辅助角公式 教案

辅助角公式 教案
辅助角公式 教案

辅助角公式2010-4-7

一、教学目标

1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式

2、能够正确选取辅助角和使用辅助角公式

二、教学重点与难点 辅助角公式的推导与辅助角的选取

三、教学过程

1、复习?引入 两角和与差的正弦公式

()sin αβ+=_________________________________

()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ???

=_____________________ 反之,

αα

化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式

(1

1cos 2

αα+ (2

)sin αα

2、辅助角公式?推导

对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式?

sin cos ))

a b αααααβ+==+

其中辅助角β

由cos sin ββ?=????=??

β(通常πβ20<≤)的终边经过点(,)a b

------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈

例1、试将以下各式化为)sin(βα+A ()0A >的形式.

(11cos 2αα- (2)ααcos sin +

(3αα (4)ααcos 4sin 3-

例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式.

(1)sin cos αα-

(2)ααsin cos - (3)cos αα-

例3、若sin(50)cos(20)x x +++ 0360x ≤< ,求角x 的值。

例42)cos()12123x x ππ+

++=,且 02

x π-<<,求sin cos x x -的值。

4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定?

(2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的

一个三角比的形式?

5、作业布置

(1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式)

(2) 、关于x 的方程12sin x x k

=有解,求实数k 的取值范围。

(3)、已知46sin 4m x x m -=-,求实数m 的取值范围。

(4)、利用辅助角公式化简:

()sin801cos50??? 四、教学反思

辅助角公式 教案

辅助角公式2010-4-7 一、教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 二、教学重点与难点 辅助角公式的推导与辅助角的选取 三、教学过程 1、复习?引入 两角和与差的正弦公式 ()sin αβ+=_________________________________ ()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ??? =_____________________ 反之, αα 化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+ (2 )sin αα 2、辅助角公式?推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? sin cos )) a b αααααβ+==+ 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (11cos 2αα- (2)ααcos sin + (3αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3、若sin(50)cos(20)x x +++ 0360x ≤< ,求角x 的值。 例42)cos()12123x x ππ+ ++=,且 02 x π-<<,求sin cos x x -的值。 4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定? (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的 一个三角比的形式? 5、作业布置 (1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式) (2) 、关于x 的方程12sin x x k =有解,求实数k 的取值范围。 (3)、已知46sin 4m x x m -=-,求实数m 的取值范围。 (4)、利用辅助角公式化简: ()sin801cos50??? 四、教学反思

辅助角公式_教案

辅助角公式 一、教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 二、教学重点与难点 辅助角公式的推导与辅助角的选取 三、教学过程 1、复习?引入 两角和与差的正弦公式 ()sin αβ+=_________________________________ ()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ??? =_____________________ 反之, αα 化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+ (2 )sin αα 2、辅助角公式?推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? sin cos )) a b αααααβ+==+ 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (11cos 2αα- (2)ααcos sin + (3αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3、若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。 例42)cos()12123x x ππ+ ++=,且 02 x π-<<,求sin cos x x -的值。 4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定? (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的 一个三角比的形式? 5、作业布置 (1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式) (2) 、关于x 的方程12sin x x k =有解,求实数k 的取值范围。 (3)、已知46sin 4m x x m -=-,求实数m 的取值范围。 (4)、利用辅助角公式化简: ()sin801cos50??? 四、教学反思

金典教案-辅助角公式(精编文档).doc

【最新整理,下载后即可编辑】 辅助角公式sin cos )a b θθθ?+=+教学应注 意的的几个问题 在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+6π)=2cos (α-3 π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见 , α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θθ+为一个角的一个三角函数的形式. 解: asin θ+bcos θ sin θ cos θ),

① =cos ? ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?=b a ) ② =sin ? ?,则asin θ+bcos θ θsin ?+cos θcos ? s(θ-?),(其中tan ?=a b ) 其中?的大小可以由sin ?、cos ?的符号确定?的象限,再由 tan ?的值求出.或由tan ?=b a 和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习. 但是这种推导方法有两个问题: 一是为什么要令 =cos ? =sin ??让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+ )θ?+来得更自然 能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法. 首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简. 故有ab ≠0. 1.在平面直角坐标系中,以a 为 横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角?,它的终 边经过点P.设 由 三角函数的定义知

