复变函数第四章 解析函数的级数表示法

合集下载

复变函数第四章解析函数的幂级数表示法知识点总结

复变函数第四章解析函数的幂级数表示法知识点总结

第四章解析函数的幂级数表示法§1.复级数的基本性质1.(定理)复级数收敛的充要条件:实部虚部分别收敛。

2.(定理)复级数收敛的充要条件(用定义):对任给的>0,存在正整数N(),当n>N且p为任何正整数时,注1:收敛级数通项必趋近于零;注2:收敛级数各项必有界;注3:级数省略有限个项不改变敛散性。

3.(定理)收敛4.(定理)(1)绝对收敛的复级数可任意重排,不改变收敛性,不改变和;(2)两个绝对收敛的复级数可按对角线方法得出乘积(柯西积)级数,也绝对收敛于。

5.一致收敛的定义:对任给的>0以及给定的,存在正整数N=N(,z),当n>N 时,有式中6.不一致收敛的定义7.(定理柯西一致收敛准则):级数收敛的充要条件是:任给>0,存在正整数N=N(),使当n>N时,对一切,均有8.(定理’不一致收敛准则):9.(优级数准则):如果有正数列,使对一切,有|)|≤,且正项级数收敛复级数在集E上绝对收敛且一致收敛。

10.优级数定义:称为的优级数。

11.(定理)级数各项在点集E上连续,且一致收敛于f(z),则和函数也在E上连续。

12.(定理积分求和符号可交换)级数的各项在曲线C上连续,且一致收敛于f(z),则沿C可逐项积分13.内闭一致收敛:有界闭集上一致收敛14.(定理)在圆K:|z-a|<R内闭一致收敛的充要条件:对任意正整数,只要<R,级数在闭圆上一致收敛。

15.(定理魏尔斯特拉斯定理):设(1)函数在区域D内解析;(2)在D内内闭一致收敛于函数f(z):则:(1)f(z)在D内解析;(2)(3)在D内内闭一致收敛于§2.幂级数1.(定理阿贝尔定理):幂级数在某点(≠a)收敛它必在圆K:|z-a|<|-a|(以a为圆心,圆周通过的圆)内绝对收敛且内闭一致收敛。

2.(推论):幂级数在某点(≠a)发散在以a为圆心,圆周通过的圆周外发散。

复变函数项级数

复变函数项级数

(M
z z0
n
)
n1
z1 z0
收敛,同时根据正项级数的比较判别法可知,
Cn(z z0 )n
n1
收敛, 从而级数 Cn(z z0 )n 绝对收敛. n0
8
定理1的几何意义
如 果 幂 级 数 在 点1z收 敛 , 那 么 幂 级 数 在 以z0 为 圆 心 , 以z1 z0 为 半 径 的 圆 周 内 部 的 任意 点z处收敛.
n0
n0
n0
f (z) g(z) ( anzn ) ( bnzn ),
n0
n0
(anb0 an1b1 a0bn )zn ,
n0
z R R min( r1, r2 )
17
2. 幂级数的代换(复合)运算
如果当 z r 时, f (z) anzn, 又设在
n0
z R 内 g(z)解析且满足 g(z) r, 那末当 z R
10
对于形如 Cn (z z0 )n的幂级数当, z z0时,可能 n1
出现如下的三种情况
(1)对 任 意 的z z0 , 级 数 Cn (z z0 )n均 发 散 n1
(2)对 任 意 的 z, 级 数 Cn (z z0 )n均 收 敛 。 n1
(3)存 在 一 点z1 z0 , 使 得 级 数 Cn (z1 z0 )n收 敛 . n1
a
n0 n 1
简言之: 在收敛圆内, 幂级数的和函数解析;
幂级数可逐项求导, 逐项积分.
(常用于求和函数)
22
例3 求幂级数 zn 1 z z2 zn
n0
的收敛范围与和函数.
解 级数的部分和为
sn
1
z
z2

第四章、级数

第四章、级数
n=1 +∞
的复变函数项级数,简记为 ∑ f n ( z ) .
17
一、基本概念
2. 复变函数项级数收敛的定义
定义 设 ∑ f n ( z ) 为区域 G 内的复变函数项级数,
n
第四章 解析函数的级数表示
(1) 称 sn ( z ) = ∑ f k ( z ) 为级数 ∑ f n ( z ) 的部分和。
注意 级数在收敛圆的边界上 各点的收敛情况是不一定的。 约定 R = 0 表示级数仅在 z = 0 点收敛;
⇒ lim z n = 0 ,
n→ +∞
7
二、复数项级数
1. 基本概念
定义 设 { z n }n=1 , 2 ," 为一复数序列,
第四章 解析函数的级数表示
(1) 称 ∑ z n = z1 + z 2 + " 为复数项级数, 简记为 ∑ z n .
n =1
+∞
(2) 称 sn = ∑ z k = z1 + z 2 + " + z n 为级数的部分和;
⇒ | an z
n
n | = | a n z0 |⋅
z z0
n
z ≤ Mq , 其中 q = z , 0
n
+∞
n Mq | a z | ≤ ∑ | z | < | z | q < 1 , 当 即得 ∑ n 收敛。 0 时,
n
+∞
n= 0
n= 0
20
二、幂级数
2. 阿贝尔 ( Abel ) 定理
定理 对于幂级数 ∑ a n z ,有
n→ +∞
第四章 解析函数的级数表示

