立体几何教案 第二章 多面体与旋转体 棱柱一 教案√

合集下载

第二章多面体与旋转体 棱柱(一

第二章多面体与旋转体 棱柱(一

高中立体几何教案第二章多面体与旋转体棱柱(一)教案教学目标1.掌握棱柱的概念、性质,分类及表示方法;2.培养学生的观察能力,抽象概括能力;3.通过棱柱的教学逐渐培养学生的辩证唯物主义观点.教学重点和难点棱柱的概念及性质.教具长方体、六棱柱、五棱柱、底面是梯形的四棱柱模型、橡皮.教学设计过程上一章我们研究了点、线、面间的位置关系,本章我们将研究几何体、多面体和旋转体.本节课我们先研究多面体中的棱柱.(板书:§1.棱柱)请同学们打开自己的文具盒.观察一下铅笔盒、六棱铅笔、橡皮,是否注意到它们在形状上都有什么共同的特点?为了便于学生观察,教师把做好的模型摆在讲台上让学生仔细观察后,再把它们的直观图画在黑板上,比例适当,并请同学们注意教师的画法.(要求教师做好示范)定义有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.(板书:一、定义:……)二、各部分的名称(板书)1.两个平行的面叫做棱柱的底面.2.其余各面叫做棱柱的侧面.3.侧面与底面的交线叫做底面的边.4.侧面的交线叫做棱柱的侧棱.5.侧面与底面的公共点叫做棱柱的顶点.6.侧棱与底面的边叫做棱柱的棱.7.不在同一个面上的两个顶点的连线叫做棱柱的对角线.8.两底面间的距离叫做棱柱的高.三、重要截面截面用一个平面去截棱柱,与各面的交线组成一个封闭的图形.1.平行于底面的截面.2.垂直于侧棱的截面叫直截面.3.过不相邻的两条侧棱组成的平面叫对角面.底面:ABCDE,A1B1C1D1E1或AC,A1D1侧面:ABB1A1,BCC1B1,……或AB1,BC1,底面的边:AB,A1B1,BC1,……侧棱:AA1,BB1,……顶点:A,B,A1,B1,……对角线:BE,……高:OO1平行于底面的截面:A2B2C2D2E2或A2C2直截面:A′B′C′D′E′,或A′C′对角面:ACC1A1或AC1.(教师把五棱柱标上字母.结合图形说明定义及各部分的表示方法)练习:1.在图3中,请同学们指出棱柱的底面、侧面、侧棱、对角线,并画出它们的高.2.在图3中,AB1是棱柱的对角线吗?3.在图3中,(直棱柱)侧棱AA′为什么是棱柱的高?(强调侧棱与底面的关系)4.画出几个棱柱中的一个与底面平行的截面、直截面、对角面.问题:仔细观察一下,这几个空间图形,它们都是棱柱,它们之间有什么区别?能否根据它们之间的某个区别来分类?四、分类1.按线面的位置关系分:侧棱与底面斜交的棱柱叫斜棱柱.侧棱与底面直交的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.2.按侧棱数分:侧棱数为3,4,5,可以把棱柱分为三棱柱,四棱柱,五棱柱……练习:下面一些物体属于哪一类棱柱?(1)课桌的腿.(2)教室里用的簸箕加一个盖,并指出它的底面与侧面.(说明:此练习说明底面不一定在上、下,而是根据两个平面平行的特征来决定的)(3)铅笔盒为长方体属于哪一类?并指出它的侧面与底面.(说明:此练习说明四棱柱比较特殊,一般情况下可把底面与侧面进行更换)(4)画两个三棱柱:①三条侧棱全能看见.②三条侧棱不全看见.五、性质根据定义及侧面、侧棱与底面的关系来观察、总结棱柱的性质.(学生讨论、证明)1.侧棱都相等,侧面是平行四边形.2.两底面和平行于底面的截面是全等的多边形.3.对角面是平行四边形.问题:直棱柱,正棱柱具有什么性质呢?由学生讨论、证明得到:直棱柱性质:(1)侧棱都相等,侧面是矩形.(2)底面与平行于底面的截面是全等的多边形.(3)对角面是矩形.(4)侧棱长是棱柱的高.正棱柱既有一般棱柱及直棱柱的性质,还有如下性质:(1)底面与平行于底面的截面是全等的正多边形.(2)侧面是全等的矩形.例斜棱柱ABC-A′B′C′中,A′在底面ABC的射影O是底面三角形ABC的中心,求证:BCC′B′是矩形.分析:因为斜棱柱具有性质:侧面是平行四边形,所以只需证BCC′只有一组邻边互相垂直即可.证明:连AO.因为O是△ABC的中心,所以AO⊥BC.又因为A′O⊥平面ABC,且AO是AA′在平面ABC上的射影.所以AA′⊥BC.(三垂线定理)因为BB′∥AA′,所以BB′⊥BC.因为BCC′B′是平行四边形,(性质)所以BCC′B′是矩形.注:此例说明:斜棱柱可以有一个侧面是矩形.小结:1.棱柱的定义是在抓住了它的两个特点而总结出的.2.它的性质及分类是根据它的侧棱与底面的关系及底面、侧面的形状进行的.作业:1.p.53第1,2,3题.2.在第三题中加上:对角面及平行底面的截面的形状是怎样的?侧棱与上下底面的位置关系如何?。

高二数学立体几何 多面体部分教案全集(课时1-15)

高二数学立体几何 多面体部分教案全集(课时1-15)

课时1 棱柱(一)教学目的:理解棱柱的概念,掌握棱柱的分类以及有关性质。

教学过程:1、棱柱的概念:(1)定义:(2)几个名称:2、棱柱的分类:(1)按侧棱与底面是否垂直分:(2)按底面边数分:3、棱柱的性质:(1)(2)(3)4、例题:例1、正三棱柱ABC—A1B1C1,过侧棱BB1的截面与侧面AA1C1C相交于DD1,求证:截面BB1D1D是矩形。

例2、一直棱柱,底面是边长为3和4的平行四边形,且底面一条对角线为6,该棱柱最长对角线为10,求侧棱长。

例3、在斜三棱柱ABC—A1B1C1中,∠A1AB=∠A1AC=∠CAB=60ο,AA1=a,AB=AC=2a,求证:CC1垂直于平面A1BC。

例4、正三棱柱ABC—A1B1C1的底面边长为a,在侧棱BB1上截取BD=a/2,在侧棱CC1上截取CE=a,(1)求证平面ADE⊥平面ACC1A1;(2)求∆ADE的面积;(3)求平面ADE与平面ABC所成的角。

5、练习:书P43:1;课课练P46:1——6。

6、作业:书P46:3;课课练P46:8、9;P49:10。

课时2 棱柱(二)教学目的:掌握平行六面体的概念,性质;知道各集合的包含关系;掌握长方体的性质。

教学过程:1、棱柱的概念、分类和性质2、四棱柱的特殊情形:(1)平行六面体(2)直平行六面体(3)长方体(4)正四棱柱(5)正方体3、长方体的性质:4、例题例1、长方体ABCD—A1B1C1D1中,设D1B与自D1出发的三个面成αβγ角,求证cos2α+cos2β+cos2γ=2.例2、四棱柱ABCD—A1B1C1D1中给出三个论断:(1)四棱柱是直四棱柱,(2)底面ABCD 是菱形,(3)AC1 B1D1. 以其中两个论断作条件,余下一个作结论,可以得到三个命题,其中有几个是真命题?为什么?例3、已知平行六面体ABCD—A1B1C1D1的所有对角线都相等,求证:平行六面体ABCD—A1B1C1D1是长方体。

2022年教学教材《棱柱、棱锥、棱台》优秀教案2

2022年教学教材《棱柱、棱锥、棱台》优秀教案2

棱柱、棱锥、棱台教学设计立体几何是研究三维空间中物体的形状、大小、位置关系的一门数学学科,而三维空间是人们生存开展的现实空间,学习立体几何对我们更好地认识客观世界,更好地生存与开展具有重要意义。

在立体几何初步局部,学生将先从对空间几何体观察入手、认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系。

本节内容既是义务教育阶段“空间与图形〞课程的延续和提高,也是后续研究空间点、线、面位置关系的根底,既稳固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

课程目标1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征.2.能运用棱柱、棱锥、棱台的结构特征来判断、描述现实生活中的实物模型.3.与平面几何体的有关概念、图形和性质进行适当类比,初步学会用类比的思想分析问题和解决问题.数学学科素养1数学抽象:多面体与旋转体等概念的理解;2逻辑推理:棱柱、棱锥、棱台的结构特点;3直观想象:判断空间几何体;4数学建模:通过平面展开图将空间问题转化为平面问题解决,表达了转化的思想方法重点:掌握棱柱、棱锥、棱台的结构特征;难点:棱柱、棱锥和棱台的侧面展开图问题教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形但我们知道在我们周围存在着各种各样的物体,它们都占据着空间的一局部如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体那么对空间中各种各样的几何体,我们如何认识它们的结构特征?对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察研探二、预习课本,引入新课阅读课本97-100页,思考并完成以下问题1、什么是空间几何体?什么是多面体与旋转体?2、多面体包含哪些图形?这些图形是怎样定义的?又有什么结构特点?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表答复以下问题。