降幂公式、辅助角公式应用

降幂公式、辅助角公式应用 降幂公式 (cosα)^2=(1+cos2α)/2 (sinα)^2=(1-cos2α)/2 (tanα)^2=(1-cos(2α))/(1+cos(2α))推导公式如下 直接运用二倍角公式就是升幂,将公式Cos2α变形后可得到降幂公式: cos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 cos2α=2(cosα)^2-1,(cosα)^2=(cos2α+1)/2 co s2α=1-2(sinα)^2,(sinα)^2=(1-cos2α)/2 降幂公式 例10、(2008惠州三模)已知函数x x x x f cos sin sin 3)(2 +-= (I )求函数)(x f 的最小正周期; (II )求函数?? ? ???∈2, 0)(πx x f 在的值域. 解:x x x x f cos sin sin 3)(2 +-=x x 2sin 2 1 22cos 13+-? -= 232cos 232sin 21-+= x x 23)32sin(-+=πx (I )ππ ==2 2T (II )∴2 0π ≤ ≤x ∴ 3 43 23 π π π ≤ + ≤x ∴ 1)32sin(23≤+≤-πx 所以)(x f 的值域为:?? ? ???--232,3 点评:本题考查三角恒等变换,三角函数图象的性质,注意掌握在给定范围内,三角函数值域的求法。 例11、(2008广东六校联考)已知向量a ρ=(cos 23x ,sin 23 x ),b ?=(2 sin 2cos x x , -),且x ∈[0, 2 π ]. (1)求b a ? ?+ (2)设函数b a x f ??+=)(+b a ? ??,求函数)(x f 的最值及相应的x 的值。 解:(I )由已知条件: 2 0π ≤≤x , 得:33(cos cos ,sin sin )2222x x x x a b +=+-r r

辅助角公式的推导讲解学习

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角的 一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生 记忆和掌握这种题型的解答方法,教师们总结出公式 sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个 学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+6π)=2cos (α-3 π ). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2化sin cos a b θ θ+为一个角的一个三角函数的形式. 解:asin θ+bcos θ sin θ cos θ), ① =cos ? =sin ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?=b a )

必修4之《辅助角公式》

高一数学期末复习————必修4之《辅助角公式》 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问 题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin 2αα+; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数 y =2sin ? ???? π 3-x -cos ? ?? ?? π 6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈ 5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ????x +π3的最大值是________. 7.已知向量(cos(),1)3a x π=+r ,1 (cos(),)32 b x π=+-r , (sin(),0)3 c x π =+r ,求函数()h x =2a b b c ?-?+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

辅助角公式及其应用

辅助角公式及应用微课教案 单位:封开县江口中学 授课教师: 吴英欢 (授课内容属人教A 版必修4第3.2辅助角公式) 一、教学目标 (1)了解辅助角公式推导 (2)能利用辅助角公式进行简单的三角函数化简并求最值。 二、重点难点 (1)重点:能利用辅助角公式进行简单的三角函数化简并求最值。 (2)难点:辅助角公式推导 三、教学内容 1.学前测评 ________ )sin()1(=+βα ________ )sin()2(=-βα ________ )6sin()3(=+πx ________)65sin()4(=+ πx ________)6 5sin()5(=-πx ________)6sin()6(=-π x 2. 思考: 通过前面四个题目我们发现,是不是任何一个同角的异名函数可以转换成一个角的三角函数值呢?如果能,那么又是怎么转化的呢?那么这节课我们就来研究一下这个问题。 3.探究新知 例1:将 asinx+bcosx 化为一个角的三角函数形式 解:①若a=0或b=0时,asinx+bcosx 已经是一个角的三角函数形式 ,无需化简,故有ab ≠0. ②从三角函数的定义出发进行推导 在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b) 所示,则总有一个角 ,它的终边经过点P(a,b). 设OP=r,r= ,由三角函数的定义知 sin b r ? ==cos a r ?== 所以sin cos a x b x + sin cos x x ??=+ ?