《复变函数论》第四章

《复变函数论》第四章

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

第四章解析函数的级数表示(Therepresentationofpower

第四章解析函数的级数表示(Therepresentationofpower
第四章 解析函数的级数表示
(The representation of power series of analytic function)
§4.1 复数项级数
§4.2 复变函数项级数
§4.3 泰勒(Taylo§4.1 复数项级数 §4.2 复变函数项级数
f z fnz n1
二、 幂级数
形如:
的复函数项级数称为幂级数,其中 a,c0,c1,
c2 ,…, 都是复常数. 以上幂级数还可以写成如下形式
cnzn c0 c1z c2z2 cnzn
n0
定理4.5(阿贝尔)如果幂级数(4.3) 在某点z1(≠a)收敛,则它必在圆 K:|z-a|<|z1-a|(即以a为圆心圆周通过z1的圆) 内绝对收敛.
n1 n
n1
n
n1 n
n1
n
因为级数 1 发散, n1 n
(1)n 1收敛,
n1
n
故 原 级 数 仍 发 散.
定理4.3级数 收敛的必要条件是
其中zn xn yn
证明 因为级数 收敛的充分必要条件是
都收敛,再由实级数 收敛的必要条件是
定理4.4若级数 zn n 1
收敛,
则级数
z
n也收敛.
lim
n
zn
z0
.
此时也称复数列{zn }收敛于 z0 .
定理4.1设复数列n an ibn, a ib,则
lim
n
n
的充分必要条件是
证明
那末对于任意给定 0
就能找到一个正数N,
从而有
所以
lim
n
an
a.
同理
lim
n
bn

复变函数与积分变换第4章4.1收敛数列与收敛级数

复变函数与积分变换第4章4.1收敛数列与收敛级数
n
3
§4.1 复数项级数 第 一、收敛序列 四 章 2. 复数序列极限存在的充要条件 定理 设 zn xn i yn , a i , 则 lim z n a 的充要条件是 解 n P76 析 定理 lim x , lim y . n n n 函 4.1 n 数 zn 证明 必要性 “ ” 的 | zn - a | | yn - | 级 若 lim z n a , 则 e 0 , N , n 数 a | xn - | 表 当 n N 时,| zn - a | e , 示
即得级数 z n 收敛的充要条件是 x n 和 yn 都收敛。
9
§4.1 复数项级数 第 二、复数项级数 四 章 3. 复数项级数收敛的必要条件 定理 设 zn xn i yn , 则 z n 收敛的必要条件是 lim zn 0 . n 解 析 P79 函 证明 由于级数 z 收敛的充要条件是 x 和 y 都收敛, n n n 数 的 而实数项级数 x n 和 yn 收敛的必要条件是: 级 数 lim xn 0 , lim yn 0 等价于 lim zn 0 , 表 n n n 示 因此 z n 收敛的必要条件是 lim zn 0 .
1 n 1 zn 2 i 2 e n n
i
π n 2
§4.1 复数项级数 第 二、复数项级数 四 章 4. 复数项级数的绝对收敛与条件收敛 定义 (1) 若 | z n | 收敛,则称 z n 绝对收敛。 解 析 P79 (2) 若 | z n | 发散, z n 收敛,则称 z n 条件收敛。 函 数 的 定理 若 | z n | 收敛,则 z n 必收敛。 P80 定理4.4 级 2 2 | z | x y 证明 由 收敛, n n 收敛, n 数 表 2 2 2 2 | x | x y , | y | x y 又 示 n n n n n n,

复变函数第四章 解析函数的级数表示法

复变函数第四章 解析函数的级数表示法
n 1 n 1
lim an 0 和 lim bn 0 .
n n
所以复数项级数 n收敛的必要条件是
n1

lim n 0
n
重要结论:
lim n 0 级数 n发散.
n n1

例如, 级数 e in :
n1

因为lim n lim e in 0,
an和 bn都收敛。
n 1 n 1

例1
1 i 级数 (1 ) 是否收敛? n n1 n


1 解 因为 an 发散; n1 n1 n 1 bn 2 收敛. n1 n1 n

所以原级数发散.
必要条件
因为实数项级数 an和 bn收敛的必要条件是
4. 收敛半径的求法
n 关于幂级数 c z n n 0
( 3)的 收 敛 半 径 求 法 , 有
cn1 定理4.6 1 / 若 lim ,则 R (比值法) n cn 0
1 / cn ,则 R 0
0 0
n 1
: lim n 0. 定理4.3 级 数 n收 敛 的 必 要 条 件 n
定义4.3
若 n 收 敛 , 则 称 n为 绝 对 收 敛 ;
n 1 n 1
若 n 发 散 , 而 n收 敛 , 则 称 n为
n 1 n 1 n 1
0
定理4.7 若 lim n n (根值法)
0
例 (1) 解
求下列幂级数的收敛半径:
z 3 n n 1
(1)

n
(2)