立体几何最全教案

立体几何最全教案

立体几何最全教案doc一、教案概述1. 教学目标:了解立体几何的基本概念和性质;掌握立体图形的绘制和识别方法;培养学生的空间想象能力和逻辑思维能力。

2. 教学内容:立体几何的基本概念和性质;立体图形的绘制和识别方法;常见立体图形的性质和特征。

二、第一章:立体几何的基本概念1. 教学目标:了解立体几何的基本概念,如点、线、面、体等;掌握立体图形的性质和特征。

2. 教学内容:点、线、面、体等基本概念的定义和性质;立体图形的分类和特征;立体图形的坐标表示方法。

三、第二章:立体图形的绘制和识别1. 教学目标:学会绘制和识别常见立体图形;掌握立体图形的对称性和旋转方法。

2. 教学内容:常见立体图形的绘制方法和解题技巧;立体图形的对称性和旋转方法;立体图形之间的相互转换和组合。

四、第三章:柱体和锥体1. 教学目标:了解柱体和锥体的定义和性质;掌握柱体和锥体的计算方法。

2. 教学内容:柱体和锥体的定义和性质;柱体和锥体的计算方法和解题技巧;柱体和锥体在实际应用中的例子。

五、第四章:球体和环面1. 教学目标:了解球体和环面的定义和性质;掌握球体和环面的计算方法。

2. 教学内容:球体和环体的定义和性质;球体和环体的计算方法和解题技巧;球体和环体在实际应用中的例子。

六、第五章:立体几何中的面积和体积1. 教学目标:学会计算立体几何图形的面积和体积;理解面积和体积在实际问题中的应用。

2. 教学内容:立体图形面积和体积的计算公式;面积和体积的单位及换算;实际问题中面积和体积的计算应用。

七、第六章:立体几何中的角度和距离1. 教学目标:学会计算立体几何图形中的角度和距离;掌握空间直角坐标系中角度和距离的计算方法。

2. 教学内容:立体图形中角度和距离的定义及计算方法;空间直角坐标系中角度和距离的计算;角度和距离在实际问题中的应用。

八、第七章:立体几何中的对称与轴对称1. 教学目标:了解立体几何中的对称性和轴对称性;学会运用对称性和轴对称性解决实际问题。

第二章多面体与旋转体球的表面积

第二章多面体与旋转体球的表面积

高中立体几何教案第二章多面体与旋转体球的表面积教案教学目标1.使学生理解球的表面积公式的推导方法,并能熟记公式内容;2.在引理的论证过程中,进一步要求学生树立转化的思想(把空间问题转化为平面问题);3.通过寻求如何研究球表面积的方法,培养学生应用无限分割和极限思想的意识,进而在实施推导公式的过程中,对学生进行“以直代曲”的辩证唯物主义思想教育.教学重点和难点本节教材的重点是掌握球的表面积的计算公式,而如何推导球的表面积公式是本节的难点.教学设计过程一、新课引入师:(手持模型)今天,我们要研究的课题就是如何求得球的表面积.下面,请同学们各抒己见.(板书课题)生甲:(脱口而出)可以仿照圆柱、圆锥和圆台的侧面积的求法,设法剪开球面,使其展成平面图形而求得结果.(同学们立即反驳,此办法不可能实现)生甲:(申辩)如果像家里削水果皮那样(想象水果是个球体),球的表面就会被削下来,然后展开,再进行计算.生乙:削下来的球表面是螺旋状连接的,根本无法展平.另外,条形表面也有一定的弯曲度.生甲:那可以把条形表面尽可能地削得窄一点,弯曲度也会随之变小,也就接近平面图形了.生丙:(好像受到了启发)我们要求球的表面积,可以先求半球面的大小.用一组平行于底面圆的平面去截球面,随着平行平面间距离的逐渐减小,原来弯曲的球面就转化为一族圆柱侧面的总和,圆柱侧面积有计算公式,那么再找到这一族圆柱侧面积之间的大小关系,最后求出这所有圆柱侧面积之和,我们要求的球表面积就可以解决了.生丁:我想用一些很小的正方形去贴满球体表面,那么只要求出这些小正方形的面积和,问题也可以解决.……师:同学们的想法都很好.要求球的表面积不再能简单地利用已学过的几何体侧面展开的办法了,因为对球体而言,无论怎样剪开,它还是曲面,不可能成为平面图形.大家可以来仔细分析一下刚才几位同学的解题方案,都有一个共同的想法,这就是我们将要在高二进一步学习的极限思想.若把球表面无限分割,将会得到许多近似于平面图形的图形.问题解决已有些眉目,再让咱们大家集思广议,完善求解方法.(课堂内鸦雀无声)(需引导一下)二、新课师:回忆一下,在平面几何的学习过程中,求圆的周长公式,我们采取了什么办法?生:是用圆内接正多边形的周长来近似地表示它的.师:当边数逐渐增加时,正多边形的周长就越来越接近圆的周长.当边数无限增加时,圆内接正多边形的周长就是圆的周长,这正是“以直代曲”的尝试.我们是否可以对此方法稍加改造,来完成球的表面积计算公式的推导?生丙:我想用球的内接圆柱的侧面积来近似求球表面积,只要用越来越多的平行平面把球分割,那么所得到的许多个内接圆柱的侧面积的全体就越来越接近球的表面积了.师:只能用球的内接圆柱去研究吗?生:圆台也可以.师:下面,我们以圆台为例,证明一个预备定理.目的是求出球内接圆台的侧面积公式.(板书引理)引理球面内接圆台(圆台上、下底面是球的两个平行截面)的高为h,球心到母线的距离为P,那么圆台的侧面积为2πPh.下一步,求半球面的面积.用n-1个平行于半球大圆面的平面将半球分为n个部分,使每一部分的母线都相等,则球心到它们的母线的距离都是p,而它们的高分别为h1,h2,h3,…,hn.如果平行平面无限增加,这些圆台、圆锥的侧面和就无限地接近于半球面,同时p无限地接近于R.当p变为R时,侧面积的和S变为2πR2,我们把这个和作为半球面的面积.例2 口答下面问题,并说明理由.(1)球的半径扩大n倍,它的面积扩大多少倍?(2)球的面积扩大n倍,它的半径扩大多少倍?(3)球大圆的面积扩大n倍,球面积扩大多少倍?(4)球的面积扩大n倍,球的大圆面积扩大多少倍?生:设球半径为R.(1)因球半径扩大n倍,S球面=4π(nR)2=n2×4πR2,即球面积扩大n2倍.四、小结在本节课内,我们讲了(1)球表面积等于它的大圆面积的4倍.(2)“以直代曲”的研究方法.(3)无限分割和逐次逼近的数学方法.五、作业1.课本p.92.6,2.课本p.92.7,3.课本p.92.8,4.两底面半径为r1和r2(r1<r2)的圆台中有一个内切球,求这个球的表面积.(4πr1r2)5.(思考题)球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球面的面积.(3πa2)(提示:把PA,PB,PC看成正方体内相交于一点的三条棱.因P,A,B,C在球面上,则此正方体内接于球.正方体的对角线恰为球的直径)课堂教学设计说明这堂课的知识量不算很大,主要任务就是完成球表面积公式的推导.作为生活常识,学生们大部分都已经知道了公式的内容.那么采用什么办法去吸引学生的注意力,激发学生的学习兴趣,使这堂课上得比较生动活泼呢?这是我在准备教案前首先想到的问题.其次,要想求出球的表面积,还需先证明一个引理.一部分学生在预习中可能会产生这样的疑问:为什么非要找一个球的内接圆台,而不是内接圆柱,内接圆锥?为什么此内接圆台还必须知道球心到母线的距离P,而不是底面圆的半径r?我为了处理好这两个大问题,就设计了一个教学过程的粗线条:先准备让学生自由讨论,(我借机,听取学生的想法,同时找一个没有预习课本,而又出现的是常见错误想法的同学,先汇报思考结果)再讲评总结的方式,一步步地引出学生们自行产生的无限分割和极限思想.由于学生更熟悉圆柱的结构,用圆柱的侧面积去逼近球表面的想法会很自然地产生.我在肯定此想法的基础上,引导学生去用圆台的侧面积逼近球的表面积的想法就容易了.对于球来说,它的基本元素是球半径,球面上任意一点到球心的距离都一样.所以,要找的球表面的相似体也要抓住这一性质.课堂习题的配备,主要想让学生了解到:要求球表面积只要抓住球半径即可.无论所给具体题目的条件如何变化,始终从公式出发,“缺什么,找什么,要什么,求什么”,紧紧围绕能求出球半径的目的而思考.。

最新认识多面体与旋转体教案

最新认识多面体与旋转体教案

二、探索新知
探究1:多面体的相关概念
新知1:由若干个平面围成的几何体几何体叫做多面体.围成每个多面体的多边形叫做多面体的面,如面ABCD ; 两个面的公共边叫多面体的棱,如棱AB ;棱和棱的公共点叫多面体的顶点,如顶点A .连结不在同一平面上的两个顶点的线段叫做多面体的对角线,
具体如下图所示:
生回答问题,教师总结。

面 顶


A B 'C 'D 'A 'C B
目,
探究2:旋转体的相关概念
生回答问题,教师
总结。

新知2:
由一条平面曲线绕一条定直线旋转所形成的曲面叫
旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定
直线叫旋转体的轴.这条曲线叫做旋转体的母线。

如下图
的旋转体:
目,。

立体几何教案 第二章 多面体与旋转体 球的直观图画法和球的表面积 教案_1

立体几何教案 第二章  多面体与旋转体 球的直观图画法和球的表面积 教案_1

立体几何教案第二章多面体与旋转体球的直观图画法和球的表面积教案教学目标1.掌握球的正等测画法;2.熟记球的表面积公式;3.激发学生研讨公式的兴趣和掌握推导方法,从而培养学生的空间想象能力,逻辑思维能力和转化能力.教学重点和难点重点:球的表面积及表面积公式的推导.难点:球表面积公式的推导.教学设计过程一、复习提问师:圆的直观图用什么方法画出的.生:(思考片刻,要求学生答出)一般不用斜二测,而用正等测画.师:用正等测画圆的直观图规则是什么?生:(要求思考1分钟后回答)1.在已知图形⊙O中,互相垂直的轴Ox,Oy画直观图时,把它们画成对应的轴O'x',O'y',使∠x'Oy'=120°(或60°).2.已知图形上平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段.3.平行于x轴或y轴的线段、长度不变.二、讲新课1.球的直观图的画法:师:我们学习了圆的直观图的画法,球和圆有何不同.生:球是立体图形,圆是平面图形.师:那么球的直观图是否和圆的直观图画法类似.生:(学生思考后,举手回答)应有三个坐标轴.师:你怎么考虑的.生:因为圆是平面图形,两条相交直线确定平面,球是立体图体,只有三条互相垂直的直线才能确定空间.师:以上同学回答得很好,球是立体图形,它需要在三维空间中完成.讲解课本p.84例2,画半径为R 的球的直观图.画法:(略)2.球的表面积.师:圆的面积是多少?生:(异口同声回答)S=πR2师:圆的面积S=πR2,是怎样得来的,你知道吗?生:书上告诉的.(全班学生大笑)师:对了,这个结论是书上直接给出的.因为我们所学的知识还无法来解决它的推导过程,待今后继续深造来解决.师:我们今天来学习球的面积公式.同学们要特别注意知识的形成过程.师:(让学生目测实心半球)是半球面积大,还是底面的大圆面积大?(培养学生的观察能力和估算能力)(全班学生积极发言,充分调动了回答问题的积极性,这个问题较易回答)师:(同学们再目测一下)看看上面的面积是大圆面积的几倍(估算一下),是6倍吗?(部分学生回答不可能)师:是4倍吗?(教室里肃静,仍有一部分学生回答说:可能性不大)师:是2倍吗?生:差不多!师:上面的面积正好是下面底面大圆的2倍.为什么是2倍呢?正是我们今天解决的问题.师:圆柱、圆锥、圆台的表面积公式,都是利用它的展开图求出的,由于球面不能展开成平面图形,所以球的表面积公式无法用展开图求出,为了求得球的表面积公式,我们先来证明一个预备定理:定理球面内接圆台(圆台上、下底面是球的两个截面)的高为h,球心到母线的距离为p,那么圆台的侧面积为2πph.已知:球面O的内接圆台的高O1O'=h,球心O到母线AD的距离OE=p求证:S圆台侧=2πph.师:同学们考虑上式是比例式,在平面几何中怎样证明比例呢?生:利用相似形或平行线分线段成比例定理.师:这个题用什么方法证好呢?生:相似三角形.师:证哪两个三角形相似?生:(学生沉思,教师提示)只要证明△ADD'∽△OEE'即可,(如图2)师:(大家观测)上面回答对吗?生:(部分学生回答)对的.师:哪位同学起来回答为什么?生:(一位中等成绩的学生回答说)师:这两个三角形相似是很容易证明的.(课本中“注意”二字,这个结果对于球的内接圆柱、圆锥同样成立.应引起教师的注意,要求学生练习)师:下面证明定理:球面面积等于它的大圆面积的4倍.即:S球面=4πR2(在投影片上画出课本图2-48,并且画得大些)师:将半球面上的半大圆ANB分成2n等分,用过各分点平行于半球大圆面的平面将半球分为多少部分,是2n部分吗?生:(个别学生答,是2n部分,即注意力不集中的学生)不是.师:那么是几部分呢?生:是n部分.师:这n部分是什么图形呢?生:(一少部分回答说n个圆台)n-1个圆台,一个圆锥.师:我们作这些圆台的高,分别为h1,h2,h3,…,hn.球心到它们母线的距离是否相等.生:(部分学生认为不相等,教师准备作好引导的作用)相等的.师:设这个距离为p,由预备定理可得这些圆台圆锥的侧面积的和是多少?生:(全班学生思考,教师提示)S=2πph1+2πph2+…+2πphn=2πp(h1+h2+…+hn)师:同学们认真分析,h1+h2+h3+…+hn和应是多少.生:ON,即球的半径R.师:所以S=2πp·R.师:如果分点无限增加,侧面积怎样变化.生:(这时教师需提示)侧面积无限地接近半球面.(教师对无限地应解释,学生第一次接触这个名词)师:分点无限增加,p与R有什么关系.生:p无限地接近R.师:此时侧面积的和S变为2πR2,我们把这个和作为半球面的面积,即S球面=4πR2.例已知:圆柱的底面直径与高都等于球的直径.求证:(1)球的表面积等于圆柱的侧面积.师:圆柱的侧面积是什么?生:底面周长乘以高,即S=c·h.师:在本题中底面周长是什么?生:c=2πR.师:高是什么.生:h=2R.师:所以圆柱侧面积为S=4πR2.(这样问题(1)得证,证明过程要求学生下去练习完成)师:圆柱的全面积是侧面积加两个底面积.那全面积是多少呢?练习:1.球的大圆面积扩大到原来的4倍,那么球的表面积扩大到原来的[ ]2.三个球半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的[ ]作业:p.92.6,7.家庭作业:1.阅读课文.(巩固知识的形成过程加深理解记忆)2.对于课文把半球的半大圆ANB分成2n等分.如果对球半径n等分行不行.课堂教学设计说明1.本节课完成了两个内容,一是球的直观图画法,二是球表面积公式及其推导.教案整体构思是要突出教师为主导,学生为主体,学生参与整个教学过程,克服学生上课走神的现象.常此以往,能调动学生学习积极性和主动性.2.重视知识的形成过程,培养学生逻辑推理能力和大胆猜想能力,因为发现问题要比解决问题更重要.数学这门学科不能仅仅作为工具去教学.不能把知识的结论抛给学生,使学生记住结论会演算两道题就行了.而是要培养学生在提高思考能力上下功夫.教学上要力戒“奉送真理,灌注真理”的做法。

