数学人教版七年级下册相交线教案
七年级相交线教案
七年级相交线教案一、教学目标:1. 知识目标:- 掌握相交线的基本概念;- 理解相交线的性质和相关定义。
2. 能力目标:- 能够描绘两条相交线的示意图;- 能够辨认出两条线是否相交;- 能够应用相交线的性质解决问题。
3. 情感目标:- 培养学生的观察力和逻辑思维能力;- 增强学生在数学学习中的自信心。
二、教学重难点:1. 重点:- 相交线的概念和性质;- 判断两条线是否相交。
2. 难点:- 应用相交线的性质解决问题。
三、教学内容与方法:1. 教学内容:- 相交线的基本概念;- 相交线的性质和相关定义。
2. 教学方法:- 教师讲解结合示例演示;- 学生自主探究;- 小组合作讨论。
四、教学过程:1. 导入(5分钟)- 引入相交线的概念:请同学们举例描述一下身边的相交线的例子。
2. 概念讲解(15分钟)- 教师用白板讲解相交线的定义和性质;- 教师通过示意图演示相交线的情况,并让学生观察和描述相交线的特点。
3. 分组探究(20分钟)- 将学生分成小组,每个小组找到至少三组相交线的示意图,并思考它们各自的特点和性质;- 学生通过小组合作讨论,总结相交线的相关定义和性质,并将结果报告给全班。
4. 深化练习(15分钟)- 教师出示一些问题,让学生应用相交线的知识解答;- 学生单独完成,然后与同伴交流和讨论。
5. 归纳总结(10分钟)- 教师与学生一起回顾相交线的定义和性质;- 学生根据所学内容归纳总结相交线的相关知识点。
6. 作业布置(5分钟)- 布置一些练习题作为课后作业,巩固相交线的知识。
五、教学反思:通过本节课的教学,学生对相交线的概念有了初步的了解,并且能够通过观察和描述来判断两条线是否相交。
在小组探究环节中,学生通过合作讨论,巩固了相交线的性质和相关定义。
在问题解答和归纳总结过程中,学生能够运用所学知识解答问题,并巩固对相交线的理解。
在今后的教学中,可以增加一些拓展练习,用更多的实际例子来帮助学生加深对相交线的理解。
七年级下册《相交线与平行线》教案优秀范文五篇
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
相交线教学课件-人教版七年级数学下册
对顶角的概念与性质 练2
领补角和对顶角的综 合应用
测1 测3 例1
理解
练3 测4
掌握
例3 练4 例2 测5
应用 综合 评价 测6
测2 拓1
总结反思 知识内化
收获检验
今天我们学习了哪些知识?
1 什么是邻补角?邻补角与补角有什么区别? 2 什么是对顶角?对顶角有什么性质?
归纳小结
角的名称
特征
性质
相同点
b
1 2O
a
3
4
由对顶角相等,得
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
例3.完成下列解题过程.
A
如图,直线 AB ,CD 相交于 O ,
∠AOC = 80°,∠1 = 30°,求
∠2 的度数.
C
D
1E O2
B
解:∵ ∠DOB = ∠ AOC ( 对顶角相等 ), ∠AOC = 80°(已知),
探究 1
∠1 和∠3 之间有怎样的位置关系?
C
A
12 O4 3
B
D
图中还有其 他的对顶角吗?
形如∠1 与∠3 有一个公共顶点 O ,并且∠1 的两边 分别是∠3 的两边的反向延长线,具有这种位置关系的两 个角,互为对顶角.
练一练 1 下列各图中,∠1 和∠2 是邻补角吗?为什么?
12 1
12 2
解:∵ ∠BOD = ∠AOC = 76°, 又∵ OE 平分 ∠BOD ,
F
C
B
∴
∠DOE
=
∠BOE
=
1 2
∠BOD
=
1 2
×
76°=
38°.