)x ?=+ 例4:求函数x x y cos 3sin +=的周期,最大和最小值。 2)3(12222=+=+b a 分析: 解析:x x y cos 3sin += )23sin 21(2cox x + = )3sin sin 3(cos 2cox x π π += )3sin(2π +=x , 所以函数周期为π2,最大值为2,最小值为-2. 4.课堂小结 (1)辅助角公式:sin cos a x b x + )x ?=+ (2)两个应用:利用辅助角公式将三角函数化成正弦型,然后用正弦型函数的性质解决函数问题;⒉三角函数解决几何问题中利用辅助角公式求最值问题 5. 达标测评 (1).把下列各式化为一个角的三角函数形式 x x cos 2 1sin 23+ x x cos sin -- x x cos sin +- )6cos(3)6sin(3ππ+-+ -x x (2).R x x x ∈+=,cos sin 3y 已知函数 (1)当函数y 取得最大值时,求自变量x 的集合; (2)该函数的图象可由y =sinx (x ∈R )的图象经过怎样的平移和伸缩变换得到?

辅助角公式专题练习

辅助角公式专题练习 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

辅助角公式专题训练 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数 问题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin cos 22 αα+ ; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x + 2.函数y =2sin ? ????π3-x -cos ? ?? ??π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3. 若函数()(1)cos f x x x =+,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2

4.(2009安徽卷理)已知函数 ()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212 k k k Z ππππ-+∈ B.511[,],1212 k k k Z ππππ++∈C.[,],3 6 k k k Z ππππ-+∈ D.2[,],6 3 k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ?? ?? x + π3的最大值是________. 7.2)cos()12 12 3x x π π + ++ = ,且 02 x π -<<,求sin cos x x -的值。 8.求函数f x k x k x x ()cos( )cos()sin()=+++--++61326132233 2πππ (,)x R k Z ∈∈的值域。 6.(2006年天津)已知函数x b x a x f cos sin )(-=( a 、b 为常数,0≠a ,R x ∈)在 4 π = x 处取得最小值,则函数)4 3( x f y -=π 是 ( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 9. 若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。 11.已知向量(cos(),1)3a x π=+,1 (cos(),)32 b x π=+-, (sin(),0)3 c x π =+,求函数()h x =2a b b c ?-?+的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

化一公式,辅助角公式学习教案.docx

化一公式(第一课时) 一、教材分析 化一公式在必修 4 的教材中并没有出现专门的一节进行讲解,是因为化一公式的本质其实就是两角和的正弦公式的逆应用。二、教学重点 对特殊角的化一公式的应用,两角和正弦的逆应用。知道要从系数中提出 a 2b2 . 三、教学难点 对a2b2的探究,理解为什么要提这个出来。 四、教学过程 (一)、知识回顾引入 前面我们学习了两角和的正弦公式,大家回顾一下应该等于: sin() sin cos sin cos 那我们看一下 sin=sin cos cos sin 3 cos 1 sin 33322 则那么请同学看下面两个题应该等于多少 例一:化简下面式子 ( 1)2 sin 2 cos 22 ( 2)1 sin 3 cos 22 解释:第一个式子中的2 可以看成 sin, cos, 变式后利用两角和正弦的逆应244 用课进行化简。第二个式子中的 1 和3 可以看成 cos , sin。 2233(二)、新授知识 那么现在我们来看下一个题: 例二:化简下面式子 ( 1) 2 sin 2 cos ( 2)sin 3 cos (提示学生和例一的关系,让学生自己转化到例一去)