04多面体(二)、旋转体(一)【教师版】

04多面体(二)、旋转体(一)【教师版】
2 画BC平行于x轴,并且等于BC;再以M 为中心,画EF平行于x轴,并且等于EF. (3)连接AB,CD, EF, FA,并擦去辅助线x轴和y轴,便获得正六边形ABCDEF 水平放置的直观图ABC DEF

2、多面体的截面图画法; (1)直接法: 例 3、在三棱锥 P-ABC 中,D 为 PA 的中点,E 为 PB 的中点,画出过 C、D、E 三点
圆柱的侧面可以按一条母线展开成一个矩形.ห้องสมุดไป่ตู้
圆柱的侧面积、表面积、体积公式: S侧 = 2 rh , S全 = 2 rh + 2 r2 ,V = r2h
2 / 17
5、圆锥
将直角三角形 ABC(及其内部)绕其一条直角边 AB 所在直
线旋转一周,所形成的几何体叫做圆锥,AB 所在直线叫做圆锥
的轴,点 A 叫做圆锥的顶点,直角边 BC 旋转而成的圆面叫做圆
总结:由于三点都不在同一表面上,通过其中两点作一个平面与第三个点所在的表面 相交(通常作垂直于面第三个点所在的表面的平面),交线与这两点连线相交于一点, 这个点与第三个点的连线就是截面与第三个点所在的表面的交线.】
3、圆柱;
例 7 、 圆 柱 的 侧 面 展 开 图 是 边 长 为 2 和 3 的 矩 形 , 则 圆 柱 的 体 积
4 / 17
例 2.用斜二测画法画水平放置的正六边形的直观图.
【答案: (1)在六边形 ABCDEF 中,取 AD 所在的直线为 x 轴,对称轴 MN 所在直线为 y 轴,
两轴交于点 O.画对应的 x’、y’ 轴,两轴相交于点 O’,使 x`O`y`= 450. (2)以O为中心,在X 上取AD = AD,在y轴上取M N = 1 MN.以点N为中心,
【答案:首先过 E,F 作一个辅助平面.过 F 作直线 FK∥BB1 交 B1C1 于 K,连接 A1K, AF,则有 FK∥AA1,得到辅助平面 AFKA1, 连接 FE 并延长交 KA1 的延长线与 H,则 H 在底面 A1C1 上, 连接 HP 交 A1D1 于 Q,并延长交 B1C1 的延长线于 R,则 R 在侧面 BC1 上,连接 RF 交 CC1 于 N,并延长交 B1B 延长线于 G,则 G 在侧面 AD1 上, 连接 GE 交 AB 于 M.再连接 EQ,MF,NP,就得到截面 MEQPNF.

多面体和旋转体

多面体和旋转体

第二章多面体和旋转体一多面体§2.1 棱柱一、素质教育目标(一)知识教学点1、棱柱的概念及性质。

2、平等六面体,长方体的概念及长方体的性质。

3、直棱柱直观图的画法4、棱柱侧面积的计算(二)能力训练点1、在学习棱住概念和性质过程中,努力提高学生的观察、抽象和概括能力。

2、通过直棱柱直观图的画法的教学,进一步提高学生的作图和识图能力。

3、通过直棱柱侧面积公式的教学,进一步增强学生把空间形转化为平面图形的意识,使学生进一步掌握化归的数学思想和方法,以提高学生分析问题、解决问题的能力。

(三)德育渗透点1、棱柱概念的形成,是从特殊到一般、具体到抽象的过程;通过教学使学生初步认识辩证唯物主义认识论的观点。

2、通过四面体、平行六面体、直平行六面体、长方体、正方体之间相互关系的教学,使学生树立普遍联系的唯物主义观点。

3、通过运用侧面积公式计算生产实践中具体零件的面积,使学生懂得数学对工、农业生产的意义,激励学生努力学好数学,将来为祖国的“四化”建设做出更大的贡献。

二、教学重点、难点、疑点及解决办法1、教学重点:理解棱柱的概念,掌握棱柱的性质及直棱柱侧面积公式,能利用性质及侧面积公式解决有关问题。

2、教学难点:直棱柱直观图的画法3、教学疑点:直棱柱的判断,注意引导学生严格按定义三、课时安排本课题建议安排3课时四、教与学过程设计第一课时节棱柱的概念及性质(一)引入将画有图2-1、图2-2、图2-3的小黑板挂出师:今天这一节课我们学习棱柱的概念和性质(给出课题),以上三个图形所表示的模型均为棱柱,下面我们一起来研究它们的共同特点。

(二)棱柱及有关概念的定义师:大家注意到图2-1到图2-3所表示的几何本均由一些面围成,而面与面之间有交线,因此可以从“面”和“线”两个角度去找它们的特点,先观察图2-1。

(1)首先看面:从面和面的关系及面的开头引导学生讨论,得出结论;有两个面互相平行,其余各面为四边形。

(2)再看线:从线与线之间的引导学生得出结论:每相邻两个四边形的公共边都互相平行。

人教版高中数学必修2-1.1《多面体与旋转体概念、棱柱》教学设计

人教版高中数学必修2-1.1《多面体与旋转体概念、棱柱》教学设计

1.1 空间几何体的结构1.1.1 多面体与旋转体概念、棱柱(张伟)一、教学目标(一)核心素养通过这节课学习,了解多面体与旋转体的概念、了解棱柱的定义.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.(二)学习目标1.了解多面体的顶点,棱,表面,对角面的定义.2.结合定义,会判断一个几何体是否为棱柱.3.知道直棱柱,正棱柱,平行六面体的定义.(三)学习重点1.准确理解棱柱的定义.2.棱柱的分类.3.棱柱的表示方法.(四)学习难点1.判断某个几何体是否为棱柱.2.正确区分棱柱的体对角线和面对角线,棱柱的侧面和底面,棱柱的高和侧棱.3.对旋转体的直观理解.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第2,3页,观察课本P2图1.1-1的物体,这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?填空:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.2.预习自测(1)下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【答案】D.【知识点】棱柱的结构特征【解题过程】由棱柱的定义可知,棱柱中,有两个面互相平行,则可以排除②⑤,又棱柱中,有两个互相平行的底面,其余各面都是四边形,则可以排除④⑥.【思路点拨】由棱柱定义来判断(2)三棱柱共有()个顶点A.4B.5C.6D.7【答案】C.【知识点】棱柱的结构特征【解题过程】n棱柱的顶点个数为2n个,故选C.【思路点拨】熟悉棱柱的定义.(3)四棱柱有()个表面A.5B.6 C.7D.8【答案】B.【知识点】四棱柱的定义【解题过程】四棱柱有上下两个底面和四个侧面,故选B.【思路点拨】棱柱有多少个表面,可以先找两个底面,再数其侧面个数即可.(二)课堂设计1.知识回顾。

