特殊元素法

合集下载

有限制条件的排列组合问题1

有限制条件的排列组合问题1

个人坐在一排8个座位上 例8.3个人坐在一排 个座位上,若每人左右两边都有空位,那么共 个人坐在一排 个座位上,若每人左右两边都有空位, 有多少种不同的坐法。 有多少种不同的坐法。 4.某些元素顺序一定的问题 某些元素顺序一定的问题 某班新年联欢会原定的6个节目已排成节目单 例9.某班新年联欢会原定的 个节目已排成节目单,开演前又增加了 某班新年联欢会原定的 个节目已排成节目单, 3个新节目,如果将这 个节目插入原节目单中,那么不同的插法种 个新节目, 个节目插入原节目单中, 个新节目 如果将这3个节目插入原节目单中 数有多少? 数有多少? 二次函数y=ax2+bx+c的系数 、b、c是取自 、1、2、3、 的系数a、 、 是取自 是取自0、 、 、 、 例10.二次函数 二次函数 的系数 4这五个数中的不同值,且a>b,这样的二次函数共有多少个 这五个数中的不同值, 这样的二次函数共有多少个? 这五个数中的不同值 这样的二次函数共有多少个 5.两个特殊元素对应两个特殊位置的问题 两个特殊元素对应两个特殊位置的问题 方法:一般采用间接法,即若有n个元素排成一排 个元素排成一排, 方法:一般采用间接法,即若有 个元素排成一排,其中某一元素 A不能排在甲位置, 某元素 不能排在乙位置, 那么共有排法种数 不能排在甲位置, 不能排在乙位置, 不能排在甲位置 某元素B不能排在乙位置 n− − 为: Ann − 2 An −11 + Ann−22 现要编排10个节目的节目单 例11.现要编排 个节目的节目单,其中节目甲不能排在第一个, 现要编排 个节目的节目单,其中节目甲不能排在第一个, 节目乙不能排在最后一个,共有多少安排方案? 节目乙不能排在最后一个,共有多少安排方案?
二、有限制条件的组合问题 1.含与不含的问题 1.含与不含的问题 方法:含有的问题,只选取其它没限制的元素即可; 方法:含有的问题,只选取其它没限制的元素即可;不含的 问题,从总体去掉这几个元素即可。 问题,从总体去掉这几个元素即可。 现从10幅画中选取 幅张贴, 例 12.现从 幅画中选取 幅张贴, 其中某一幅画必须当选 , 共有 现从 幅画中选取5幅张贴 其中某一幅画必须当选, 多少选取方案? 多少选取方案? 现从某班50人中选派一个 人代表队, 例13.现从某班 人中选派一个 人代表队,其中甲、乙两同学 现从某班 人中选派一个10人代表队 其中甲、 因有特殊情况不能参加,那么共有多少选派方案 因有特殊情况不能参加,那么共有多少选派方案? 2.“至多”、“至少”问题 至多” 至多 至少” 方法: 方法:分类讨论或间接法

初中数学里常用的几种经典解题方法介绍

初中数学里常用的几种经典解题方法介绍

2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等 的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、 换元、待定系数等等。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂 直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有 两个;唯一/至少有两个。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面 积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法

排列组合常见15种解题方法

排列组合常见15种解题方法

排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1, 2, 3, 4, 5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C;.〔I.然后排首位共有C:, 甲最后排其它位置共有& | | J由分步计数原理得C:C;A; = 288 C] A:C;练习题:1. 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有疋斎崙=480种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题•即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_____________ 三•不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有&种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种犹不同的方法,由分步计数原理,节目的不同顺序共有貳处____________ 种元素相离问题可先把没有位宜要求的元素进行排队再把不相邻元素插入中间和两练习题:3.某班新年联欢会原定的5个节目己排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _______四•定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有丄种坐法,则共有A;丽法。