复变函数论第4章

复变函数论第4章

n1
n
当z 2时,
原级数成为
n1
1, n
调和级数,发散.
说明:在收敛圆周上既有级数的收敛点, 也有 级数的发散点.
首页
上页
返回
下页
结束


例3 求幂级数 (cosin)zn的收敛半径:
n0

因为
cn
cos in

cosh n
1 (en 2
en ),
所以
lim cn1 n cn
n1 n
解 (1) 因为 lim cn1 lim ( n )3 1,
n cn
n n 1

1
lim n
n
cn
lim n n
n3
lim 1 1. n n n3
首页
上页
返回
下页
结束

所以收敛半径 R 1, 即原级数在圆 z 1内收敛, 在圆外发散,


补充求:等比级数
ar n1 的敛散性。
n1
解:等比级数的部分和为:
Sn

n
ar k 1
k 1

a ar n1 r 1 r

a(1 r n ) 1 r
已利用等比数列求和公式:
Sn

a1 anq 1 q
当公比|r|<1时,lim n
Sn

lim
n
a(1 rn ) 1 r
n0
n0



f (z) g(z) anzn bnzn (an bn )zn ,
n0
n0
n0
R min( r1, r2 )

复变函数第4章

复变函数第4章

《复变函数》(第四版) 第4章
第19页
[证]

cn
z0n收
敛,

lim
n
cn
z0n
0,
n0
则存在M使对所有的n有 | cnz0n | M
如果
|
z
||
z0
|,

|z| | z0 |
q
1,

n
|
cnzn
||
cn z0n
|
z z0
Mq n
2024/4/4
《复变函数》(第四版) 第4章
第20页
n
|
i )n 2
5 (cos
2
i sin )n
2 5
n
cos(n
)
i
sin(
n
)
|n |
n1
n1
2 n
5
收敛.
(公比 |q | < 1)
∴ 原级数绝对收敛.
2024/4/4
《复变函数》(第四版) 第4章
第12页
解: 3)
|n |
(1 i)n ( 2 )n cos in
( 2)n ( 2 )n cos in
1 2
| z |2
2024/4/4
《复变函数》(第四版) 第4章
第35页
当 1 | z |2 1, 即| z | 2时, 原级数绝对收敛. 2
当 1 | z |2 1, 即| z | 2时, 原级数发散. 2
故 原级数收敛半径 R 2.
注: 求形如 n z2n 或 n z2n1 (n 0 )
1 chn
en
2 en
2 en