A
人教版七年级数学下册5.1.1《相交线》教案
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
2024年新人教版 七年级数学下册 全册教案可打印下载
2024年新人教版七年级数学下册全册教案可打印一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的判定与性质5.3 生活中的平行线2. 第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示6.3 概率初步二、教学目标1. 理解并掌握相交线与平行线的性质及其在实际中的应用。
2. 学会进行数据的收集、整理和表示,并能够运用概率知识解决实际问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质的理解数据的整理与概率的计算2. 教学重点:两条直线的位置关系及平行线的应用数据的收集、整理和表示方法四、教具与学具准备1. 教具:直尺、量角器、三角板数据收集表格、统计图表2. 学具:练习题、草稿纸数据收集与整理工具(如计算器、调查问卷等)五、教学过程1. 实践情景引入:通过展示实际生活中的相交线和平行线现象,激发学生对本章学习的兴趣。
2. 例题讲解:讲解相交线与平行线的判定方法和性质,配合实际例题进行分析。
3. 随堂练习:分组讨论并解决实际问题,巩固所学知识。
4. 数据的收集与整理:引导学生进行数据收集、整理和表示的实践操作,解释概率初步概念。
六、板书设计1. 相交线与平行线的判定与性质2. 数据的收集、整理与表示方法3. 概率初步概念及计算七、作业设计1. 作业题目:练习题5.1、5.2、6.1、6.2各2题。
附加题:设计一份调查问卷,收集数据并整理成统计图表。
2. 答案:练习题答案将在课后统一发放。
八、课后反思及拓展延伸1. 反思:2. 拓展延伸:鼓励学生探索生活中的相交线和平行线现象,以及数据的收集与整理的实际应用。
推荐相关阅读材料,加深学生对概率概念的理解。
重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的确定4. 教学过程中的实践情景引入和例题讲解5. 板书设计6. 作业设计及答案解析7. 课后反思与拓展延伸一、教学内容的选择与安排在教学内容的选择上,应确保章节的连贯性和逻辑性,将抽象的数学概念与生活实际相结合。
人教版数学七年级下册5.1.1:相交线(教案)
-解决实际问题,将现实情境抽象为数学模型,并应用所学知识解决。
举例:对于内错角的识别,教师可以通过绘制多个相交线形成的复杂图形,指导学生如何在图形中准确找出内错角,并解释为什么内错角相等可以推断出两条直线平行。此外,教师应提供多个不同难度的练习题,帮助学生逐步突破难点,提高解题能力。
举例:讲解同位角相等时,教师可以通过具体的图形,如铁轨、桌面等生活中的实例,让学生直观地理解同位角的概念,并强调这是判断平行线的重要依据。
2.教学难点
-难点内容:本节课的难点在于学生对于相交线性质的深入理解和平行线判定方法的灵活运用。
-详细内容:
-理解同位角、内错角、同旁内角之间的关系,并能够正确辨识。
注意:由于教学重点与难点的描述通常不会达到2000字,这里的要求可能存在误解。以上内容已尽可能详细地列出了教学重点与难点的核心知识点和举例说明。在实际教案撰写中,这部分内容通常较为精简,但需要确保每个点都准确无误地传达了课程的核心要求。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线相交的情况?”比如,十字路口的道路,桌面上的对角线等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相交线的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版数学七年级下册5-1-1 相交线 教案
5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
新人教版七年级下册数学第五章5.1.1 相交线教案
第五章相交线与平行线5.1 相交线教学目标1.理解对顶角和邻补角的概念,能在图形中辨认.2.理解对顶角相等,并能运用它解决一些问题.3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力.教学重点邻补角、对顶角的概念,对顶角性质与应用. 教学难点理解对顶角相等的性质.教学过程(师生活动)激趣导入先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.预习定标1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七下数学教案
人教版七下数学教案相交线教学目标1. 理解相交线的概念,掌握对顶角、邻补角的性质。
2. 能够通过观察、操作,发现相交线中角的关系。
3. 培养学生的空间观念和逻辑推理能力。
教学重点1. 重点对顶角、邻补角的性质及应用。
2. 难点准确辨认对顶角和邻补角,并能进行相关的计算和推理。
教学方法讲授法、讨论法、直观演示法。
教学过程1. 导入同学们,咱们先来看这样一幅图片(展示两条相交的直线),大家想想在咱们的生活中是不是经常能看到这样两条直线相交的情况呀?比如十字路口的两条道路。
那今天咱们就一起来研究研究这种相交的直线。