排列组合常用方法技巧

排列组合常用方法技巧

排列组合常用方法技巧嘿,咱今儿就来唠唠排列组合常用方法技巧这事儿!咱先说说特殊元素优先法。

就好比你去参加个比赛,有个特别厉害的选手,那咱肯定得先关注他呀!在排列组合里,遇到那些有特殊要求的元素,咱就得优先考虑它们,给它们安排好位置,就像给大明星安排专属座位一样。

比如从一堆数字里选几个数组成一个数,要是有个数字特别特殊,咱就先把它的位置给定了,然后再去摆弄其他的数字,这样是不是就清楚多啦?还有呢,相邻问题捆绑法。

这就像一群好朋友要坐在一起,咱就把他们当成一个整体,一起安排座位。

先把这些相邻的元素捆绑起来,当成一个大块头,然后和其他元素一起进行排列组合,等都弄好了,再把捆绑的解开,让他们在自己的小范围内调整调整,这样不就搞定了相邻的问题嘛。

再说说不相邻问题插空法。

想象一下,有一些位置空着,等着一些不相邻的元素去填。

就像排队的时候,中间隔了几个空位,然后让特定的几个人去站进去,而且还不能挨着。

这时候咱就先把其他没要求的元素排好,排好之后就会出现一些空位,然后再把这些不相邻的元素插进这些空里,这不就妥妥的啦!分类分步计数原理那也是相当重要啊!做一件事,就像走一条路,如果有不同的走法,咱就得把每种走法都算上。

就好比去一个地方,可以走这条路,也可以走那条路,那总的走法就是这几条路的和。

要是分步骤走,第一步有几种选择,第二步又有几种选择,那总的可能性就是把每一步的选择数乘起来。

这就像搭积木,一层一层地往上搭,每一层都有不同的搭法,最后搭出来的样子可就多了去啦!还有平均分组问题呢!比如说把一些东西平均分成几组,这可不能简单地除以组数就行啦。

得考虑到分的过程中会有重复计算,得把重复的部分除掉,不然可就闹笑话啦!咱再举个例子哈,比如从 10 个不同的球里选 3 个球放到 3 个不同的盒子里,这。

活用特殊元素、特殊位置法解题

活用特殊元素、特殊位置法解题

即 [[[[[口

1 2, 4、 、 3、 5

1 5 3
() 甲, 2只选 先填甲, c种 , 有 : 再从除甲、 乙外的四个元
素中 个,在 下的3 空 中, : 则N C・ 选3 填 剩 个 位 有A种, 2 : = A

图3
7 2;
() 3只选乙,3 :A :2 N= ・=7 ; c
听那悦耳 至极的剪纸声
想 起 月 光 下的 姥 姥
还 是 那 月光 下 的 话 语
无论何时 , 无论何地 , 只要忆及那 清清爽爽的剪 纸声 , 我 2“ .一头老牛定定地站着 ,出神地望着一只欢蹦着远 去
的心境与梦境就立刻变得有声有色” 。) 的小兔子 , 联结它们的是一片开阔的草地 。” 师: 如果 , 让你给这幅剪纸取个名儿 , 你会取什么名J ? L 3 学们 , 同 姥姥寄给我 的剪纸 , 想对我说什么呀?看到剪
() 4选甲、 先填甲、 乙, 乙有 A 种 , : 再填剩下 2 个空位, 有
第一步 , 先从 135中选 1 、、 个填末位 , c种 ; 有
第二步 , 再从 13 5中剩下 的 2个元 素 , 、、 还有 2 4四个 .
元素 中选 1 个填首位 , c 种 ; 有
A种, ; : 2 : 则N A ・ = ; = A 7
还是 那 慈祥 的 面 容 好那恬静的微笑 真 想
再一次回到姥姥身边
除的六位数? 分析 :1 首位 、 () 末位受 到条件限制 . 元素 O l3 5受到 、 、.
条件 限制 。 进一步发现 : 首位 、 末位可填元素的集合是真子集 关系 , 因而, 从特殊位置人手( 分步计数 原理 ) : 首位 末位

排列组合问题的八种求法(免费)