解答:(1)22 sin 2 cos2sin 224 (2) 2 1 sin 3 cos2sin 3 22 为什么要提 2 出来呢? 因为提出来后可以在里面创造出特殊角的三角函数,是我们想要的 那么刚才的这些题我们都比较容易看出他们和特殊角之间的关系,那么如果遇到较为复杂的系数我们该提多少出来呢?例三:化简下面式子 a sin x b cosx (让学生思考并讨论) 学生讨论后指出这里应该提出 a 2b2,因为里面剩下的a,b刚好 a 2b2a2b2 可以构一个角的正弦与余弦。 所以 a sin x b cosx a2b2sin(x) ,我们把这种把两三角函数变为一个三角 函数的公式称为化一公式。 由此我们就可以处理任何类似的式子了 例三:化简下面式子 3 15 sin x 3 5 cos x 解答:先观察,把315 与3 5 的公因式 35先提出来,变为 3 sin x cos x ,再利用公式,提出32 2 ,可以变为 653sin x1cos x65 sin x 12 226练习:化简下面式子: ( 1)3 cos x 3 sin x(2) 3 sin x cos x( 3) 2 sin x 6 cos x 2244 (让学生上来做并讲解) (三)总结 同学们你们来说说这节课你收获到了什么? 1,化一公式 2 ,逆向思维3,化归的思想(四)作业 练习册

辅助角公式专题练习

精品文档 辅助角公式专题训练 一.知识点回顾 sin cos ) ) a x b x x x x ?+=+ =+ 其中辅助角?由cos sin ??? =? ? ?? = ?? 确定,即辅助角?的终边经过点(,)a b 二.训练 1.化下列代数式为一个角的三角函数 (1)1sin 2αα+; (2cos αα+; (3)sin cos αα- (4sin()cos()6363 ππ αα-+-. 2、 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 3、已知函数()2cos .f x x x =-[0,],()x f x π∈求的值域

精品文档 4、函数2cos(2), [,]664y x x πππ =+∈-的值域 5、求5sin 12cos αα+ 的最值 6.求函数y =cos x +cos ? ???? x +π3的最大值 7.已知函数()cos (0)f x x x ωωω= +>,()y f x =的图像与直线2y =的 两个相邻交点的距离等于π,则()f x 的单调递增区间是 (过程 ( ) A.5[,],12 12k k k Z π π ππ-+ ∈ B.511[,],1212k k k Z ππππ++∈ C.[,],3 6 k k k Z ππππ-+∈ D.2[,],6 3 k k k Z ππππ++∈ (果 过程

精品文档

参考答案 1.(6) sin cos ) ) a x b x x x x ?+==+ 其中辅助角?由cos sin ??? =? ? ??= ? ? 确定,即辅助角?的终边经过点(,)a b 2.[答案] C [解析] y =2sin ????π3-x -cos ??? ?π 6+x =2cos ????π6+x -cos ??? ?π 6+x =cos ??? ?x +π 6(x ∈R ). ∵x ∈R ,∴x +π 6∈R ,∴y min =-1. 3.答案:B 解析 因为()(1)cos f x x x ==cos x x +=2cos()3 x π - 当3 x π = 是,函数取得最大值为2. 故选B

辅助角公式

辅助角公式Revised on November 25, 2020

推导 对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形 ,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则 ,因此 就是所求辅助角公式。 又因为 ,且-π/2<φ<π/2,所以 ,于是上述公式还可以写成 该公式也可以用余弦来表示(针对b>0的情况) ,设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则 ,因此 同理, ,上式化成 若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则 再根据 得 记忆 很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。 其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。 例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。 疑问 为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。 提出者

,原名李心兰,字竟芳,号秋纫,别号壬叔。出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。他的译书也为中国近代物理学的发展起了启蒙作用。同治七年,李善兰到北京担任同文馆天文﹑算学部长﹐执教达13年之久﹐为造就中国近代第一代科学人才作出了贡献。 李善兰为近代科学在中国的传播和发展作出了开创性的贡献。 继之后,李善兰成为清代数学史上的又一杰出代表。他一生翻译西方科技书籍甚多,将近代科学最主要的几门知识从天文学到植物细胞学的最新成果介绍传入中国,对促进近代科学的发展作出卓越贡献。[1] 公式应用 例1 求sinθ/(2cosθ+√5)的最大值 解:设sinθ/(2cosθ+√5)=k 则sinθ-2kcosθ=√5k ∴√[1+(-2k)2]sin(θ+α)=√5k 平方得k2=sin2(θ+α)/[5-4sin2(θ+α)] 令t=sin2(θ+α) t∈[0,1]则k2=t/(5-4t)=1/(5/t-4) 当t=1时有kmax=1 辅助角公式可以解决一些sin与cos角之间的转化 例2 化简5sina-12cosa 解:5sina-12cosa =13(5/13*sina-12/13*cosa) =13(cosbsina-sinbcosa) =13sin(a-b) 其中,cosb=5/13,sinb=12/13 例3 π/6≤a≤π/4 ,求sin2a+2sinacosa+3cos2a的最小值