第二章多面体与旋转体 锥体的体积

第二章多面体与旋转体 锥体的体积

高中立体几何教案第二章多面体与旋转体锥体的体积教案教学目标1.使学生掌握锥体的体积公式及其初步应用;2.通过三棱锥体积公式的探求,教学生学习观察、类比、归纳、猜想等合理推理方法,培养学生分析、综合、抽象、概括等逻辑推理能力;3.通过三棱锥体积公式的探求,培养学生独立思考、刻苦钻研、孜孜以求的毅力及勇于探索创新的精神等良好的个性品质.教学重点和难点三棱锥体积公式及其探求.教学设计过程师:前几节课我们先后学习了祖暅原理和柱体的体积公式,在开始讲本章知识不久,我们还学习了锥体平行于底面的截面的性质.现在请同学们分别回忆一下上述三个知识内容,谁来回答锥体平行于底面的截面的性质是什么?生1:如果棱锥(或圆锥)被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥(或圆锥)的高和原棱锥(或圆锥)高的平方比.师:很好!下面谁来回答祖暅原理是如何叙述的?生2:夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.师:回答正确.请同学们一起回答:柱体的体积公式是怎么表示的?生:柱体的体积等于它的底面积乘以高,即V柱体=Sh.师:当这个柱体是圆柱时,其体积还有别的表达形式吗?生3:V圆柱=πr2h,其中r是底面半径,h是圆柱的高.师:不错.谁能说说底面积是S,高是h的柱体体积公式的探求思路吗?生4:我们构造一个与所给柱体等底面积等高的长方体,把它与所给柱体的下底面放在同一个平面α上.由于它们上、下底面平行,且等高,故它们的上底面必在与α平行的同一个平面β内.现在用平行于α的任意平面去截它们时,由于所得的截面都与它们的底面分别平行,因此截面积都等于S.由祖暅原理知,它们的体积相等,而V长方体=Sh,所以V柱体=Sh.师:很好!生4利用祖暅原理获得了等底面积等高的柱体与长方体(两个柱体)等体积,那么等底面积等高的两个锥体的体积之间有什么关系呢?(师边问边板书“等底面积等高的两个锥体的体积之间的关系”一语)生:相等.师:你们怎么知道它们的体积是相等的?生:猜想的.(也有的说是估计的)师:猜想也好,估计也罢,都是有风险的,尽管如此,但它常常是“发现”的先导.能证实你们的猜想吗?生5:用祖暅原理.设有任意两个锥体,不妨选取一个三棱锥,一个圆锥,并设它们的底面积都是S,高都是h(如图1).①把这两个锥体的底面放在同一个平面α上,由于它们的高相等,故它们的顶点必在与α平行的同一个平面β上,即这两个锥体可夹在两个平行平面α,β之间;②用平行于平面α的任意平面去截这两个锥体,设截面面积分别为S1,S2,截面和顶点的距离是h1,体积分别生6:条件有两个:一个是两个锥体的底面积相等,另一个是这两个锥体的高相等.结论是体积相等.(由学生提出问题、分析问题并解决问题,这是对学生最高层次的要求.当学生达不到这个层次时,可由老师提出问题,学生分析问题和解决问题.老师提出问题后要给学生观察、比较、分析、归纳、猜想、发现的时间.著名数学教育家波利亚曾指出:只要数学的学习过程稍能反映出数学发明的过程,那么就应当让猜想、合情推理占有适当的位置.猜想后还要严格地证明,合情推理与逻辑推理并重,既教证明又教猜想,这才是解决问题的完整过程.)师:上述定理只是回答了具有等底面积等高的两个锥体的体积之间的相等关系,但这个体积如何求出,能否像柱体那样有一个体积公式仍然是一个谜.然而它却给我们求锥体体积一个有益的启示:只须找到一个“简单”的锥体作为代表,如果这个代表的体积求出来了,那么,由上述定理即可获得其它锥体的体积了.请同学们思考用怎样的“简单”锥体作代表来研究呢?师:先割后补与先补后割是处理几何问题时常用的方法,即我们常说的割补法.类比地,能否将这一思维方式迁移到探求三棱锥的体积上来呢?生:(几乎异口同声地)能!师:那么是采用先割后补,还是先补后割呢?邻近的同学可以相互讨论一下.(学生之间小声讨论,选择这两种方法的学生都有)师:我们请一位同学说说自己选择的方法及其理由,谁来说?生9想好了吗?生9:我认为先补后割比较好,至于先割后补,我觉得不行.师:能说说否定先割后补的理由吗?生9:……(似有难色)师:谁能试着割一下?生10:对一个三棱锥进行分割,实际上是用一个平面去截它.无论怎么截,得到的要么仍是三棱锥,要么是比三棱锥更为复杂的几何体.所以对三棱锥再分割是不合适的.师:其他同学以为如何?生:生10的解释是对的.师:既然如此,我们可否定先割后补,而肯定先补后割,刚才生9就是这个意见,现在也是大家的意见了.那么,补成怎样的几何体较合适呢?生:补成三棱柱.师:谁能具体说说?生11:把三棱锥A'-ABC以底面△ABC为底面,AA'为侧棱补成一个三棱柱ABC -A'B'C'.师:请你在黑板上具体补出来.生11:(上黑板补画图形如图5)师:生11完成了补形的任务,下面该进行什么工作了?生:分割.师:如何分割?生:分割成三个三棱锥.师:请生12上来具体分割一下.(生12上黑板分割三棱柱ABC-A'B'C'得三棱锥1,2,3.如图6)师:很好!生12的图形画得很规范.现在请同学们预测一下分割而得的三个三棱锥之间有何关系?生:体积相等.师:能简要地说明你们预测的依据吗?生13:我没有证明,但我想它们的体积应该相等,这是因为刚才回忆求三角形面积时,将三角形补成一个平行四边形(平面图形)后再分割成的两个三角形等面积.类比地,我们将三棱锥补成一个三棱柱(空间图形)后再分割成三个三棱锥当然应该体积相等.师:生13由平面图形的处理结果类比地预测空间图形的相应结果不无道理.同学们的预测实际上也是我们的希望.而怎样使我们的希望、预测变为现实,还需要严格证明,那么怎样证明这三个三棱锥1,2,3等体积呢?(引导学生思考两个锥体等体积的依据——前面定理的条件:(1)等底面积,(2)等高)生14:(生14叙述,师板书)在三棱锥1,2中,S△ABA'=S△B'A'B,又由于它们有相同顶点C,故高也相等,所以V1=V2.又在三棱锥2,3中,S△BCB'=S△B'C'C,它们有相同顶点A',故高也相等.所以V2=V3,所以V1=V2=V3.生15:在证得V1=V2后,再证明V1=V3也很方便.(生15叙述,师板书)因为在三棱锥1,3中,S△ABC=S△A'B'C',高也相等(都等于三棱锥的高).所以V1=V3.(由课本第103页练习题1改编)如图7,在正方体ABCD-A'B'C'D'中,已知棱长为a,求:(1)三棱锥B'-ABC的体积;(2)这个三棱锥的体积是正方形体积的几分之几;(3)B到平面AB'C的距离?(若没时间,可留做课后思考,要求用两种方法求解)(请生18解答(1),(2),生19解答(3),其余同学在座位上完成,师巡视)(生18板演(1),(2))师:非常好.生19的方法一是常规方法,而方法二则巧用了三棱锥的体积,使问题的求解变得十分简捷.这种方法称作顶点转换法,有时也称作等积转换法.事实上三棱锥(即四面体)的每一个顶点都可作为棱锥的顶点,和它相对的面都可作为相应的底面,这是三棱锥(四面体)特有的性质.在一定的条件下,它为我们求解顶点到底面的距离提供了捷径,应当引起我们的注意.今天这节课我们主要学习了锥体的体积公式,下面请同学们就知识和思维能力两个方面作一下小结.(请学生自行小结,师生共同补充完善)1.知识方面:通过本节课学习,我们利用割补法获得了三棱锥的体积公式,进而获得了一般锥体的体积公式,并初步体会了其应用;2.思维能力方面:又一次体会了联想、类比、猜测、证明等合情推理及逻辑推理的方法在探索新知识方面的重要作用.作业:略.课堂教学设计说明1.关于教学目标的制定在课堂教学中实施和推进素质教育,正愈来愈被广大教师所重视.由于学生的素质是多方面的,这就决定了课堂教学的目标应该是多元化的.(1)锥体的体积是多面体和旋转体这一章的重点内容之一,在体积问题中有着重要的地位,将锥体的体积公式及其初步应用作为本节课的教学目标之一是完全合适的.(2)学生思维方法的好与差,推理能力的强与弱,在一定程度上反映了学生素质的高与低.因此,如何通过课堂教学,教学生学习合情推理的方法,培养学生逻辑推理能力,是我们制定教学目标时必须认真思考的.(3)未来社会不仅要求人们具有丰富的文化科学知识,而且还需要人们具有顽强的毅力及创新的意识.教学目标3正是据此而制定的.2.关于教学重点和难点的确定本节课的核心内容是锥体的体积,而锥体体积公式的探求需要教师逐步唤醒学生割补思想的记忆,努力使学生自行发现知识,掌握知识,发展学生的创造性思维,这对教师和学生都是较高的要求.因而锥体的体积公式及其探求既是教学的重点,又是教学的难点.3.关于教学过程的设计本节课按如下五个方面展开:(1)复习三个问题——①锥体平行于底面的截面的性质;②祖暅原理;③柱体的体积公式及其探求思路;(2)等底面积等高的两个锥体的体积之间的关系;(3)三棱锥的体积公式的探求;(4)一般锥体的体积公式,圆锥的体积公式;(5)锥体体积公式的简单应用.有目的地做好旧知识的复习,为顺利地进行新课的讲授奠定了基础.(1)中的三个复习题主要是为推导“等底面积等高的两个锥体的体积相等”这一定理而准备的.提问时应注意必要的顺利.这里,祖暅原理在问题③的回答中要应用,因而放在③前面提问.而由问题③的“探求思路”的回答中,利用祖暅原理获得了“等底面积等高的柱体和长方体等体积”的结论,很自然地让人产生“等底面积等高的锥体体积之间有何关系”的联想.这样,旧课的复习很自然地过渡到了新课的讲授.因此,把问题③放在最后复习比把问题①放在最后复习要好得多.“等底面积等高的锥体的体积相等”这一结论是推导三棱锥体积公式的重要工具.由复习题③中“探求思路”的回忆,引导学生先猜后证,让学生自己发现知识,自行“制造”推导三棱锥体积公式的“工具”,这是发挥学生主体作用的重要体现.三棱锥体积公式的探求是本节课的核心内容,如果像教材中那样,直接将三棱锥补成一个三棱柱,然后将其分割成三个三棱锥,再求体积,那么,虽然教师备课可以少用许多时间,然而,学生对“怎样想到利用割补法”,“为什么要先补后割”往往疑惑不解.这里,在(3)中插入两个几何图形面积公式的探求思路的回忆,旨在唤醒学生割补思想的记忆,启发学生的思维.通过联想类比,学生感悟探求三棱锥体积也用割补法已水到渠成.尔后,围绕“先割后补”还是“先补后割”的问题,引导学生自己动手一试,相互讨论,比较优劣,从而肯定“先补后割”,并对“如何补,怎样割”,鼓励学生自己操作.最后,让学生自己推导公式,这是对学习主体的尊重,这样做旨在为学生扫清这一知识形成过程中的思维障碍,使整个思维过程和知识形成过程构成一个完美的统一体.显然,这种教学氛围的营造,使学生在旧知识的温故中,发现了打开新知识宝库大门的钥匙,在探索知识奥秘的征途上,创造性的迈开了自己坚实的一步.学生表现出了极强的思维积极性和探索毅力,创新意识,创造能力和创造精神得到了培养.由三棱锥体积公式的探求到一般锥体体积公式的获得,再到圆锥体积公式的表达,这是特殊—一般—特殊的思维过程.经常有意识的进行这样的训练,学生的思维方法、思维能力必将得到极大的提高.。