排列组合问题的八种求法(免费)
- 35 9
126

( 1)分成三堆,一堆 2 本,一堆 3 本,一堆 1 本; ( 2)平均分成三堆; ( 3)平均分给三个同学; ( 4)分给三个同学,一人 1 本,一人 2 本,一人 3 本; ( 5)分给甲 1 本,乙 2 本,丙 3 本。 解: ( 1)不是平均分堆,故有:
C C C
1排列组合问题的八种求法云南昭通鲁甸一中李明健云南昭通站张中华推荐排列组合是高中数学的重点难点内容之一同时也是解决概率问题的重要工具下面举例说明排列组合问题的八种求法
排列组合问题的八种求法
云南昭通鲁甸一中 李明健 云南昭通站 张中华推荐 排列组合是高中数学的重点、难点内容之一,同时也是解决概 率问题的重要 “工具 ”,下面举例说明排列组合问题的八种求法: 一、特殊位置或特殊元素:优先法 例 1:由 0、 1、 2、 3、 4、 5 六个数字可组成多少个没有重复数 字且不能被 10 整除的六位数? 解法一:先安排首末两个特殊位置,从 1、2、3、4、5 中任取 两个排在首位和末位,然后把 0 和剩余的三个数字排在中间四个位 置上,符合条件的六位数共有 A A 个。
种分法
( 5)不属平均分堆,故有:
C C C
6 5 1 2 3 3
60
种不同的分法
求解完毕,仅以以上几例抛砖引玉,解题时注意积累经验,总 结规律,掌握技巧,定会柳暗花明。
- 4-
2 4 4 5
解法二:先把特殊元素 0 排在中间四个位置的任何一个,然后 把 0 以外的五个数字排在其他五个位置, 可得符合条件的总数共有:
A A 个。
1 5 5 4
二、对称(或机会均等)问题用:除法 例 2、 A、 B、 C、 D、 E 五人排成一排,如果 B 必须站在 A 的 右边,则不同的站法有多少种? 解:B 在 A 的右边与 B 在 A 的左边的排列情况是对称的(或 B 在 A 的右边与 B 在 A 的左边机会相等) ,故有:

高二数学一些典型的排列与组合问题的处理方法

高二数学一些典型的排列与组合问题的处理方法

一些典型的排列与组合问题的处理方法一、要求某元素排在某固定位置或不排在某固定位置的方法:先特殊后一般。

即特殊元素法—先排特殊的元素,再排余下的元素;或特殊位置法先排特殊的位置,再排余下的位置。

对念有“不”字的还可用排除法。

当有多个限制条件时不妨设计一个顺序。

例1:有四名男生,五名女生,(1)全体排成一列,甲只能排在中间,有多少种不同排法?(2)全体排成一列,甲不能排在中间,有多少种不同排法?(3)全体排成一列,甲只能排在中间或两头,有多少种不同排法?(4)全体排成一列,甲、乙两人必须排在两头,有多少种不同排法?(5)全体排成一列,甲不在排头,且乙不在排尾,有多少种不同排法?(6)排成二排,前排4人,后排5人,且甲在前排,乙、丙在后排,有多少种不同排法?例2:用1,2,3,4,5,6这6个数字组成无重复数字的四位数,(1)奇数数字必须在奇数位的有多少个?(2)奇数位只排奇数数字的有多少个?(3)奇数数字不排在奇数位的有多少个?例3:6人划船,其中2人只能划右桨,1人只能划左桨,若要求左、右边各3人,则有几种不同的划法?例4:某天的课程表排入政治、语文、数学、外语、劳技、体育6门课,1门排课1节。

若第一节不能排体育,第6节不能排数学,则共有几种不同排法?例5:由0,1,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为多少?二、要求某几个元素排在一起的排法:将这几个元素当成一个元素,与剩下的各元素进行排列,再乘以这几个元素的全排列。