2. 新课讲授(1)相交线的概念老师在黑板上画出两条相交的直线,然后说:“像这样,两条直线只有一个公共点,就说这两条直线相交,这个公共点叫做交点。
”接着让同学们观察教室中还有哪些地方存在相交线。
(2)对顶角老师指着刚才画的相交线,说:“同学们,看这两条直线相交形成的角,∠1 和∠3,它们的位置有什么特点?”引导同学们观察发现∠1 和∠3 两个角的两边分别互为反向延长线。
然后告诉同学们像这样的两个角就叫做对顶角。
再让同学们找找图中还有哪些对顶角。
(3)邻补角接着,老师又指着图中的∠1 和∠2,问同学们:“那∠1 和∠2 又有什么特点呢?”引导同学们发现∠1 和∠2 有一条公共边,另一边互为反向延长线。
告诉同学们这样的两个角叫做邻补角,并让同学们找找图中还有哪些邻补角。
(4)对顶角、邻补角的性质老师引导同学们通过测量等方法,发现对顶角相等,邻补角互补。
然后进行逻辑推理证明这些性质。
3. 课堂练习老师在黑板上出几道关于对顶角和邻补角的题目,让同学们上台来做,其他同学在下面自己做。
做完后,老师进行讲解和纠错。
4. 小组讨论让同学们分组讨论生活中还有哪些对顶角和邻补角的例子,然后每组派代表发言。
5. 课堂总结老师和同学们一起回顾本节课所学的知识,强调重点和难点。
6. 布置作业让同学们完成课本上的相关练习题。
人教版七年级数学下册教案 5-1-1 相交线
5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
2024年人教版初中数学七年级下册教案全册
2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。
2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。
3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。
4. 理解实数的概念,掌握实数的运算方法,培养运算能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。
2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、练习本、笔。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。
1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。
1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。
1.3 以实际问题的形式,让学生感受不等式与实数的应用。
2. 新课导入:讲解新课内容,阐述重点与难点。
2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。
2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。
2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。
2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。
3. 随堂练习:巩固所学知识,检验学习效果。
人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计
平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。
用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。
重点难点:●重点:平行线的判定及性质,平移变换。
●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。
学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。
(二)同位角特征:截线旁,被截两线的方向。
内错角特征:截线旁,被截两线之间。
同旁内角特征:截线旁,被截两线之间。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。
通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。
要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。
人教版七年级数学下册《第五章相交线和平行线复习》教学设计
《第五章相交线与平行线复习》教学设计一、教学内容人教版七年级数学下册《第五章相交线与平行线》复习课。
二、学情分析学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题。
比如,基础知识似懂非懂、不能在解题中准确应用所学知识等等。
问题比较集中的可能会是垂线的存在、唯一性及平行公理的限制条件的理解、平行线的判定定理和性质定理的区分及综合应用等方面,教师应注意学生出现问题比较集中的知识点,教学中作重点突破。
三、教学目标知识与能力:了解本单元的知识点及其之间的关系;复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板画垂线和平行线;加深理解推理证明,提高学生分析问题、解决问题的能力。