高中立体几何教案 第二章 多面体与旋转体

高中立体几何教案 第二章 多面体与旋转体

高中立体几何教案第二章多面体与旋转体球教案内蒙巴盟奋斗中学傅裕东教学目标1.掌握球的定义.2.掌握球的性质,并能熟练应用;3.通过球的教学,培养学生分析问题解决问题的能力.教学重点和难点重点:球的截面性质.难点:球面距离的计算.教学设计过程一、复习提问师:圆柱是怎样定义的.生:以矩形的一边为旋转轴,其余各边旋转而成的曲面所围成的几何体叫做圆柱.师:是矩形的边为旋转轴吗?生:是师:同学们请读p.21定义,然后教师强调指出,是以矩形的一边所在的直线为轴.师:同学们再考虑:圆锥、圆台是怎样定义的.教师要强调边所在的直线为轴.二、讲课题师:以上同学们清楚了圆柱、圆锥、圆台的形成过程.那么球是怎样形成的呢?是否也可以通过某一个几何体旋转而形成呢?学生经过思考不难发现,半圆以它的直径所在的直线为轴旋转所成的曲面围成的几何体.(待学生回答后)教师展示教具,(从而得出球面的旋转定义)(板书)半圆以它直径所在的直线为轴旋转所成的曲面叫做球面,球面所围成的几何体叫做球体(简称球),(接着教师画出下图并介绍球的有关概念:球心、球半径、直径、球的表示,特别要强调球面与球二者的区别)师:球面与球的区别是什么?生:球是包括球面在内的一个几何体,球面是一个面.师:在平面几何里,从点集的观点看圆是怎么定义的,我们是否也可用类似的方法定义球面.生:在同一平面内,一动点到一定点的距离等于定长的点的集合,是以定点为圆心,定长为半径的圆.师:在空间到定点的距离等于定长的点的集合,是以定点为球心的球面.球的性质:师:通过上面的讨论我们不难看出:球面两种定义和圆有联系.比如说:从点集的观点看圆与球面的定义,这个定义就其内容来说,都是指到定点的距离等于定长的点的集合,它们的不同之处只在于定义适用的范围,圆的定义是对平面而言,而球的定义则是对空间而言的,因此可以说,球面的概念是圆的概念在空间的推广,既然如此我们不禁要问,它们之间会不会有某些相似的性质,我们能否从圆的某些性质去推测并证明球的某些性质.(显而易见,上面的引入和启发为学生对球性质的进一步探讨在思维方法上做好了必要的准备,学生已形成了一定的“定势”思维,教师要牢牢把握住既定的思维轨道去探索)师:我们知道圆的割线在圆内的部分是一条线段,球被平面所截其截面是什么?生:是圆面.师:为什么是圆面,教师出示教具演示,并指出教材不做证明要求.(请有兴趣的同学下去完成证明)(下面的证明仅供教师参考)证明:设球的半径是R,下面分两种情况研究.(1)设平面α与球面相交,如果点O∈α(如上图2),设A是球面和平面α的交线上的任意一点,因为A在球面上,所以AO=R.所以A在平面α内以O为圆心,R为半径的圆上.反过来,如果B是这个圆上的任意一点.因为OB=R,所以点B在球面上.点B在球面上,又在平面α内,就是说点B在平面α和球面的交线上.因此,平面α和球O的截面是一个圆面.(2)如果点Oα(如图3),自点O作OK⊥α,垂足为K,设A是平面α和球面交线上的任意一点,连结AK.因为OK⊥α,所B在球O的球面上.点B在平面α内,又在球O的球面上,那么点B就在它们的交线上.因此平面α截球O的截面是一个圆面了.师:球的截面在球中的地位类似于弦在圆中的地位,截面是圆面.(学生明确了球的截面是圆面之后,下面的问题便迎刃而解)师:在圆中,圆心与弦的中点连线与弦有什么位置关系?生:垂直.师:那么在球中,球心与截面圆心的连线与截面有什么位置关系.(教师画出示意图)生:垂直于截面圆.(教师板书球的性质(1))(并展示实物或模型演示给学生,不作证明)师:球心与截面圆心的连线垂直于截面圆,那么不难看出,球半径R,球心与截面圆的距离d,及截面圆半径r 之间有什么关系?师板书球的性质(2)]师:在圆中,弦心距的变化与弦长有什么关系.生:当d=0时弦最长,随着弦心距的增大,弦在减小,当d=R时弦长为0,这时直线与圆相切.师:在球中,球心到截面的距离d与截面圆的大小有什么关系?生:(可类比圆的弦变化思考)当d=0时,截面过球心,这时R=r,截面圆最大,如图4.师:这个圆叫做大圆.生:当d增大时截面圆越来越小.师:当0<d<R时截面是小圆,如图5.当d=R时,截面圆缩为一个点,这时称截面与球相切,如图6.师:在地球仪中,纬线和径线是怎样规定的.生:平行于赤道的小圆线是纬线,过南北极的半大圆是经线.师:(下面对经度和纬度结合图形要讲清楚,这两个概念也是很难理解的)如图7,纬度——P点的纬度,也是或∠POA的度数,即:某地的纬度就是经过该点的球半径和赤道平面所成的角度.如图8,经度——P点的经度,也是或∠AOB的度数,即:某地点的径度就是经过这点的径线与地轴确定的半平面与本初子午线与地轴确定的半平面所成二面角的度数.球面上两点间的距离.(用地球仪边演示边发问)师:如果我们把地球看成一个球,我们会遇到这样的问题,由A到B的球面上应如何走行程最短?我们知道平面上两点间最短的距离是连接这两点的线段的长度,而地球的表面是曲面,球面上A,B两点间的最短路程显然不是线段AB的长度,那么它又是什么呢?(这时教师把事先做好的连接A,B两段铁丝作成的圆弧由地球仪表面(见图9)搬在电教片上,并画图10.)指出这相当于在平面上连接A,B的劣弧中,怎样的劣弧的长度最短?就图而言?哪一段弧较短?(要求学生答),这两段弧在本质上有什么区别?生:所在圆半径不同.师:可以看出,半径较大的劣弧反而短.这就启示我们,在球面由A到B的路程要尽量沿着所在圆半径较大的劣弧走.在连接A,B的劣弧中最大圆的半径存在吗?生:(学生相互议论,研究发现)最大圆半径存在.师:它等于多少?生:就是经过这两点的大圆半径R.师:由以上讨论:最后我们知道,在球面上,两点间的最短距离就是经过这两点的大圆在这两点间的一段劣弧长度,把这个弧长叫做两点间的球面距离.(板书)例1(把例题抄在投影片上)我国首都北京靠近北纬40°,求北纬40°纬线的长度约为多少千米(地球半径约6370km).师:怎样能把这个问题平面化呢?生:做地球的截面大圆.师:是截面大圆吗?任一个截面大圆能完成该题的要求吗?生:(部分学生说能,另一部分说不能,经过讨论争执,最后统一了意见)是经过南北极的大圆截面.师:(画图)请同学回答哪个角等于40°.生:∠AOB=40°师:请找出经过A点纬线圈的半径.生:半径是AK.师:过A点纬线圈的周长是多少?生:C=2π·AK.师:用半径R和40°表示AK的长.生:AK=Rcos40°师:故求出了北纬40°纬线的长度约为C=2π·Rocs40°=3.066×104km练习:(1)课本p.87 1.(2)下列命题:a.球的任意两个大圆的交点连线是球的直径.b.球面上任意两点的球面距离,是过这两点的大圆弧长.c.球面上任意两点的球面距离,是连接这两点的线段长.d.用不过球心的平面截球,球心和截面圆心的连线垂直于截面.正确的是[ ]A.a,b B.b,cC.a,d D.d作业:课本p.91.1.2.课堂教学设计说明本教案体现由浅入深、循序渐进的教学原则,充分体现了启发式、和类比思想的教学方法,培养学生独立思考、发现问题和解决问题的能力.。

第二章多面体与旋转体情棱柱、棱锥、棱台复习

第二章多面体与旋转体情棱柱、棱锥、棱台复习

高中立体几何教案第二章多面体与旋转体:棱柱、棱锥、棱台复习课教案教学目标1.理解棱柱(斜棱柱、直棱柱、正棱柱、平行六面体等)、棱锥(一般棱锥、正棱锥)、棱台(一般棱台、正棱台)的有关概念;2.理解并掌握棱柱、棱锥的一般性质,掌握正棱柱、正棱锥、正棱台(尤其是正方体、正四面体)的性质;3.能够运用直线与平面的有关知识分析、论证多面体中的线面关系,并能熟练的进行有关棱柱、棱锥、棱台中侧棱、高、斜高、侧棱与底面、侧棱与侧棱、侧面与底面所成角的有关计算;4.掌握棱柱、棱锥、棱台的侧面积与全面积的计算;5.会解决棱柱、棱锥、棱台的对角面和平行于底面的截面等有关问题,能熟练的解决其各种截面中直角三角形的有关计算,能有意识地将立体几何的计算问题转化为平面几何图形中的有关计算.教学重点和难点重点是能够熟练的将直线与平面的有关知识运用于棱柱、棱锥、棱台几何体中.难点是将立体几何的有关计算转化为平面几何图形中的有关计算.教学设计过程一、复习提问(用投影仪出示下列命题)例1 回答下列命题中条件是结论的什么条件(要求用充分非必要、必要非充分、充要条件作答)(1)有两个侧面是矩形的棱柱是直棱柱.(2)底面是正多边形的棱锥是正棱锥.(3)底面是正多边形的棱台是正棱台.(4)有两个面平行且是相似的多边形,其余各个面都是等腰梯形的几何体是棱台.(该例题重点是检查学生对所学过的这三种几何体基本概念的理解与认识.故需找四名程度较差的学生作答)讲评.(1)必要非充分条件.因这两个侧面可以是相对的两个侧面.(2)必要非充分条件.因正棱锥的侧面是全等的等腰三角形.(3)必要非充分条件.因正棱台的侧面是全等的等腰梯形.(4)必要非充分条件,因棱台的各条侧棱相交于一点.例2 集合A={斜棱柱},B={直棱柱},C={正棱柱},D={长方体}.下面命题中正确的是[ ]B.A∪C={棱柱}C.C∩D={正棱柱}D.B D(该例题重点是检查学生对所涉及到的这几个集合与集合中元素的理解与认识,所以在分析问题时只要用韦恩图把这几个集合间的关系清楚地表示出来即可找到正确的答案C,如图1)师:下面我们按照上述两种方法分别计算这个棱柱的侧面积.解法一:如图3,作A1H⊥平面ABC于H.师:正三棱锥有什么特征.生:顶点在底面上的射影是底面正三角形的中心.(即内心、外心、重心、垂心)师:由此我们得知:这个正棱锥的高为顶点到底面射影的连线,故解决问题的关键是设出该棱锥的底面中心.解:如图.设点O为顶点在底面上的射影.因该棱锥为正三棱锥,所以O为底面正三角形的中心.连接SO、CO并延长CO交AB于D,连接SD,则CD⊥AB于D,SD⊥AB于D.(三垂线定理)所以∠SDC是侧面SAB与底面ABC所成二面角的平面角,即∠SDO=60°.因为△ABC是正三角形,且AB=a.讲评:一个三棱锥只要知道两个独立的条件,即两个独立的量(如此例中底面边长及侧面与底面所成的二面角60°),就可以求出其它的各个量,计算中充分利用正棱锥的性质、通过高、侧棱、侧棱在底面上的射影所组成的直角三角形、以及高、斜高及斜高在底面上的射影所组成的直角三角形、沟通了正棱锥的高、侧棱、斜高、底面的边长之间的关系,从而也沟通了立体图形向平面图形转化的桥梁,体现了化归与转化的基本思想.例5 正三棱台A1B1C1-ABC的侧面与底面成45°角,求侧棱与底面所成角的正切值.课堂教学设计说明学习完棱柱、棱锥、棱台这几种几何体之后,由于涉及到的基本概念、基础知识较多.它包括了柱、锥、台的性质,同时也包含了第一章学过的所有知识.因此学生们在学习中感到很困难,产生了恐惧心理.为了帮助学生克服困难、克服心理上的压力.本节课从“化归与转化”的思想出发,有机地把所学习过的知识联系起来,循序渐进地将立体几何图形的问题转化为平面几何图形的问题,把多面体中的面面问题转化为线面问题,进一步转化线线问题;将棱台的问题转化为棱锥的问题.从而达到对“化归与转化”这一数学思想的认识与升华.因此本节复习课中将有意识地注意“转化”思想的体现.。