例1:用数字1,2,3,4,5能组成多少个数字不重复的三位奇数字连在一起的五位数?例2:7位同学站成一排,甲、乙两人必须,且丙不站在排头和排尾,有多少种不同排法?例3:赛前将4对乒乓球双打选手介绍给观众,每对选手要连着介绍,则介绍这8位选手的不同顺序共有多少种方法?三、要求某两个元素不在一起的排法:法一:由不受限制条件的排列数减去两元素排在一起的排列数。

(完整版)排列组合方法归纳

(完整版)排列组合方法归纳

排列组合方法总结1、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。

例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排首位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,3、【相离问题】插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种 4、【选排问题】先选后排法从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插入n 个元素排成一排的n-1个空隙中,所有分法数为:11--m n C 。

例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案故共有不同的分配方案为为6984C =种 (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵6、【平均分组问题】消序法平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。

排列组合二项式概率统计总复习摘录(教师或学生通用)

排列组合二项式概率统计总复习摘录(教师或学生通用)
(1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择 ,其余2位有四个可供选择 ,由乘法原理: =240
2.特殊位置法
(2)当1在千位时余下三位有 =60,1不在千位时,千位有 种选法,个位有 种,余下的有 ,共有 =192所以总共有192+60=252
解把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题. =20种
例11.个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.
解把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题. =126种
例12从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法.
排列组合题型总结
排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一.直接法
1.特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个
例16亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?
解设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为 =252(种)

初中代数基本方法的总结

初中代数基本方法的总结

初中代数基本方法的总结基本1、配方法所谓配方,就是把一个【解析】式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和【解析】式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a≠0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

解排列组合问题的几种方法

解排列组合问题的几种方法

解排列组合问题的几种方法郑勇山东省济宁市微山县第三中学272195排列组合问题是高中数学的重点和难点之一,也是新教材中学习概率的基础,是近年高考必考内容。

排列组合是研究计数问题的策略学,首先根据题意弄清是排列还是组合问题以及排列组合混合问题,抓住问题的本质特征,准确合理地利用两个基本原则。

分析计数原理满足两个条件,①类与类互斥,②总类完备。

分步计数原理的特征是,分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。

这是解决排列组合问题的最基本的方法手段。

具体的题中,这两种原理交叉结合来解决问题。

下面谈一些粗浅的认识及常用的方法,仅供参考。

1、特殊元素·优先法对于有要求的特殊元素,特殊位置要优先安排,在做题时,针对实际问题,有时“元素优先”,有时“位置优先”。

合理分配,准确分步是确保解决问题的前提。

例1 ,0、3、5、6、8这五个数字,组成没有重复数字的三位数,其中偶数有几个?分析:这里百位及个位是特殊位置,0是特殊元素,若以“元素优先”考虑,则先对0分两类。

第一类:这三位数中含有0 ,再分两类:①0在个位上分两步,(首先个位安排0,百位十位从4个元素中任取2个排序有A24)有A11A24个。

②0不在个位上分三步(首先安排0在十位上,再安排好个位,从两个偶数中取一个有A12,最后安排百位有A13)有A11A12A13个;第二类:这三位数不含有0,此时只有个位是特殊位置分两步(先安排个位有A12再安排十位百位有A23)有A12A23。

由分类计数原理偶数共有(A11A24+A11A12A13)+A12A23=30个,若从“位置优先”考虑,可分0再个位和0不再个位两类:①0在个位有A24,②0 不在个位有A12A13A13,由分类计数原理得偶数共有A24+A12A13A13=30个。

2、间接法对含有否定字眼的问题可以从总体中把不符合要求的删去,此时注意既不能多减又不能少减。

例2,7人按甲不在排头,乙不在排尾站成一排,有多少种排列方法。

排列组合问题的解答策略

排列组合问题的解答策略

排列组合问题的解答策略一、排列组合综合应用的一般方法在解决实际问题中,要认真审题,分清是排列还是组合,有序排列,无序组合。

(1)直接法。

对于存在特殊元素或特殊位置的排列组合问题,从特殊入手,先满足特殊元素或特殊位置,再满足其他元素或位置。

(2)间接法(正难则反)。

对于某些排列组合问题,正面情况比较复杂,而反面情况比较简单,可先不考虑限制条件,计算出排列组合总数,再减去其反面情况的排列组合数。

例1.1名老师和4名学生排成一排照相留念,若老师不排在两端,共有多少种排法?解法1:(特殊元素法)老师在中间的三个位置上任选一个位置的选法有13A 种,然后4名学生在剩余的位置上排列,排法有44A 种,所以共有13A ·44A =72种。

