________. 解析:易知,基圆半径为π4.∴面积为π·⎝ ⎛⎭⎪⎫π42=116π3.答案:116π38.已知曲线⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数,p 为正常数)上的两点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么|MN |=________.解析:显然线段MN 垂直于抛物线的对称轴x 轴, 故|MN |=2p |t 1-t 2|=2p |2t 1|=4p |t 1|. 答案:4p |t 1| 三、解答题9.经过P (-2,3)作直线交抛物线y 2=-8x 于A ,B 两点. (1)若线段AB 被P 平分,求AB 所在直线方程; (2)当直线的倾斜角为π4时,求|AB |.解:设AB 的参数方程是⎩⎪⎨⎪⎧x =-2+t cos α,y =3+t sin α(t 为参数).代入抛物线方程,整理得t 2sin 2α+(6sin α+8cos α)t -7=0.于是t 1+t 2=-6sin α+8cos αsin 2α,t 1t 2=-7sin 2α. (1)若P 为AB 的中点,则t 1+t 2=0. 即6sin α+8cos α=0⇒tan α=-43.故AB 所在的直线方程为y -3=-43(x +2).即4x +3y -1=0. (2)|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2= ⎝ ⎛⎭⎪⎫6sin α+8cos αsin 2α2-4⎝ ⎛⎭⎪⎫-7sin 2α =2sin 2α16+12sin 2α.又α=π4,∴|AB |=2sin2π416+12sin ⎝⎛⎭⎪⎫2×π4=87.10.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.11.设P 为椭圆x 225+y 29=1(x ≥0,y ≥0)上的一动点,又已知定点A (10,6),以P ,A 为矩形对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积的最值.解:设P (5cos θ,3sin θ)(0≤θ≤π2),则矩形面积为 S =(10-5cos θ)(6-3sin θ)=15[4+sin θcos θ-2(sin θ+cos θ)].令t =sin θ+cos θ,则sin θcos θ=t 2-12, ∴S =152(t -2)2+452. ∵t ∈[1,2],∴当t =1,即P (5,0)或P (0,3)时有最大值,最大值为30;当t =2,即P (522,322)时有最小值,最小值为1352-30 2.。