09第四章解析函数的级数表示

09第四章解析函数的级数表示

第四章 解析函数的级数表示§1. 复数项级数 一. 复数序列的极限定义: 设{}n z 为一个复数序列,其中n n n y i x z +=, 又设000y i x z +=为一个复定值. 若,0,0>∃>∀N ε使得,N n >∀有不等式ε<-0z z n恒成立,则称复数序列{}n z 收敛于0z ,或称{}n z 以0z 为极限,记作0l i m z z n n =∞→ 或()∞→→n z z n 0.如果对于任意复数0z ,上式均不成立,则称复数序列{}n z 不收敛或发散.定理1 设000y i x z +=,n n n y i x z +=,则⎪⎩⎪⎨⎧==⇔=∞→∞→∞→.lim ,limlim 000y y x x z z n n n n n n 定理1说明: 可将复数列的敛散性转化为判别两个实数列的敛散性.二. 复数项级数定义: 设{}n z 为一个复数序列,表达式 +++++n z z z z 321称为复数项无穷级数.如果它们的部分和序列() 2,1321=++++=n z z z z S n n有极限S S n n =∞→l i m (有限复数),则称级数是收敛的,S 称为级数的和;如果{}n S 没有极限,则称级数是发散的. 例1.当1<z 时,判断级数++++++nz z z z 321是否收敛?定理2 级数 ++++n z z z 21收敛的充分必要条件是实数项级数 ++++n x x x 21与 ++++n y y y 21都收敛.定理2说明: 可将复级数的敛散性转化为判别两 个实级数的敛散性.定理3 (级数收敛的必要条件)若级数++++n z z z 21收敛,则0lim =∞→n n z . 定理4 若级数+++++=∑∞=n n n z z z z z 3211收敛,则级数+++++=∑∞=n n nz z z z z3211一定收敛.定义: 若级数 ++++=∑∞=n n n z z z z 211收敛, 则称级数++++=∑∞=n n nz z z z 211绝对收敛,若级数 ++++=∑∞=n n n z z z z 211发散,而级数 ++++=∑∞=n n n z z z z 211收敛,则称级数 ++++=∑∞=n n nz z z z211条件收敛.例2.判断下列级数的敛散性:(1)∑∞=⎪⎭⎫⎝⎛+121n n i n ;(2)∑∞=1n nni ;(3)∑∞=12n nn i.§2. 复变函数项级数一. 复变函数项级数定义: 设(){}() ,,n z f n 21=为区域D 内的函数序列,称以()z f n 为一般项的复级数 ()()()()+++++z f z f z f z f n 321为区域D 内的复变函数项级数.该级数的前n 项的和()()()()()z f z f z f z f z S n n ++++= 321称为该级数在D 内的部分和. 设0z 为区域D 内的一个定点,若极限()()00lim z S z S n n =∞→存在,则称该复变函数项级数在0z 点收敛,()0z S 为其和,即()()01z S z f n n=∑∞=.如果该复变函数项级数在D 内处处收敛,则称该复变函数项级数在D 内收敛,由此所定义的函数()z S 称为和函数,记作()∑∞=1n n z f .即 ()()∑∞==1n n z f z S 二. 幂级数定义: 形如()()()()+-++-+-+=-∑∞=nn n nnz z C z z C z z C C z z C 02020100的复变函数项级数称为幂级数,其中n C 与0z 均为复常数. 定理5如果幂级数()∑∞=-00n nn z z C 在点()011z z z ≠ 收敛,则该级数在圆域010z z z z -<-内绝对收敛.推论 如果幂级数()∑∞=-10n nn z z C 在点2z 发散,则在区域020z z z z ->-内发散.定义:若存在圆R z z <-0,使得幂级数()∑∞=-10n nn z z C 在此圆内绝对收敛,在此圆外发散,则称该圆为幂级数的收敛圆,称该圆的半径R 为幂级数的收敛半径. 结论:对幂级数()∑∞=-10n nn z z C 而言,一定存在某一圆R z z <-0,使得该幂级数在此圆内绝对收敛,在此圆外发散.达朗贝尔比值判别法——若 λ=+∞→n n n C C 1lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .柯西根值判别法——若 λ=∞→nnn C lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .例3. 求级数∑∑∑∞=∞=∞=1210,,n nn nn nn z nzz 的收敛半径. 例4.求级数()∑∞=-11n nnz 的收敛半径.说明:达朗贝尔比值判别法与柯西根值判别法都只是充分条件,而非必要条件. 例5. 把函数z 1表示成形如()∑∞=-02n nn z c 的幂级数. 性质 (1)幂级数()∑∞=-00n nn z z C 的和函数在收敛圆内一定解析;(2)在收敛圆内,幂级数()∑∞=-00n nn z z C 可以逐项积分或求任意阶导数,所得到的幂级数在该圆内也收敛,且相应的和函数即为对幂级数()∑∞=-00n nn z z C 的和函数进行积分或求相应阶导数所得的结果.例6 求幂级数∑∞=12n nz n 的和函数,并计算级数∑∞=122n n n 之值.§3. 泰勒级数定理6 (泰勒定理) 设函数()z f 在区域D 内解析,0z 为D 内的一点,设R 为0z 到D 的边界的距离,则当R z z <-0时,()z f 可展为幂级数()()∑∞=-=00n nn z z C z f 其中()() 2,1,0!10==n z f n C n n .称该幂级数为()z f 在区域D 内以0z 为心的泰勒级数.说明:1.复变函数展开为泰勒级数的条件要比实函数时弱得多; (想一想, 为什么?);, , )( .200z d z d D z f -=αα即之间的距离一个奇点到最近等于则内有奇点在如果4.任何解析函数在一点的泰勒级数是唯一的. 结论:函数在()z f 点0z 解析的充分必要条件是在0z 点()z f 可展成幂级数.根据结论,解析函数()z f 在点0z 可展成泰勒 级数,其展开法分别是直接展开法和间接展开法.直接展开法是指由泰勒展开定理计算系数间接展开法是指借助于一些已知函数的展开式 , 结合解析函数的性质, 幂级数运算性质 (逐项求导, 积分等)和其它数学技巧 (代换等) , 求函数的泰勒展开式.例7.将()0==z e z f z在处展开为泰勒级数.例8. 将()0sin ==z z z f 在处展开为泰勒级数.;,0.30级数级数也可称为麦克劳林时当=z,2,1,0,)(!10)(==n z f n c n n .)( 0展开成幂级数在将函数z z f例9.将()z z f -=11在z =0的邻域展开.例10. 求函数()0112=+=z zz f 在的邻域内的泰勒 展开式.例11. 例12. 求函数()21-=z z f 在1-=z 的邻域内的泰勒展开式.例13.将函数()()211z z f -=展开为i z -的幂级数.例14.求对数函数ln (1+z )在z =0处的泰勒展开式.例15. 将函数()ze zf -=11展开为z 的幂级数.§4. 洛朗级数引例 求函数()122-+-=z zz z f 的展开式..0arctan 的幂级数展开式在求=z z定理7 设函数()z f 在环域201R z z R <-<内解析,则()z f 在此环域内一定可以展成()()∑∞-∞=-=n n n z z C z f 0, 其中()()() 2,1,02110±±=-=⎰+n d z f i C C n n ςςςπ.C 为此环域内绕0z 的任意一条简单闭曲线. 称此级数为环域内的解析函数的洛朗级数. 说明:环域201R z z R <-<内的解析函数则()z f 在此环域内一定可以展成惟一的洛朗级数. 例16. 将函数 ()()()211--=z z z f分别在圆环域(1)10<<z ;(2)21<<z ;(3)+∞<<z 2内展开为洛朗级数.例17. 将函数()2z shz z f =在+∞<<z 0内展开为洛朗级数.例18. 试求()211z z f +=以z =i 为中心的洛朗级数.。