解法2:(特殊位置法)先安排两端站2名学生,有24A 种方法,其余位置的排法有33A 种方法,所以排法种数是24A 33A =72种。

解法3:(间接法)先把5人全排有55A 种,再减老师排在两端时的12C 44A 种,所以排法种数为55A -12C 44A =72种。

例2.从10种不同作物种子中选出6种放入6个不同的瓶子中展出,如果要求甲、乙两种种子不能放入第1号瓶内,那么不同放法共有多少种?解:(特殊位置)从甲乙以外的8种种子中选1个放入第1号瓶,有18C 种方法,再从乘下9种种子中选5种放在其余5个瓶中有59A 种放法,所以有18C ·59A =120960种放法。

二、常见的排列问题1、含有特殊元素,特殊位置问题——特殊优先法对于带有特殊元素、特殊位置的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与位置,即特殊优先法。

2、相邻问题——捆绑法对于某几个元素要求相邻的排列问题,可将相邻的元素捆绑在一起看作一个“元”,与其他元素排列,然后松绑对“元”内部元素排列。

例3.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )种。

A 、720种 B 、360种 C 、240种 D 、120种解析:5252240A A = 选C3、“小团体”排列问题——捆绑法对于“小团体”排列问题,可先将“小团体”捆绑看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。

排列组合常用方法

排列组合常用方法

解决排列组合问题的常用方法一、特殊元素法例:用1,2,3,4,5,6组成无重复的四位数,求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 排除法⑶有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?分析:先排列三张卡片,然后再计算组成的三位数的个数,其算式为4022A 222A 2233=⨯⨯-⨯⨯⨯;也可回归到分步计数原理,则是40245=⨯⨯二、相邻问题-----捆绑法:1.⑴6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有几种?2402255=⋅A A⑵4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576不相邻问题-----插空法:2.⑴要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不相邻,问有多少不同的排法?4766A A ⋅ ⑵在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

等可能问题------缩倍法3.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在 A 的右边( A 、B 可以不相邻),那么有多少种排法?60/2255=A A枚举法4.将数字1、2、3、4填在标号为1、2、3、4的四个方格里,每格填上一个数字,且每个方格的标号与所填的数字均不相同的填法有几种?分析:此题的背景是同学们所不熟悉的错排问题,不好利用计数原理解之。

排列组合知识点总结

排列组合知识点总结

排列组合知识点总结排列组合是数学中一个重要的分支,它在解决许多实际问题中都有着广泛的应用,比如抽奖、选座位、安排比赛等等。

下面让我们一起来详细了解一下排列组合的相关知识点。

一、基本概念1、排列从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同。

排列数用 A(n, m) 表示。

2、组合从 n 个不同元素中,任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。

组合数用 C(n, m) 表示。

二、排列数与组合数的计算公式1、排列数公式A(n, m) = n(n 1)(n 2)…(n m + 1) = n! /(n m)!2、组合数公式C(n, m) = n! / m!(n m)!三、排列组合的基本性质1、排列的性质(1)A(n, n) = n!(2)A(n, m) = nA(n 1, m 1)2、组合的性质(1)C(n, 0) = C(n, n) = 1(2)C(n, m) = C(n, n m)四、解决排列组合问题的常用方法1、特殊元素优先法对于存在特殊元素的问题,优先考虑特殊元素的排列或组合。