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角的 一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记 忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θ θ+ = )θ?+或sin cos a b θθ+ cos()θ?-,让 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 求证 α+cos α=2sin(α+6π)=2cos(α-3 π ). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 , α+cos α可以化为一个角的三角函数形式. 一般地,a sin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θ θ+为一个角的一个三角函数的形式. 解: asin θ+bc osθ sin θ cos θ), ① =cos ? =s in ?, 则asin θ+bco sθ in θco s?+cos θsi n?) n(θ+?),(其中tan ?=b a ) ② =sin ? =c os?,则asin θ+b co s θ sin θs in ?+c osθcos ?) o s(θ-?),(其中tan ?=a b )

其中?的大小可以由sin ?、co s?的符号确定?的象限,再由tan ?的 值求出.或由tan ?=b a 和(a ,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习. =co s ? =s in??让学生费解.二是这种 “规定”式的推导,学生难记 易忘、易错! 二.让辅助角公式sin cos a b θ θ+ )θ?+来得更自然 能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法. 首先要说明,若a=0或b=0时,sin cos a b θ θ+已经是一个角的一个三角函 数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b )如图1所示,则总有一个角?,它的终边经过点P.设OP=r 由三角函数的定义知 sin ?=b r co s? =a r = . 所以as in θ+bco sθ ? si nθ in ?c os θ )θ?+.(其中tan ?=b a ) 2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P (b,a),如图2所示,则总有一个角?的终边经过点P(b ,a),设OP=r,则 由

高中数学人教版必修简单的三角恒等变换教案(系列五)

3.2 简单的三角恒等变换
●三维目标
教法分析
1.知识与技能
(1)利用二倍角的变形公式推导半角的正弦、余弦、正切公式.
(2)通过三角恒等变形将形如 asin x+bcos x 的函数转化为 y=Asin(x+φ)的函数.
(3)灵活利用公式,通过三角恒等变形,解决函数的最值、周期、单调性等问题.
2.过程与方法
经历半角公式、积化和差公式、和差化积公式的推导过程,引导学生对变换对象目标进
行对比、分析,促进学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变
形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换
思想,提高学生的推理能力.
3.情感、态度与价值观
通过对本节内容的学习和运用实践,培养学生观察、分析和解决问题的能力;培养学生
的探索精神,加强学生的应用意识,激发学生的学习兴趣.
●重点、难点
重点:引导学生以已有的十一个公式为依据,以积化和差、和差化积、半角公式的推导
作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换
的特点,提高推理、运算能力.
难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从
整体上把握变换过程的能力.
●教学建议
方案设计
本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中
的应用.本节的内容都是用例题来展现的.通过例题的解答,引导学生对变换对象和变换目
标进行对比、分析,促使学生形成对解题过程中如何选择公式,教学中对半角公式、和差化
积公式以及积化和差公式只要求学生掌握其推导过程,并希望学生能从它们设计变换途径和
方法的途径中,找到思维过程的共性,其结果不要求记忆.
自主导学

《辅助角公式应用》专题(简单题)

《辅助角公式应用》专题 2017年( )月( )日 班级 姓名 授之以鱼,不若授之以渔。 化下列代数式为一个角的三角函数 1sin 22 αα+; cos αα+; a sin x + b cos x =a 2+b 2x x ??+?? =a 2+b 2(sin x +cos x ) (想想正弦、余弦的定义) =a 2+b 2sin(x +φ) (其中sin φ=b a 2+b 2,cos φ=a a 2+b 2 ). 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ= a a 2+ b 2,sin φ=b a 2+b 2, 【求周期】 1.求函数x x y 4sin 4cos 3+= 的最小正周期。 2.求函数y x x x =+ -+24432cos()cos()sin ππ 的最小正周期。