第4章-复变函数项级数04-洛朗级数

第4章-复变函数项级数04-洛朗级数
积分求系数一般情况下比较复杂. 2. 间接展开法
利用洛朗级数展开式的唯一性及双边幂级数在收敛圆环 域内可以逐项求导和逐项积分的性质。
f (z) cn (z z0 )n R2 z z0 R1 n
解:1)直接展开法 解析,故积分为0;
1
1
z
n0
zn,
z 1
1
1
z
n0
zn,
的收敛区域为
可以证明:双边幂级数在收敛环域内的和函数是解析函数, 可以逐项求导、逐项积分
Re
当 R e 时,
Re
2 解析函数的洛朗展开定理
f (z) cn (z z0 )n R2 z z0 R1 n
f (z) cn (z z0 )n R2 z z0 R1 n
f (z) cn (z z0 )n R2 z z0 R1 n
说明:
(1)洛朗级数是双边幂级数,泰勒级数只有正幂项; (2)洛朗级数是泰勒级数的推广,泰勒级数是洛朗级数 的特殊情况; (3)系数公式不同,洛朗系数不能利用高阶导数公式.
3 求解析函数洛朗展开式的方法
R2 z z0 R1
第四章 复变函数项级数
第四讲 洛朗级数
主要内容
1. 双边幂级数 2. 解析函数的洛朗展开定理 3. 求解析函数洛朗展开式的方法
1 双边幂级数
1
1
z
1
z
z2
z3
zn
,
n0
zn ,
z 1
双边幂级数
既含有正幂项又含有负幂项的级数
无首项, 不能用部分和来定义收敛和发散.
结论: 双边幂级数 圆环域
z 1
1
1全是负幂项,有无穷多项)
1
1
z

【2019年整理】复变函数第四章 解析函数的级数表示法

【2019年整理】复变函数第四章 解析函数的级数表示法

不满足必要条件, 所以原级数发散.
启示:
判别级数的敛散性时,
可先考察
lim
n
n
?
0
lim 如果n
n
0,
lnimn 0,
级数发散; 应进一步判断.
由定理4.2,复数项级数的收敛问题可归之为 两个实数项级数的收敛问题。
定理4.3 级数
收敛
n

必要条件:
lim
n
n
0.
n1
定义4.3

n






n
n
n
k k ,n n
k 1
k 1
n1
n1
由定理4.4的证明过程,及不等式 an2 bn2 an bn 有 :
推论4.1级数 n 收敛 an 和 bn 都收敛。
n1
n1
n1
? 若

n

n1
n1
n收敛.(例如 :
n1
(1)n i n
)
例2 下列级数是否收敛?是否绝对收敛?
1. 幂级数的概念
定义
▪设复变函数列:{ fn(z)} z D, n 1,2, fn (z) f1(z) f2 (z) fn (z) (1) n1
---称为复变函数项级数
▪级数的最前面n项的和
n
sn (z) f1(z) f2(z) fn (z) fk (z)
k 1
1
i
(8i)n
(1)n i
(1) (1 ) (2)
n1 n
n
n0 n!
(3) (
n1
n
2n )

(1)

复变函数第四章(2)泰勒级数

复变函数第四章(2)泰勒级数

y
1
O
x
[ln( 1 z )]'
1 1 z

z


( 1) z
n
n
n0
逐项积分得
z n n 0

z
1 1
0
d z d (1) d ,
0
即 ln(1 z ) z
z
2
2

z
3
3
(1)
n
z
n 1
的泰勒展开式在复平面上处处解析因为二间接展开法借助一些已知函数的展开式利用幂级数的运算加法乘法积分求导等运算和分析性质以唯一性为依据来得出一个函数的泰勒展开式iziziziz内解析函数在方法二待定系数法假设所求的泰勒展开式那么由于函数有一奇点z1而在z1内处处解析对于多值函数要先求出单值分支主值再计算相应的泰勒展开式
此时,罗朗级数退化为泰勒级数。
c n 2 i ( z
c
柯西基本定理
n 1
1
f ( )
0
cn
2 i ( z
c
1
) f ( )
0
d n1
n1
2 i
C
1
f ( )( z 0 )
(n)
d 0 , ( n 1, 2 , )
[解] 由于函数有一奇点z1, 而在|z|<1内处处解析, 所 以可在|z|<1内展开成z的幂级数.
1 1 z
1 (1 z )
2
1 z z ( 1) z ,
2 n n
| z | 1.
将上式两边求导得
1 2 z 3 z (1)

[复变函数与积分变换][课件][第4章][级数]

[复变函数与积分变换][课件][第4章][级数]