过程与方法:在参与猜想、观察、实验、综合实践等活动的过程中,形成从特殊到一般的思维方式,了解数学知识是来源于实践,应用于实践的,了解数形结合思想,数学建模思想.情感态度与价值观:认识数学严谨、抽象和应用广泛的特点,体会数学的应用价值,激发学习图形与几何的兴趣.四、教学重点:对本单元的知识结构进行梳理,使学生掌握本单元的知识体系,理解各知识点之间的关联,会利用相交线和平行线的有关知识解决问题。
五、教学难点:会灵活应用本单元知识解决综合性问题;证明题会分析、推理,会写出严谨的解答推理过程。
六、教学方法:引导启发法、讨论交流法七、教学准备:任务单、幻灯片、知识卡片八、教学过程(一)、本章知识点梳理(1、用八开纸书写本章知识思维导图,利用投影仪展示书写优秀的作品。
2、利用知识贴片将本章知识点进行系统归纳,由教师动手归纳操作,其他学生注意观察,并及时提出质疑。
)教师活动:展示优秀作品,引导学生将本章知识以思维导图的形式进行梳理。
启发、引导学生探索,自然导入新课。
学生活动:学生欣赏优秀作品,积极思考并参与知识系统归纳。
设计意图:利用投影仪展示自己的作品,调动学生的兴趣,采用知识贴片激发学生的思维,为复习旧知识及本节课的学习做铺垫。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
七年级下册《相交线与平行线》教案
七年级下册《相交线与平行线》教案七年级下册《相交线与平行线》教案1在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.《相交线与平行线》单元测试题25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D(1)假设点C恰在EF上,如图1,那么∠DBA=_________(2)将A点向左移动,其它条件不变,如图2,那么(1)中的结论还成立吗?假设成立,证明你的结论;假设不成立,说明你的理由(3)假设将题目条件“∠ACB=90°〞,改为:“∠ACB=120°〞,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)《第五章相交线与平行线》单元测试题一、选择题(每题3分,共30分)1、如图1,直线a,b相交于点O,假设∠1等于40°,那么∠2等于()A.50°B.60°C.140°D.160°七年级下册《相交线与平行线》教案2教学目标1、理解相交线、邻补角、对顶角的概念;2、理解对顶角相等的性质.3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;4、通过变式图形的识图训练,提高识图能力。
2024年新人教版七年级数学下册教案全册
2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:垂直与平分5.2:相交线与平行线的性质5.3:平行线的判定2. 第六章:平面几何初步6.1:三角形的特性6.2:全等三角形6.3:相似三角形二、教学目标1. 理解并掌握相交线、平行线的性质及其判定方法。
2. 掌握三角形的特性,学会运用全等三角形、相似三角形的性质解决问题。
3. 培养学生的空间想象能力、逻辑思维能力和问题解决能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定方法全等三角形、相似三角形的判定与性质2. 教学重点:掌握垂直与平分、平行线的性质学会运用全等三角形、相似三角形解决问题四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规2. 学具:三角板、量角器、直尺、圆规、练习本五、教学过程1. 引入实践情景:介绍生活中常见的相交线与平行线现象,激发学生学习兴趣。
2. 教学第五章:5.1:讲解垂直与平分的概念,通过例题讲解,让学生掌握相关性质。
5.2:引导学生探索相交线与平行线的性质,进行随堂练习。
5.3:介绍平行线的判定方法,结合例题讲解,巩固知识。
3. 教学第六章:6.1:讲解三角形的特性,通过例题讲解,让学生掌握相关性质。
6.2:介绍全等三角形的判定与性质,结合随堂练习,巩固知识。
6.3:讲解相似三角形的判定与性质,通过例题讲解,让学生学会运用。
六、板书设计1. 相交线与平行线的性质2. 垂直与平分3. 平行线的判定4. 三角形的特性5. 全等三角形、相似三角形的判定与性质七、作业设计1. 作业题目:已知一个三角形的两边和夹角,求第三边。
判断两个三角形是否全等,并说明理由。
2. 答案:八、课后反思及拓展延伸1. 教师应关注学生对相交线、平行线性质的理解,加强随堂练习,巩固知识。
2. 通过拓展延伸,让学生学会运用全等三角形、相似三角形解决实际问题,提高问题解决能力。
3. 鼓励学生进行课后自主学习,探索更多有关平面几何的知识。
人教版七年级下数学5.1.1相交线教案