2、捆绑法当要求某些元素必须相邻时,可以将这些元素看作一个整体,与其他元素一起进行排列,然后再考虑这些相邻元素的内部排列。

3、插空法当要求某些元素不能相邻时,先将其他元素排列好,然后在这些元素之间及两端的空位中插入不能相邻的元素。

4、间接法有些问题直接求解较为复杂,可以先求出总的排列或组合数,然后减去不符合要求的排列或组合数。

5、分类讨论法当问题包含多种情况时,需要对不同情况进行分类讨论,然后将各种情况的结果相加。

五、常见的排列组合问题类型1、排队问题例如,n 个人排成一排,共有多少种不同的排法;某些人必须相邻或不能相邻的排法等。

排列组合问题题型方法总结

排列组合问题题型方法总结

排列组合常用方法题型总结【知识内容】1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素"内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.【排列组合题型总结】直接法1 。

排列组合方法技巧总汇

排列组合方法技巧总汇

总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

特殊元素特殊位置优先法例题

特殊元素特殊位置优先法例题

特殊元素特殊位置优先法例题
假设有一个长度为n的数组arr,其中包含若干个数字。

现在我们定义一个数 a 是数组 arr 中的特殊元素,当且仅当它在数组 arr 中出现的次数大于 n/2。

请你编写一个算法,找出数组 arr 中的特殊元素 a,并返回它在数组 arr 中第一次出现的位置。

要求:算法的时间复杂度应为 O(n),空间复杂度应为 O(1)。

输入格式:
- 第一行输入一个整数 n,表示数组 arr 的长度。

- 第二行输入 n 个整数,表示数组 arr 中的元素。

输出格式:
- 输出一个整数,表示数组 arr 中特殊元素 a 在数组 arr 中第一次出现的位置。

示例输入:
5
1 2 3 2 2
示例输出:
2
说明:在数组 arr 中,元素 2 出现了 3 次,大于 n/2,因此 2 是特殊元素,并且在数组 arr 中第一次出现的位置是索引 1。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、特殊元素法 典型例题:
例1:(2012四川宜宾3分)将代数式x 2+6x+2化成(x+p )2+q 的形式为【 】 A . (x ﹣3)2
+11
B . (x+3)2
﹣7
C . (x+3)2
﹣11
D . (x+2)2
+4
例2:(2012山东青岛3分)点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x
-的
图象上,且
x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是【 】
A .y 3<y 1<y 2
B .y 1<y 2<y 3
C .y 3<y 2<y 1
D .y 2<y 1<y 3
例3:(2011黑龙江龙东五市3分)当1<a <2时,代数式︱a -2︱+︱1-a ︱的值是【 】 A 、-1 B 、1 C 、3 D 、-3
例4:(2011四川泸州2分)设实数a ,b 在数轴上对应的位置如图所示,化简2a a b ++错误!未找到引用源。

的结果是【 】
A 、-2a +b
B 、2a +b
C 、-b
D 、b
例5:(2011山东淄博3分)由方程组x+m =6y 3=m
-⎧⎨
⎩,可得出x 与y 的关系式是【 】
A .x +y =9
B .x +y =3
C .x +y =-3
D .x +y =-9
练习题:
1. (2012浙江衢州3分)已知二次函数y=﹣x 2﹣7x+
,若自变量x 分别取x 1,x 2,x 3,
且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】 A .y 1>y 2>y 3 B .y 1<y 2<y 3 C .y 2>y 3>y 1 D .y 2<y 3<y 1
2. (2011山东菏泽3分)实数a 在数轴上的位置如图所示,则()()2
2
a 4a 11-+-错误!未找到引用源。

化简后为【 】
A 、7
B 、﹣7
C 、2a ﹣15
D 、无法确定
3. (2011黑龙江大庆3分)若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为【 】 A .―a <―b <b <a B .―a <b <a <―b C .―a <b <―b <a D .b <―a <―b <a
4. (2011江苏无锡3分) 若a >b ,则【 】 A .a >-b B .a <―b C .-2a >-2b D .―2a <―2b
5. (2011山东淄博3分)若a >b ,则下列不等式成立的是【 】
A .a -3<b -3
B .-2a >-2b
C .a b
44<
D .a >b -1。

相关文档
最新文档