∑f
n =1
+∞
n
( z ) = f1 ( z ) + f 2 ( z ) + f 3 ( z ) +
+ f n ( z) +
为复
= f1 ( z ) + f 2 ( z ) +
+ f n ( z) = ∑ f k ( z) .
k =1
n
sn ( z0 ) 若 z 0 ∈ D ,极限 nlim → +∞
敛点;
= s ( z0 )
存在,称
∑f
n =1
+∞
n
( z ) 在 z0 处收敛,和
∑f
n =1
+∞
n
( z0 ) = s ( z0 ) , z0 为收
若 z 0 ∈ D , {sn ( z 0 )} 发散,称
∑f
n =1
+∞
n
( z ) 在 z 0 处发散, z 0 为发散点.
D1 收敛域
D2 发散域
∑αn = s
n =1
+∞
Δ
收敛; 若 {s n }
∑α
n =1
+∞
n
收敛

∑a
n =1
+∞
n

∑b
n =1
+∞
n
均收敛.
⎛ n ⎞ ⎛ n ⎞ 证: s n = ∑ α k = ⎜ ∑ ak ⎟ + i ⎜ ∑ bk ⎟ . k =1 ⎝ k =1 ⎠ ⎝ k =1 ⎠
此定理将复级数的审敛问题转化为实级数的审敛问题. 级数收敛之必要条件:

魏雅薇复变函数论第四章精品文档

魏雅薇复变函数论第四章精品文档
一致收敛于f(z) , 那么f(z) 在E上连续.
南开大学 魏雅薇
定理
设级数 fn(z)的各项fn(z)(n=1,2,…), 在简单曲线C上连续,并且级数 fn(z)
在C上一致收敛于f(z),那么在C上可以逐项积分

C fn(z)dz C f(z)dz.
n1
南开大学 魏雅薇
注解1、在研究复变函数项级数的逐项求导的问题 时,我们一般考虑解析函数项级数;
也就是 f(k)(z) fn(k)(z),(k1,2,3,...) n1
南开大学 魏雅薇
幂级数
1 幂级数的概念 2 幂级数的敛散性 3 幂级数的性质

级数 n 收敛, 由正项级数收敛的比较判别法,
n1




知 a n 和 b n 收敛. 从而 a n 和 b n 绝对
n1
n1
n1
n1

收敛, 故收敛. 因此级数 n 收敛.
n1
n
n
因为 k k , 所以
k 1
k 1

n
n

k 1 kln i m k 1 kln i m k 1
南开大学 魏雅薇
对于

zK n1
(z
fn (z) z0)k
1
一致收敛于
(
z
f
(z z0
) )
k
1

由逐项可积定理, 我们有
k!
2i
K (z f( zz 0) )k 1 d zn 12 k!i
K (z fn z (0 z ) )k 1 d z,
n 1
为复变函数项级数. S n ( z ) f 1 ( z ) f 2 ( z ) f n ( z )

复变函数与积分变换课堂第四章PPT课件

复变函数与积分变换课堂第四章PPT课件
n1
称为无穷级数, 其最前面n项的和
sn12 n
称为级数的部分和。
如果部分和数列{sn}收敛, 则级数 n 称为收敛,且 n 1
极限 lim n
sn
s
称为级数的和。如果数列
{
s
n
}
不收敛,则
级数 n 称为发散。 n 1
定理二 级数 n 收敛的充要条件是级数 a n 和
n 1
n 1
b n 都收敛。
1 n1 2 n
收敛,仍断定原级数发散。
另外, 因为 | n | 的各项都是非负的实数, 所以它的 n 1
收敛也可用正项级数的判定法来判定。
例2 下列数列是否收敛? 如果收敛, 求出其极限。
1)n 11 n ein; 2)nncosin
[解] 1) 因n 11 n ei n 11 n cos nisin n ,故
an2bn2 |an||bn|,因此
, an2bn2 |an| |bn|
n1
n1n1所以当 Nhomakorabeaa n 与
b n 绝对收敛时,
n 也绝对收敛,因此
n 1
n 1
n 1
n 绝对收敛的充要条件是 a n 和 b n 绝对收敛。
n 1
n 1
n 1
例1
考察级数
n 1
(
1 n
i 2n
)
的敛散性。
[解]
因 发散,虽 1 n1 n
n 1
[证] 因 s n 1 2 n ( a 1 a 2 a n )
i(b 1 b 2 b n )n in
其中s n a 1 a 2 a n ,n b 1 b 2 b n 分别为 a n 和 n 1

复变函数-第4章

复变函数-第4章
lim f n ( z ) = f ( z ),
n →∞ ∞ 则称函数序列{ f n ( z )}n =1 在G上逐点收敛到函数 f(z), f(z)称为 ∞
{ f n ( z )}∞=1 在G上的极限函数. 相应地, 若级数 ∑ f j ( z ) 的部分 n