多面体与旋转体

多面体与旋转体

第二章多面体与旋转体棱锥的概念和性质教学目的1.通过棱锥、正棱锥概念的教学,培养学生知识迁移能力及数学表达能力;2.通过对正棱锥中相关元素的相互转化的研究,提高学生空间想象能力及空间问题向平面转化的能力.教学重点和难点教学重点是正棱锥的性质.教学难点是认识及掌握正棱锥中的基本图形.教学设计过程师:上节课我们学了棱柱的有关知识,当棱柱的上底面缩为一点时,想一想,其侧面、侧棱有何变化?(将金字塔、帐篷的图片以及不同棱锥的模型依次出示给学生)师:(学生观察后)我们将现实生活中的实例抽象成数学模型,就得到新的几何体棱锥.(板书课题)师:你们能描述一下棱锥的本质特征吗?(提示学生可以从底面、侧面的形状特点加以描述)生:底面可以是任意多边形,侧面必须是三角形.师:这些三角形必须有共同的什么呢?生:有一个公共顶点.师:(小结)有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(这样由观察具体事物,经过积极思维,然后抽象出事物的本质属性,形成概念,是培养能力,提高效果的好办法)师:请同学们看图1.(可做成覆盖片,依次介绍棱锥各部分名称及表示法)表示:棱锥S-ABCDE或棱锥S-AC.师:与棱柱类似,棱锥可以按底面多边形的边数分为三棱锥,四棱锥,五棱锥,…,n棱锥.(由于本节重点是解决正棱锥的性质问题,故对棱锥的表示法及其分类宜简不宜繁)师:由于在实际中遇到的往往是一种特殊的棱锥——正棱锥,它的性质用处较多,所以下面重点研究正棱锥的概念及性质.师:对比正棱柱定义能描述一下正棱锥吗?(类比是重要的数学方法之一)生:底面是正多边形的棱锥.师:对吗?思考一下,棱柱定义在补充几点后才是正棱柱.(学生议论后回答)生:应该是底面是正多边形,并且顶点在底面的射影是底面中心的棱锥才是正棱锥.师:很好!以上两条是缺一不可的.即由顶点向底面作垂线,垂足必为底面正多边形的中心的棱锥才是正棱锥.(可拿出各式各样的棱锥模型让学生辨认,根据定义指出哪一个是正棱锥)师:正棱锥的顶点在底面上的射影是底面正多边形的中心,这是正棱锥的本质特征,它决定了正棱锥的其它性质.下面我们以正五棱锥为例,你能说出其侧棱、各侧面有何性质吗?(将图2出示给学生)生:各侧棱相等、各侧面都是全等的等腰三角形.师:为什么?生:可通过全等三角形得证.(口答证明)证明:连结OA,OB.因为正棱锥S-AC,SO为高,所以OA=OB,∠SOA=∠SOB=90°,SO=SO,所以△SAO≌△SBO.所以SA=SB.故△SAB为等腰三角形.其它同理可证.师:很好!若我们把等腰三角形底边上的高叫正棱锥的斜高.请在图2中作出两条斜高.生:作SF⊥BC于F,SG⊥AE于G两条斜高,也可取BC的中点F,连结SF.师:那么斜高有什么性质呢?生:斜高相等.师:想一想,正棱锥的高与斜高有何区别?生:高是顶点到底面的距离,而斜高是顶点到底边的距离.师:再联系一下垂线段、斜线段的有关知识呢?生:高是顶点到底面的垂线段,斜高是顶点到底面的斜线段.师:所以它们之间的大小关系如何呢?生:恒有高小于斜高.师:对于一般棱锥其侧面不是等腰三角形,棱锥的高是指顶点到底面的距离,垂足是可以在底面多边形内,也可以在底面多边形外的.我们刚才所得到的性质都是对正棱锥而言的.下面我们来研究如何利用这些性质解决具体问题.师:请同学们看例一.(板书)已知:正四棱锥S-ABCD中,底面边长为2,斜高为2.求:(1)侧棱长;(2)棱锥的高;(3)侧棱与底面所成的角;(4)侧面与底面所成的角.师:根据题目,需要画正四棱锥的直观图,画图的步骤是:先画平行四边形,找中心,画高线,最后连侧棱.(图3)(正四棱锥的直观图的画法下节才讲,本节课只要求学生按以上四步完成即可,教师边说边画)师:这道题让我们求哪些量?生:侧棱、高这两条线段的长及两个角.师:其实就是求距离及角,是两个什么样的角呢?生:一个是线面角,一个是面面角.师:你们准备怎样求?生:先把已知量和未知量在图形中找到,再想办法把它们联系起来,利用正棱锥的有关性质解题.(稍停后,学生口述,教师板书)生甲:连结SO,由正棱锥性质有SO⊥面ABCD.取BC的中点M,连结SM,OM.因为等腰△SBC,所以SM⊥BC.在Rt△SMB中,生丙:因为SO⊥面AC,所以∠SBO为侧棱与底面所成的角.在生丁:因为SM⊥BC,OM⊥BC,所以∠SMO为侧面与底面所=60°.(解题中用到的每一直角三角形在图3中用彩笔描出)师:此例中几个提问都显示了直角三角形在解决正棱锥计算问题中的作用.观察图3中彩色部分,有几个直角三角形?生:4个.师:哪4个.生:Rt△SMB,Rt△SOM,Rt△SOB,Rt△OBM.师:再观察一下这4个直角三角形围成了一个什么新的几何体?生:一个小三棱锥.师:推广到一般正棱锥中,都存在这个小三棱锥,它是正棱锥中的基本图形,是正棱锥的关键部分,一般的棱锥也有类似的关键部分.那么这个小三棱锥涉及到了正棱锥的哪几个量呢?(将图3做成抽拉片,把彩色部分抽拉出来,让学生看起来更直观,逐一回答)生:Rt△SBO的三边分别是正棱锥的高、侧棱、底面正多边形的半径.生:Rt△SMO的三边分别是正棱锥的高、斜高、底面正多边形的边心距.生:Rt△SBM的三边分别是正棱锥的侧棱、斜高、底面正多边形边长的一半.生:Rt△OBM的三边分别是底面正多边形的边心距、底半径、底边长的一半.师:还涉及到了哪几类角呢?生:有线面角∠SBO,是侧棱与底面所成的角.有二面角∠SMO,是侧面与底面所成的角.师:所以说这个小三棱锥集中反映了正棱锥的线面关系.在正棱锥的有关计算问题中,主要涉及以下基本元素l,h,h',a,R,r,线面角、侧面和底面所成二面角的平面角,我们看到这些基本元素通过四个直角三角形有机地联系在一起,围成一个各个面都是直角三角形的小三棱锥.因而解题时可以将题目中各量转化进这个小三棱锥中进行计算.正棱锥中的几个重要直角三角形及所涉及到的两类角,是正棱锥的又一性质.当然这四个直角三角形中尤其以前两个更为重要.(稍停)师:请同学们看例二.求:侧棱长及斜高.(要求学生自己思考,多种方法求解)生:连结OA.因为正三棱锥V-ABC,VO为高,取BA的中点D,连结VD,师:很好!还有其他解法吗?生:求斜高VD时,不在Rt△VAD中完成.可连结DO.师:同学说的这两种方法都是在前面所提到的正棱锥中的基本图形中完成的,还有其他办法吗?(可启发学生能否在一个三角形内完成)生:连结CO并延长交AB于D,连VD,则AD=BD=3.师:此例告诉我们,在正三棱锥中可以在基本图形小三棱锥V-ADO中计算,还可以利用△VCD进行计算.△VCD也集中了正三棱锥的主要基本量,是正三棱锥的又一基本图形,这是其它正棱锥所没有的.当然不管利用上面哪种方法,都是借助基本图形,把不相关的元素向相关元素转化.师:下面自己完成这道课堂练习,巩固前面所获得的解题方法.已知:正三棱锥的侧面与底面所成的角为60°.求:侧棱与底面所成角的正切.师:这节课我们重点研究了正棱锥的性质,请同学们把正棱锥的性质概括一下.(学生说教师把正棱锥的性质用投影片逐一打出)生:正棱锥的性质:(1)各侧棱相等,各侧面都是全等的等腰三角形.(2)正棱锥的斜高相等.(3)正棱锥中的几个重要直角三角形及两类角:①正棱锥的高、侧棱和侧棱在底面上的射影(正多边形的半径)组成一个直角三角形.②正棱锥的高、斜高和斜高在底面上的射影(正多边形的边心距)组成一个直角三角形.③正棱锥的侧棱、斜高和正多边形边长的一半组成一个直角三角形.④正棱锥底面内,正多边形的半径、边心距和边长的一半组成一个直角三角形.⑤正棱锥的侧棱与底面所成的角;侧面与底面所成的角.师:在正棱锥的计算过程中我们通常可用什么办法?生:可将题目中的各个量转化到其基本图形中.师:什么是正棱锥的基本图形?生:就是性质中所提到了,由四个直角三角形组成的小三棱锥.师:那么各个量转化到这个基本图形中后,又如何解决呢?生:可利用直角三角形的边角关系进行计算.师:这说明什么?生:说明我们是在平面内解决的.师:所以说,把空间问题有计划地转化为平面问题是解决立体几何问题的关键.(进一步培养学生空间问题向平面问题转化的思想)师:作业是课本p.62,2,3.补充题:已知:正棱锥的底面边长为a,底面多边形的边心距为r,棱锥的高为h.求:它的侧棱长.[提示:如图7,在Rt△SOM中,SM2=h2+r2.在Rt△SAM中,课堂教学设计说明本教案的教学步骤完全是围绕正棱锥的性质这个中心而展开的.为了让学生深入认识及掌握正棱锥中的基本图形,共设计了四个层次:(1)通过对具体几何体的观察引出棱锥的概念.(2)通过棱柱及棱锥的类比引入正棱锥的概念.(3)正棱锥的性质.(4)例题与巩固练习仍以正棱锥的性质为中心,使学生对正棱锥中的基本图形的认识更深刻、更全面.在教学中对前两个层次宜简不宜繁,而后两个层次的教学内容才是本节课的重点.本节课从棱锥的概念—正棱锥的概念—正棱锥的性质—正棱锥计算问题中的思想方法,脉络清晰,容量大,有关概念与性质较多,故采用了电教手段.把某些概念、性质或知识关键点制成了投影片,这样既节省时间,又增加其直观性,起到事半功倍的作用.应当指出的是,在教学过程中并没有采取把正棱锥的性质同时全部讲授给学生,而是通过对例题的分析与处理,自然而然地引出正棱锥的最重要的性质,即正棱锥中的四个重要直角三角形.再通过学生对图形的观察,上升到由这四个直角三角形围成的小三棱锥,引出正棱锥中的基本图形.这样既给出了正棱锥的性质、又给出了解决正棱锥问题的解题方法.使学生清楚地看出,把正棱锥的问题归结为四个直角三角形的计算,是解决正棱锥问题的基础.至于正棱锥的性质,是在本节的小结中让学生自己进行了系统的归纳.正是基于侧重讲正棱锥性质的应用、讲解题方法、讲数学思想,因而例题与巩固练习都没有选择较难的应用性习题.本教案正是避免了出现应用正棱锥性质计算或推理的难题,把主要精力放在先使学生认识正棱锥中的基本图形,并认识到它的重要性,而后给出解决正棱锥有关计算问题的普遍方法.通过本节课的教学,要让学生掌握图形中的基本图形是图形的一些基本元素所集中的部位,它把图形的各主要元素紧密地联系在一起.掌握并熟悉这些基本图形有助于计算和证明所给的题目.图形中的基本图形往往是变立体几何为平面几何的最后归宿.最终点明,我们解决立体几何问题的关键,就是要有计划地把空间问题转化为平面问题.。