二、合作探究探究点1:邻补角与对顶角的概念【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出来.例1.下列各图中,∠1与∠2是对顶角的是()归纳:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3,∠2=∠4.解:例2.(教材P3例1变式)如图,直线a,b相交于点O.(1)若∠1+∠3= 60º,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若1:2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.归纳:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决.在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.例3..如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数..方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.找一找1.如图,直线AB、CD、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角.2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.三、课堂练习1.下列各图中,∠1 ,∠2是对顶角吗?2.找出图中∠AOE的邻补角及对顶角,若没有请画出.3.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC, ∠BOE的邻补角;(2)写出∠DOA, ∠EOC的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB的度数.4.(应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数.6.【拓展题】观察下列各图,寻找对顶角(不含平角)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n(n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征. 四、课堂小结两直线相交归类位置关系名称 数量关系 ∠1和∠2、∠2和∠3、∠3和∠4、 1.有公共顶点 2.有一条公共边3.另一边互为反向延长线邻补角邻补角互 补。
人教版七年级数学下册5.1.1《相交线》说课稿
人教版七年级数学下册5.1.1《相交线》说课稿一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。
本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
在教材中,通过生动的实例和丰富的图片,引导学生认识相交线,理解相交线的性质,并学会运用相交线解决实际问题。
教材内容由浅入深,循序渐进,既注重了知识的传授,又重视了学生的动手实践和合作交流。
二. 学情分析七年级的学生已经掌握了平行线的知识,对于图形的认知和观察能力有一定的基础。
但是,对于相交线的定义和性质,学生可能还存在一定的模糊认识。
此外,学生的空间想象能力和逻辑思维能力还有待提高。
三. 说教学目标1.知识与技能目标:学生能够理解相交线的定义,掌握相交线的性质,并能够运用相交线解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,培养自信心和合作精神。
四. 说教学重难点1.教学重点:相交线的定义、性质和应用。
2.教学难点:相交线的性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和启发式教学法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受和动手实践能力。
六. 说教学过程1.导入:通过展示生活中常见的相交线的例子,如交叉的电线、道路等,引导学生思考相交线的特点,激发学生的学习兴趣。
2.新课导入:介绍相交线的定义,引导学生观察和描述相交线的性质。
3.实例分析:通过几何画板展示相交线的性质,让学生直观地感受相交线的特点。
4.小组讨论:学生分组讨论相交线的性质,总结出相交线的性质定理。
5.练习巩固:设计一些相关的练习题,让学生运用所学的知识解决实际问题。
6.课堂小结:引导学生总结本节课所学的知识,巩固对相交线的理解。
七年级数学下册教学课件《相交线》
例1 如图所示,直线 a,b 相交,∠1 = 40°,
求∠2,∠3,∠4 的度数.
【教材P3 例1】
分析: 已知角
邻补角的定义 对顶角的性质
未知角
解:由邻补角的定义,得
∠2 = 180°-∠1
40° 140°
=180°- 40°= 140°; 由对顶角相等,得
A
4
D ∠3
∠4
∠1 和 ∠2;
∠1 和 ∠4; 相邻
∠2 和 ∠3; ∠3 和 ∠4.
∠1 +∠2=180° ; ∠1 +∠4=180°; ∠2 +∠3=180°; ∠3 +∠4=180°.
∠1 和 ∠3; ∠2 和 ∠4.
相对
∠1 = ∠3; ∠2 = ∠4.
概念引入 有一条公共边,(位置相邻)
对顶角
C
2O
B
1
3
∠1 的对顶角是__∠__3__.
A
4
D ∠2 的对顶角是__∠__4__.
对应训练
1.下图中,∠2 的邻补角是 ( A )
A.∠1
B.∠3
C.∠4
D. ∠5
5
思路点拨:紧扣邻补角定义做题.
2. 下列图形中, ∠1与∠2互为对顶角的是 ( C ) 思路点拨:遇到角的辨析,需抓住定义做题.
解:由对顶角相等,得∠1=∠2,
因为∠1+∠2=80°, 所以∠1=∠2= 1 ×80°=40°,
2
由邻补角的定义,得
∠AOD=180°-∠1=180°-40°=140°.