小结:将三角式化为y=Asin(?+ωx )+k 的形式,是求周期的主要途径。 【求值】 1.求函数x x y 4sin 4cos 3+= 的最大值。 2.函数y =2sin ????π3-x -cos ??? ?π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.2)cos()12123x x ππ+ ++=,且 02x π-<<,求sin cos x x -的值。 4.已知)4x y πθ+= +,)4x y π θ-=-,求证:221x y +=

【求单调区间】 求函数x x y 4sin 4cos 3+= 的单调递增区间。 (2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212 k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63 k k k Z ππππ++∈ 已知函数()3f x x x =-,求: (1)求函数()f x 的周期、最大值以及取得最大值自变量x 的取值范围. (2)求函数()f x 的单调区间、对称中心. (3)函数()f x 由函数sin y x =的图像如何变换得到的?

辅助角公式专题练习

辅助角公式专题训练2013.3 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ=+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终 化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin 22 αα+; (2 cos αα+; (3)sin cos αα- (4 ) sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数y =2sin ? ????π3-x -cos ? ?? ??π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈ 5. 如果函数y=sin2x+acos2x 的图象关于直线x=- π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ? ? ?? x + π3的最大值是________. 7.2)cos()12 12 3x x π π + ++ = ,且 02 x π -<<,求sin cos x x -的值。 8.求函数f x k x k x x ()cos( )cos()sin()=+++--++61326132233 2πππ (,)x R k Z ∈∈的值域。

(完整版)辅助角公式专题训练

辅 助 角 公 式 专 项 训 练(主观题安徽2012高考数学) 1.已知函数1()sin cos 44f x x x = -。 (1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值; (2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值。 2.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62π。 (1)求的?值; (2)将()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0, 4π??????上的最值。 3.已知函数()2cos sin()32 f x x x π =+-。 (1)求函数()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。 4.已知函数2()2cos sin cos f x a x b x x =+,且(0)f =,1()42 f π=。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?

5.设22()cos()2cos ,32 x f x x x R π=++∈。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344f x x x x πππ =-+-+。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122ππ??- ????上的值域。 7.已知函数11()cos()cos(),()sin 23324 f x x x g x x ππ=+-=-。 (1)求()f x 的最小正周期; (2)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合。 8.设2()sin()cos 1468f x x x πππ =--+,若函数()y g x =与()y f x =的图像关于直线x=1对称,求当40,3 x ??∈????时,()y g x =的最大值。 9.已知函数2()2cos 2sin 4cos f x x x x =+-。 (1)求()3 f π 的值;(2)求()f x 的最值。 10.已知向量(sin ,cos )m A A =r ,1)n =-r ,1m n =r r g ,且A 为锐角。 (1)求角A 的大小;(2)求函数()cos 24cos sin ()f x x x A x R =+∈的值域。

角函数中辅助角公式的应用

辅助角公式在高考三角题中得应用 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。 上式中的 a a b 2 2 +与 b a b 2 2 +的平方和为1,故可记a a b 2 2 +=cos θ, b a b 2 2 +=sin θ,则 。 )x sin(b a )sin x cos cos x (sin b a y 2 2 22θ++=θ+θ+= 由此我们得到结论:asinx+bcosx= a b x 22++sin()θ,(*)其中θ由 a a b b a b 2 2 2 2 +=+=cos , sin θθ来确定。通常称式子(*)为辅助角公式,它可以将多 个三角式的函数问题,最终化为y=Asin(?+ωx )+k 的形式。下面结合近年高考三角题,就辅助角公式的应用,举例分类简析。 一. 求周期 例1 求函数y x x x =+ -+244 32cos()cos()sin π π 的最小正周期。 解: ) 6 x 2sin(2x 2cos x 2sin 3x 2sin 3)2 x 2sin(x 2sin 3)4x sin()4x cos(2y π +=+=+π +=+π +π+= 所以函数y 的最小正周期T=π。 评注:将三角式化为y=Asin(?+ωx )+k 的形式,是求周期的主要途径。 二. 求最值 例2. 已知函数f(x)=cos 4 x-2sinxcosx-sin 4 x 。若x ∈[, ]02 π ,求f(x)的最大值和最小值。

相关文档
最新文档