数学『教学课题』 身边的数学——多面体、旋转体

数学『教学课题』 身边的数学——多面体、旋转体

数学『教学课题』身边的数学——多面体、旋转体『教学课题』数学是一门基础学科,是为自然科学服务的。

因此,本人将多面体和旋转体的面积和体积的计算应用到产品的成本核算中。

具体思路如下:说明:呈现个案——引用“多面体、旋转体”工艺品,激发学习兴趣,使学生明确有关多面体、旋转体的概念,掌握表面积、体积计算方法。

然后提出产品原材料成本核算的个案,师生共同解决。

探究知识——通过对个案分析,归纳出产品成本的组成及产品定价步骤。

应用迁移——通过学生调查市场、设计制作、学生展示、师生评价及归纳小结等步骤,提高学生的综合能力。

『教学目标』知识目标:使学生明确有关多面体、旋转体的概念;掌握柱体、锥体、球体的表面积和体积计算;掌握制作简单多面体、旋转体的成本计算。

能力目标:培养学生理论联系实际能力、动手能力和统筹规划能力。

情感目标:培养学生的协作意识,以及用数学的眼光观察、分析周围客观事物的意识。

『教学方法』大脑风暴法、项目教学法、粘帖板法。

『教学重点』锥体、柱体、球体的表面积和体积计算及其应用。

『教学难点』表面积和体积计算的实际应用。

『教学工具』棱柱、圆柱、棱锥、圆锥、球、仿真三潭印月、仿真东方明珠(自制教具)及多面体的工艺品。

『教学时数』四课时『课前准备』(1)将学生分成五个小组,并确定各组组长。

(2)各组在预算内购买材料,并准备硬纸板、剪刀、双面胶、刻度尺等工。

(3)学生自己到企业和市场调查相关材料的规格、成本及其它成本。

(4)教师准备:多媒体课件及教学工具、材料等。

『教学内容和过程』教学环节教学内容和师生双边活动教学设计意图个案呈现新课引入一、引入新课(1分钟)[教师]数学离我们的生活并不遥远,我们的身边就有数学如:许多工艺品就是由多面体和旋转体构造成的。

[教师]展示工艺品,并进行分析二、知识回顾(6分钟)[展示]棱柱、圆柱、棱锥、圆锥、球体模型。

[师生]共同回顾知识,得出名称图形表面积体积棱柱S=ch+S底V=sh圆柱S=2πrh+S底=ch+S底V=sh= πr^2h棱锥S=21ch’V=31sh圆锥S=21ch’+S底=πrh’+S底V=31sh=31πr^2h球体S=4πr^2V=34πr^3创设情境,激发学习兴趣,点出课题并复习有关知识个案呈现个案实践三、个案的提出和解决(45分钟)[教师]讲述蛋卷冰淇淋的故事——小发明、大财富。

第二章多面体与旋转体 棱锥、圆锥的体积-推荐下载

第二章多面体与旋转体 棱锥、圆锥的体积-推荐下载

高中立体几何教案第二章多面体与旋转体棱锥、圆锥的体积教案教学目标1.使学生掌握棱锥、圆锥的体积公式及初步运用进行锥体体积运算;2.使学生进一步树立联系转化的数学思想,进一步提高逻辑推理和图形变换的能力;3.通过本节课教学使学生思维品质(如思维的深刻性、灵活性)受到锻炼.教学重点和难点棱锥、圆锥体积公式推导为重点,以联系转化为主线推导棱锥、圆锥体积公式的过程为难点.教学设计过程师:今天我们研究的课题是棱锥、圆锥的体积.已知:锥体的底面积为S,高为h.求:V锥体=?(板书课题)这些锥体可以是三棱锥、四棱锥、五棱锥……还可以是圆锥.(教师一边说一边出示小黑板——图1)师:对于这个课题我们要解决二个问题:1.底面积是S,高是h的锥体体积公式是什么?2.如何推导这个公式?怎么推导锥体体积公式呢?(学生思考片刻后,教师继续引导)师:能不能用体积单位去量?(引导学生从几何体体积度量方法入手考虑问题)生:(摇头示意不成)师:还有什么方法?生:能不能利用祖暅原理?师:是一种方案,如果想用祖暅原理就需要用我们已经知道了体积公式的几何体来比,用哪种几何体呢?生:柱体.师:这些柱体可以是三棱柱、四棱柱、五棱柱……,还可以是圆柱.(出示第二块小黑板——图2)师:为了用祖暅原理,我们选这些柱体底面积为S,高为h,于是这两类几何体都可以夹在两个平行平面间,满足祖暅原理第一条,然后用平行于这两个平行平面的平面去截这些几何体,分别得到截面,这时锥体的截面积与柱体的截面积相等吗?生:不相等.师:为什么?生:柱体的截面与柱体底面全等,所以柱体的截面积为S,而锥体的截面与柱体的底面相似,所以锥体截面积不等于S.师:说得很好,这说明没有满足祖暅原理的第二个条件,因此利用祖暅原理也不可能了,怎么办?(学生感到困惑,教师引导鼓励学生思考)师:我们不妨调整一下思路,刚才只说了这些锥体的截面积不等于S,这些截面之间又有什么关系?生:这些锥体截面积相等.师:能证明吗?(学生口述,教师板书)又因为这些锥体的底面积,高、顶点到截面距离分别相等.所以这些锥体的截面积相等.师:由我们得到的这些锥体的条件,可以得出什么结论?生:这些锥体体积相等.师:根据什么得出这个结论?生:根据祖暅原理.师:谁能概括一下我们得到这个命题.生:夹在两个平行平面间,底面积相等的锥体体积相等.师:很好,但可以再简练些.能夹在两个平行平面间说明这些几何体高相等,最后概括为(板书)定理1 等底面积等高的两个锥体体积相等.师:虽然祖暅原理不能帮我们直接得到锥体体积公式,但它帮我们得到了一个很好的定理.根据这个定理,我们的研究对象还用这么多吗?生:不用.研究锥体中的一个就可以了.师:研究哪一个比较好呢?(学生议论纷纷,说法不一)生:有的同学说三棱锥,有的同学说圆锥.我们选择的标准应该是简单、方便研究的几何体,圆锥涉及曲面问题,研究比较复杂,所以选棱锥中最简单的三棱锥做研究对象.(取下小黑板,微机显示一个三棱锥图形——图3)师:现在锥体体积公式的推导归结为三棱锥体积公式的推导.研究三棱锥体积,还得与柱体体积有联系,选三棱柱.(微机显示—图4)(完成第一次转化,使研究系统简化)师:对于底面积S,高为h的三棱柱ABC-A'B'C',三棱锥P-ABC,它们的体积会有什么关系?(学生考虑,教师引导)二个几何体的体积哪一个大?(学生活跃起来,抢着说出答案)生:三棱柱体积大.师:能从数学角度论证一下吗?(学生沉默片刻,部分同学举手)生:在三棱柱中,连结A'B,A'C.(微机显示—图5)三棱锥A'-ABC,底面△ABC,面积为S,高为h,根据定理1,它的体积与三棱锥P-ABC体积相等,说明三棱锥P-ABC体积是三棱柱ABC-A'B'C'体积一部分,所以三棱柱ABC-A'B'C'体积比三棱锥P-ABC体积大.师:论证得很好,那么三棱柱体积比三棱锥体积大多少呢?(学生很感兴趣,议论纷纷,互相争论)生:三棱柱体积大约是三棱锥体积3倍左右.师:能说说理由吗?(学生思考片刻回答)生:在三棱柱中,连结B'C,三棱锥C-A'B'C'底面△A'B'C面积为S,高为h,它的体积与三棱锥A'-ABC体积相等.师:这说明三棱柱ABC-A'B'C'体积为三棱锥P-ABC体积2倍.这时三棱柱被分割成了三部分,其中三棱锥A'-ABC与三棱锥C-A'B'C'体积相等.(微机显示—图6,△ABC,△A'B'C'红色画面闪动,点A',C'白色亮点闪动)现在关键是三棱柱被分割为三部后中间部分图形体积,这是个什么图形?(教师指示图6(2))生:也是三棱锥.师:这个三棱锥以哪个点为顶点,哪个面为底面?生:A'为顶点,△B'BC为底面,也可以看成B'为顶点,△A'BC为底面,或者看成C为顶点,△A'B'B为底面.师:那么这个三棱锥体积是多少呢?(学生议论纷纷,思维活跃)我们希望……生:相等.师:是的,我们希望这个三棱锥体积与另外二个三棱锥体积相等,那么,它们体积相等吗?(学生积极思考,教师适当提示)师:想证两个三棱锥体积相等,需要哪些条件?生:等底面积,等高.师:能找到这二个条件吗?(学生观察,思考)师:不能只看局部,要注意局部与整体相结合.(微机显示—图7)生:三棱锥A-A'BC与三棱锥B'-A'BC底面积相等.师:这时高如何?(学生感到有困难)师:这时想证两个三棱锥高相等有困难,能不能换个角度.生:先找高相等,A'为顶点,三棱锥A'-B'BC与三棱锥A'-B'C'C有共同的高,而在三棱柱ABC-A'B'C'中,四边形B'C'CB为平行四边形,B'C将B'C'CB分成面积相等的二个三角形,所以△B'BC与△B'C'C面积相等.(微机显示—前图6,△'B'BC,△B'C'C绿色画面闪动,A'白色亮点闪动)由定理1,可知三棱锥A'-B'BC与三棱锥A'-B'C'C体积相等.师:很好,由此可知三棱柱分割成的三个三棱锥体积相等,也就是说三棱柱ABC-A'B'C'体积为三棱锥P'-ABC体积3倍.由于三棱柱的底面积为S,高为h,三棱锥底面积也为S,高为h.推导公式的过程是以联系,转化为主线,这是一种通用的数学思想.3.转化特点(1)由研究所有锥体体积公式的推导转化为三棱锥体积公式的推导,使研究简化,这是通过逻辑推理实现的.(2)三棱锥体积公式的导出,又是利用三棱柱与三棱锥二种图形间内在联系(三棱锥可以补成三棱柱,三棱柱可以分割成三棱锥)进行转化的.下面我们利用已经导出的锥体体积公式进行体积计算.(显示投影软片)练习:1.已知:等边圆锥S-O,底面半径r.生:因为是等边圆锥,所以轴截面为等边三角形,又因为圆锥底面在正方体ABCD-A1B1C1D1中.因为E,F,G分别AB,BC,BB1中点,所以EF=FG=GE,BE=BG=BF.所以在三棱锥B-EFG中,顶点B在底面射影为底面正△EFG的中心O.所以BO为三棱锥B-EFG的高.(此时学生中有人议论,教师不打断回答问题学生的思路)连结GO延长交于EF于P,因为正方体棱长为a,师:利用棱锥体积公式进行体积计算时,首先要正确使用公式,其次要注意运算途径的简捷、合理.在今后的学习中我们还要进一步加强对锥体体积公式的灵活运用.作业课本p.103 习题十三1,3,4.课堂教学设计说明这节课是锥体体积教学的第一节课,教学重点是锥体体积公式的推导,在锥体体积公式推导过程中,学生在教师启发下,进行一定量的思维活动,力争体现教师的主导作用和学生的主体地位.在公式推导过程中,教师的每一次提问,都应该促使学生积极思考,学生的每一次思考不一定都有正确答案,但这个思考过程是非常重要的,学生在思考过程中可以猜想,可以估算,甚至可以大胆猜想,并设法论证自己的猜想.正是由于学生的参与,学生的思维品质得到了锻炼和提高,而老师的作用是创设思维情景,促进学生思维活动.锥体体积公式推导的过程教学,也是向学生渗透联系,转化等数学思想的机会,这节课体现了两次重要的转化,一次是利用祖暅原理将锥体体积公式的推导转化为三棱锥体积公式的推导,简化了研究系统;一次是利用割补变换建立了三棱锥与三棱柱之间的体积关系,第一次转化是通过逻辑推理实现的,第二次转化是通过图形变换实现的,这也是这里区别于其他地方转化的特点.本节课突出公式形成的过程,是为了使学生在参与公式的推导过程中能在数学内容、数学方法和思维教育等方面吸收更多的营养.本节课尝试使用计算机辅助教学,在体现三棱锥与三棱柱两种几何体之间的体积关系时使用,使三棱锥与三棱柱之间割补变换显得直观、有动感,弥补在黑板上画图动感差,费时间的不足,也有利于学生对两种几何体之间关系的深刻认识,起到了良好的辅助作用,在教学中使用现代化教学手段是很有必要的,但应注意适时、适量.。