和函数序列在G上逐点收敛到 f(z), 则称级数 ∑ f j ( z ) 收敛于

n =1
求导运算和无穷和运算可交换

返回泰勒级数
定理 (实函数项级数逐项求导) 设实级数 ∑ f n ( x) 的各项在 区间[a, b]上都有连续的导数,

n =1

∑f
n =1

n
( x) 在[a, b]上逐点收敛且
n =1
⎞ ∞ d f n′( x) 在[a, b]上一致收敛, 则 d ⎛ ∞ f n ( x). ⎜ ∑ f n ( x) ⎟ = ∑ dx ⎝ n =1 ⎠ n =1 dx
∑c
j =0

j
绝对收敛. 正项级数
非绝对收敛的收敛级数称为条件收敛. 由比较判别法可知, 绝对收敛
收敛
绝对收敛级数的两个重要性质:
(1) 一个绝对收敛的复级数的各项可以任意重排次序, 亦绝对收敛, 且和不变. (2) 两个绝对收敛的复级数

∑c
j =0

j
= S , ∑ c′j = S ′ 按对角线

(3i ) j 由比式判别法知 ∑ 收敛. j! j =0
注意: 若 lim j →∞
j →∞
c j +1 cj
= L = 1, 或 lim j | c j | = L = 1,

复变函数第四章

复变函数第四章

使级数对一 切Mzn∈收E敛,有,则|f复n(z函)|≤数M项n (级n=数1,2,…fn)(,z而)在且点正集项E上
n1
绝对收敛且一致收敛.
n1
这样的正项级数
M
称为函数项级数
n
fn
(z)
的优级数.
n 1
n1
定理4.6 设级数 fn(z)的各项在点集E上连续,并
ቤተ መጻሕፍቲ ባይዱ
且一致收敛于f(z)n,则1 和函数 f (z) fn(z)也在E
上连续.
n1
定理4.7 设级数 fn(z)的各项在曲线C上连续,并 n1
且在C上一致收敛于f(z),则沿C可以逐项积分:
C f (z)dz C fn(z)dz n1
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若 级数(4.2)在D内任一有界闭集上一致收敛,则称此 级数在D内内闭一致收敛.
由定理4.7得 c f (z)dz c fn (z)dz 0 n1
于是,由摩勒拉定理知,f(z)在 K 内解析,即
在 z0 D 解析。由于 z0 D 的任意性,
故f(z)在区域 D 内解析。
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
n1
(z
fn(z) 一致收敛于
f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f (z) fn(z) n1
定义4.4 对于级数(4.2),如果在点集E上有一个函数
f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
一致切收的 敛于z∈f(Ez均),有记|作f(z:)-sn(z)|<fεn ,则zz称E 级f z数 (4.,2)在E上其一

第四章 复变函数

第四章 复变函数


n 1

in 1 n n 1 n
例 4.2 判别下列级数的收敛性
n i in 1 i 1 n ; 2 ; 3 2 2 n 1 n n 1 n n 1 n
解:
3
n 1

in 1 2 2 n n 1 n
z2 1 在 1内,即 z 2 2内, 右端级数绝对收敛, 其和为 2 z
z 2 2时, 级数发散
1 n 例4.5 把函数 表成形如级数 Cn z 2 的幂级数 z n 1
1 2 n 1 g z g z g z 1 g z
n
n
z z0 当 z z 0 z1 z 0 时, 1, z1 z 0
z z0 级数 M z1 z 0 n 1


n
收敛。
C n z z 0 n 收敛
n 1

C n z z 0 n 绝对收敛
n 1

例4.4 求级数
n 1

z 1n 的收敛半径
n
解:
Cn 1 n lim lim 1, R 1 n C n n 1 n
收敛圆 z 1 1
当 z 0 时, 原级数成为 1
n 1 n
1 , 为交错级数, 是收敛的 n
1 当 z 2 时, 原级数成为 , 为调和级数, 是发散的 n 1 n
§4.2复变函数项级数
§4.2.1 复变函数项级数
设 f n z n 1,2, 为区域 D 内的函数,则称
f z f z f z f z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






n1
n1

n





n





n
n1
n1
n1
条 件 收 敛.
定理4.4若
n



n



n
n
.
n1
n1
n1
n1
证明 n an ibn an2 bn2
由比较判定法
an an2 bn2 ,
an和
bn均绝对收敛,
n1
n1
bn an2 bn2
由定理4.2得
收敛。
n
n1
证明 sn
n
k
n
(ak ibk )
n
n
ak i
bk n i n
k 1
k 1
k 1
k 1
由定理1,lim n
sn
a
ib
lim
n
n
a, lim n
n
b
an和 bn都收敛。
n1
n1
例1 级数 1 (1 i ) 是否收敛?
n1 n
n

因为
an
n1
n1
1 n
发散;
z1 (
0)收敛, 则对满足
n0
z z1 的z,级数必绝对收敛.
⑵若级数在z z2发散,则对满足 z z2 的z, 级数必发散 .
证明 (1)
n0
cn
z1n收敛,

lim
n
cn
z1n
0,即
0,N 0,当n N,恒有 cnz1n
取M max , c0 , c1z1 , c2 z12 , , cN z1N
1. 幂级数的概念
定义
▪设复变函数列:{ fn(z)} z D, n 1,2, fn (z) f1(z) f2 (z) fn (z) (1) n1
---称为复变函数项级数
▪级数的最前面n项的和
n
sn (z) f1(z) f2(z) fn (z) fk (z)
k 1
不满足必要条件, 所以原级数发散.
启示:
判别级数的敛散性时,
可先考察
lim
n
n
?
0
lim 如果n
n
0,
lnimn 0,
级数发散; 应进一步判断.
由定理4.2,复数项级数的收敛问题可归之为 两个实数项级数的收敛问题。
定理4.3 级数
收敛
n