因为OE平分∠AOD,
所以∠AOE= 1∠AOD= 1×140°=70°.
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1相交线
5.1.1相交线
学习目标
1知识与技能(1)理解对顶角和邻补角的概念,能在图形中辨认;(重点)
(2)掌握对顶角相等的性质和它的推证过程;(重点、难点)
(3)通过在图形中辨认对顶角和邻补角,培养学生的识图能力.2过程与方法经理探究、归纳、学习对顶角邻补角的概念和性质。
通过识别、应用加强理解。
3.情感态度和价值观体会身边的数学,丰富空间感。
教学重点对顶角和邻补角的概念和识别;对顶角的性质。
教学难点对顶角的性质的论证过程
教学过程
一.复习
互余及互余的性质;互补及互补的性质
同角或等角的余角相等同角或等角的补角相等
二、情境导入
围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.五线谱、窗框等这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?
三、合作探究
探究点一:对顶角和邻补角的概念
对顶角的要素:(1)有公共顶点;(2)一个角的两边是另一个角的两边的反向延长线邻补角的要素:(1)有公共顶点((2)有一条公共边3)另一条边互为反向延长线
相邻互补
【类型一】对顶角的识别
下列图形中∠1与∠2互为对顶角的是()
解析:观察∠1与∠2的位置特征,只有C 中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.
方法总结:判断两个角是否是对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.
【类型二】 邻补角的识别
如图所示,直线AB 和CD 相交所成的四个角中,∠1的邻补角是________.
解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.答
案为∠2和∠4
下列角是否是邻补角?为什么?
方法总结:判断两个角是否是邻补角要依据邻补角的定义 看包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.
探究点二:对顶角的性质
四、应用
【类型一】 利用对顶角的性质求角的度数
如图,直线AB 、CD 相交于点O ,若∠BOD =42°,OA 平分∠COE ,求∠DOE 的度数.
解析:根据对顶角的性质,可得∠AOC 与∠BOD 的关系,根据OA 平分∠COE ,可得∠COE 与∠AOC 的关系,根据邻补角的性质,可得答案.
解:由对顶角相等得∠AOC =∠BOD =42°.∵OA 平分∠COE ,∴∠COE =2∠AOC
=
84°.由邻补角的性质得∠DOE =180°-∠COE =180°-84°=96°.
方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.
【类型二】 结合方程思想求角度
如图,直线AC ,EF 相交于点O ,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE =12∠EOC ,∠DOE =72°,求∠AOF 的度数.
解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE =x ,则∠AOF =∠EOC =2x ,然后根据对顶角和邻补角找到等量关系,列方程.
解:设∠BOE =x ,则∠AOF =∠EOC =2x .∵∠AOB 与∠BOC 互为邻补角,∴∠AOB =
180°-3x .∵OD 平分∠AOB ,∴∠DOB =12∠AOB =90°-32x .∵∠DOE =72°,∴90°-32
x +x =72°,解得x =36°.∴∠AOF =2x =72°.
方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.
变式训练:
【类型三】 应用对顶角的性质解决实际问题
如图,要测量两堵墙所形成的∠AOB 的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.
解析:可以利用对顶角相等的性质,把∠AOB 转化到另外一个角上.
解:反向延长射线OB 到E ,反向延长射线OA 到F ,则∠EOF 和∠AOB 是对顶角,所以可以测量出∠EOF 的度数,∠EOF 的度数就是∠AOB 的度数.
方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
探究点三:与对顶角有关的探究问题
我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;
四条直线交于一点,对顶角有12对……
(1)10条直线交于一点,对顶角有________对;
(2)n (n ≥2)条直线交于一点,对顶角有________对.
对于三条直线相交时可将图形分解
解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得
出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44
=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64
=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84
=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204
=90(对).故答案为90; (2)利用(1)中规律得出答案即可.由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4
=n (n -1).故答案为n (n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.
本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展。