立体几何教案模板

立体几何教案模板

立体几何教案模板一、教学目标1. 知识与技能:学生能够理解立体几何的基本概念,如点、线、面、体等。

学生能够掌握立体图形的性质和判定方法。

学生能够运用立体几何的知识解决实际问题。

2. 过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。

学生能够运用归纳法、演绎法等方法证明立体几何的性质。

3. 情感态度价值观:学生培养对数学的兴趣和自信心,克服困难,勇于探索。

学生学会与他人合作交流,发展团队精神。

二、教学内容1. 第一章:立体几何的基本概念点、线、面、体的定义与性质立体图形的分类2. 第二章:立体图形的性质与判定平面图形的性质与判定空间图形的性质与判定3. 第三章:立体几何中的角度和距离角度和距离的定义与计算角度和距离的关系4. 第四章:立体几何中的变换旋转、翻转、平移的性质和应用相似和全等的性质和判定5. 第五章:立体几何与实际应用立体几何在现实生活中的应用举例立体几何与其他学科的联系三、教学资源立体几何模型和教具立体几何图形的图片和案例立体几何的相关视频和动画四、教学评价课堂问答:通过提问检查学生对立体几何概念的理解和运用能力。

作业:布置有关立体几何的练习题,巩固所学知识。

小组讨论:评估学生在团队合作中的沟通能力和解决问题的能力。

五、教学建议注重学生空间想象能力的培养,可以利用模型和教具进行直观教学。

引导学生通过观察、操作、思考等活动,自主探索立体几何的性质和判定方法。

鼓励学生积极参与课堂讨论,培养学生的逻辑思维和表达能力。

提供充足的练习机会,让学生在实际问题中运用立体几何的知识。

注重与其他学科的联系,提高学生的综合运用能力。

六、教学计划1. 第六章:多面体介绍多面体的定义和性质学习常见多面体的判定和特征练习多面体的计算和问题解决2. 第七章:旋转体旋转体的定义和性质学习旋转体的体积和表面积的计算练习旋转体的问题解决和实际应用3. 第八章:反演变换介绍反演变换的概念和性质学习反演变换的应用和计算练习反演变换的问题解决和实际应用4. 第九章:立体几何中的优化问题介绍立体几何中的优化问题的定义和方法学习常见优化问题的求解和应用练习优化问题的解决和实际应用5. 第十章:总结与拓展总结立体几何的主要概念和定理探讨立体几何在现实生活中的应用和拓展进行思维拓展和综合运用的练习七、教学方法采用问题驱动的教学方法,引导学生主动探索和解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何教案第二章多面体与旋转体棱柱(一)教案教学目标
1.掌握棱柱的概念、性质,分类及表示方法;
2.培养学生的观察能力,抽象概括能力;
3.通过棱柱的教学逐渐培养学生的辩证唯物主义观点.
教学重点和难点
棱柱的概念及性质.
教具
长方体、六棱柱、五棱柱、底面是梯形的四棱柱模型、橡皮.
教学设计过程
上一章我们研究了点、线、面间的位置关系,本章我们将研究几何体、多面体和旋转体.本节课我们先研究多面体中的棱柱.(板书:§1.棱柱)
请同学们打开自己的文具盒.观察一下铅笔盒、六棱铅笔、橡皮,是否注意到它们在形状上都有什么共同的特点?
为了便于学生观察,教师把做好的模型摆在讲台上让学生仔细观察后,再把它们的直观图画在黑板上,比例适当,并请同学们注意教师的画法.(要求教师做好示范)
通过观察,让学生们总结出它们的共同特征:①有两个面互相平行;②其余各面的交线也互相平行,因此各面为平行四边形.
定义有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.
(板书:一、定义:……)
二、各部分的名称(板书)
1.两个平行的面叫做棱柱的底面.
2.其余各面叫做棱柱的侧面.
3.侧面与底面的交线叫做底面的边.
4.侧面的交线叫做棱柱的侧棱.
5.侧面与底面的公共点叫做棱柱的顶点.
6.侧棱与底面的边叫做棱柱的棱.
7.不在同一个面上的两个顶点的连线叫做棱柱的对角线.
8.两底面间的距离叫做棱柱的高.
三、重要截面.
截面用一个平面去截棱柱,与各面的交线组成一个封闭的图形.
.平行于底面的截面.1 .垂直于侧棱的截面叫直截面.2 .过不相邻的两条侧棱组成的平面
叫对角面.3
底面:ABCDE,A1B1C1D1E1
或AC,A1D1
侧面:ABB1A1,BCC1B1,……
或AB1,BC1,
底面的边:AB,A1B1,BC1,……
侧棱:AA1,BB1,……
顶点:A,B,A1,B1,……
对角线:BE,……
高:OO1
平行于底面的截面:A2B2C2D2E2或A2C2
直截面:A′B′C′D′E′,或A′C′
对角面:ACC1A1或AC1.
(教师把五棱柱标上字母.结合图形说明定义及各部分的表示方法)
练习:
1.在图3中,请同学们指出棱柱的底面、侧面、侧棱、对角线,并画出它们的高.
AB1是棱柱的对角线吗?2.在图3中,(强调侧棱与底面的关系)′为什么是棱柱的高?侧棱AA(直棱柱).3在图3中,
4.画出几个棱柱中的一个与底面平行的截面、直截面、对角面.
问题:仔细观察一下,这几个空间图形,它们都是棱柱,它们之间有什么区别?能否根据它们之间的某个区别来分类?
四、分类
1.按线面的位置关系分:
侧棱与底面斜交的棱柱叫斜棱柱.
侧棱与底面直交的棱柱叫直棱柱.
底面是正多边形的直棱柱叫正棱柱.
2.按侧棱数分:
侧棱数为3,4,5,可以把棱柱分为三棱柱,四棱柱,五棱柱……
练习:下面一些物体属于哪一类棱柱?)课桌的腿.(1 )教室里用的簸箕加一个盖,并指出它的底面与侧面.(2(说明:此练习说明底面不一定在上、下,而是根据两个平面平行的特征来决定的)
(3)铅笔盒为长方体属于哪一类?并指出它的侧面与底面.
(说明:此练习说明四棱柱比较特殊,一般情况下可把底面与侧面进行更换)
(4)画两个三棱柱:①三条侧棱全能看见.
②三条侧棱不全看见.
五、性质
根据定义及侧面、侧棱与底面的关系来观察、总结棱柱的性质.(学生讨论、证明)
1.侧棱都相等,侧面是平行四边形.
2.两底面和平行于底面的截面是全等的多边形.
3.对角面是平行四边形.
问题:直棱柱,正棱柱具有什么性质呢?
由学生讨论、证明得到:
直棱柱性质:
(1)侧棱都相等,侧面是矩形.
(2)底面与平行于底面的截面是全等的多边形.
(3)对角面是矩形.
(4)侧棱长是棱柱的高.
正棱柱既有一般棱柱及直棱柱的性质,还有如下性质:
(1)底面与平行于底面的截面是全等的正多边形.
(2)侧面是全等的矩形.
例斜棱柱ABC-A′B′C′中,A′在底面ABC的射影O是底面三角形ABC的中心,求证:BCC′B′是矩形.
分析:因为斜棱柱具有性质:
侧面是平行四边形,
所以只需证BCC′只有一组邻边互相垂直即可.
证明:连AO.
因为O是△ABC的中心,
所以AO⊥BC.
又因为A′O⊥平面ABC,
且AO是AA′在平面ABC上的射影.
所以AA′⊥BC.(三垂线定理)
因为BB′∥AA′,所以BB′⊥BC.
因为BCC′B′是平行四边形,(性质)
所以BCC′B′是矩形.
注:此例说明:斜棱柱可以有一个侧面是矩形.
小结:1.棱柱的定义是在抓住了它的两个特点而总结出的.
.它的性质及分类是根据它的侧棱与底面的关系及底面、侧面的形状进行的.2.
作业:1.p.53第1,2,3题.
2.在第三题中加上:对角面及平行底面的截面的形状是怎样的?侧棱与上下底面的位置关系如何?。

相关文档
最新文档