必要条件:
lim
n
n
0.
n1
定义4.3

n






n
1
i
(8i)n
(1)n i
(1) (1 ) (2)
n1 n
n
n0 n!
(3) (
n1
n
2n )

(1)
n1
1 n
发散,
n1
1 n2
收敛,
n1
1 n
(1
i )发散. n
(2)
8i n
8n 收敛,
(8i)n 绝对收敛。
n0 n! n0 n!
n0 n!
(3)
n1
第四章 解析函数的级数表示法
§4.1 复数项级数
1. 复数列的极限 2. 级数的概念
1. 复数列的极限
定义4.1 设复数列:{n }(n 1,2,), 其中n=an ibn ,
又设复常数: a ib,
若 0, N 0,当 n N , 恒有 n , 那么称为复数列{n }当n 时的极限,
i 1



级数
称为
n


n1
▪若 部 分 和 数 列{sn }
lim
n
sn
s称为级数的和
不收敛
-级数 n称为发散
n1
例1 解
判别
3i的敛散性。
sn
n1
2
n
n
3i
j1 2 j
3i(1
1 2n
),

lim
n
sn
3i
级数收敛,且和为 3i.
定理4.2
级数
收敛
n
an和
bn都收敛。
n1
n1
n1
1 1
ni ni
;
(2)
zn
(1)n
n
i
; 1
(3)
zn
1
e
ni 2
.
n
收敛, 极限为-1 发散 收敛,极限为0
2. 复级数的概念
定义4.2 ▪设复数列: {n } {an ibn }(n 1,2,, ), n 1 2 n ---无穷级数
n1
▪级数的前面n项的和 n sn 1 2 n i ---级数的部分和
记作
lim
n
n
,或当n
时, n
,
此时,也称复数列{ n }收敛于 .
定理4.1
lim
n
n
lim
n
an
a,
lim
n
bn
b.
证明

”已知
lim
n
n
即,
0, N 0,当 n N , 恒有 n
又 n (an a) i(bn b) (an a)2 (bn b)2
an a n bn b n

lim
n
a
n
a
,
lim
n
bn
b.

”已知
lim
n
an
a
,
lim
n
bn
b
即,
0, N
0,当 n
N , 恒有
an
a
2
,bn
b
2
又 n (an a) i(bn b)
an a bn b

lim
n
n
.
课堂练习:
下列数列是否收敛? 如果收敛, 求出其极限.
(1)
zn
cn(z z0 )n (2)
n0
当z0 0 cnzn (3) n0
称为幂级数
在(2)中令z z0 (2) cn k k0
研 究 级 数(3)并 不 失 一 般 性 。
2. 收敛定理
同实变函数一样,复变幂级数也有所谓的收敛定理:
定理4.5 (阿贝尔(Able)定理)
⑴若级数
cn z n在z
n
n
k k ,n n
k 1
k 1
n1
n1
由定理4.4的证明过程,及不等式 an2 bn2 an bn 有 :
推论4.1级数 n 收敛 an 和 bn 都收敛。
n1
n1
n1
? 若

n

n1
n1
n收敛.(例如 :
n1
(1)n i n
)
例2 下列级数是否收敛?是否绝对收敛?
---级数的部分和
▪若z0 D
lim
n
sn
(
z0
)
s(
z0
),
称级数(1)在z0收敛,
其和为s(
z0
),
lim
n
sn
(
z0
)不存在,称级数(1)发散,
若级数(1)在D内处处收敛,其和为z的函数 s(z) f1(z) f2(z) fn(z)+ ---级数(1)的和函数
特殊情况,在级数(1)中 fn (z) cn (z z0 )n 得
bn
n1
n1
1 n2
收敛.
所以原级数发散.
必要条件
因为实数项级数 an和 bn收敛的必要条件是
n1
n1
lim
n
an
0

lim
n
bn
0.
所以复数项级数n收敛的必要条件是
n1
lim
n
n
0
重要结论:
lim
n
n
0
级数 n发散.
n1
例如,级数 ein :
n1
因为lim n
n
lim ein
n
0,
(
1)
n
收敛

n
n1
1 2n
收敛,
n1
(
(1)n n
i 2n
)收敛.
又 (1)n 条件收敛,原级数非绝对收敛.
n1 n
练习:
讨论
1
1
e
i
n的
敛散性

n0 n
发散
§4.2 幂级数
1. 幂级数的概念 2. 收敛定理 3. 收敛圆与收敛半径 4. 收敛半径的求法 5. 幂级数的运算和性质
相关文档
最新文档