第4章 解析函数的级数表示法
复变函数第四章解析函数的幂级数表示法知识点总结
第四章解析函数的幂级数表示法§1.复级数的基本性质1.(定理)复级数收敛的充要条件:实部虚部分别收敛。
2.(定理)复级数收敛的充要条件(用定义):对任给的>0,存在正整数N(),当n>N且p为任何正整数时,注1:收敛级数通项必趋近于零;注2:收敛级数各项必有界;注3:级数省略有限个项不改变敛散性。
3.(定理)收敛4.(定理)(1)绝对收敛的复级数可任意重排,不改变收敛性,不改变和;(2)两个绝对收敛的复级数可按对角线方法得出乘积(柯西积)级数,也绝对收敛于。
5.一致收敛的定义:对任给的>0以及给定的,存在正整数N=N(,z),当n>N 时,有式中6.不一致收敛的定义7.(定理柯西一致收敛准则):级数收敛的充要条件是:任给>0,存在正整数N=N(),使当n>N时,对一切,均有8.(定理’不一致收敛准则):9.(优级数准则):如果有正数列,使对一切,有|)|≤,且正项级数收敛复级数在集E上绝对收敛且一致收敛。
10.优级数定义:称为的优级数。
11.(定理)级数各项在点集E上连续,且一致收敛于f(z),则和函数也在E上连续。
12.(定理积分求和符号可交换)级数的各项在曲线C上连续,且一致收敛于f(z),则沿C可逐项积分13.内闭一致收敛:有界闭集上一致收敛14.(定理)在圆K:|z-a|<R内闭一致收敛的充要条件:对任意正整数,只要<R,级数在闭圆上一致收敛。
15.(定理魏尔斯特拉斯定理):设(1)函数在区域D内解析;(2)在D内内闭一致收敛于函数f(z):则:(1)f(z)在D内解析;(2)(3)在D内内闭一致收敛于§2.幂级数1.(定理阿贝尔定理):幂级数在某点(≠a)收敛它必在圆K:|z-a|<|-a|(以a为圆心,圆周通过的圆)内绝对收敛且内闭一致收敛。
2.(推论):幂级数在某点(≠a)发散在以a为圆心,圆周通过的圆周外发散。
第四章 解析函数的幂级数表示方法
第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。
按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。
设0z 是一个复常数。
如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。
如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。
令0z a ib =+,其中a 和b 是实数。
由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。
注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。
注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。
定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。
定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。
复变函数项级数
(M
z z0
n
)
n1
z1 z0
收敛,同时根据正项级数的比较判别法可知,
Cn(z z0 )n
n1
收敛, 从而级数 Cn(z z0 )n 绝对收敛. n0
8
定理1的几何意义
如 果 幂 级 数 在 点1z收 敛 , 那 么 幂 级 数 在 以z0 为 圆 心 , 以z1 z0 为 半 径 的 圆 周 内 部 的 任意 点z处收敛.
n0
n0
n0
f (z) g(z) ( anzn ) ( bnzn ),
n0
n0
(anb0 an1b1 a0bn )zn ,
n0
z R R min( r1, r2 )
17
2. 幂级数的代换(复合)运算
如果当 z r 时, f (z) anzn, 又设在
n0
z R 内 g(z)解析且满足 g(z) r, 那末当 z R
10
对于形如 Cn (z z0 )n的幂级数当, z z0时,可能 n1
出现如下的三种情况
(1)对 任 意 的z z0 , 级 数 Cn (z z0 )n均 发 散 n1
(2)对 任 意 的 z, 级 数 Cn (z z0 )n均 收 敛 。 n1
(3)存 在 一 点z1 z0 , 使 得 级 数 Cn (z1 z0 )n收 敛 . n1
a
n0 n 1
简言之: 在收敛圆内, 幂级数的和函数解析;
幂级数可逐项求导, 逐项积分.
(常用于求和函数)
22
例3 求幂级数 zn 1 z z2 zn
n0
的收敛范围与和函数.
解 级数的部分和为
sn
1
z
z2
第四章、级数
的复变函数项级数,简记为 ∑ f n ( z ) .
17
一、基本概念
2. 复变函数项级数收敛的定义
定义 设 ∑ f n ( z ) 为区域 G 内的复变函数项级数,
n
第四章 解析函数的级数表示
(1) 称 sn ( z ) = ∑ f k ( z ) 为级数 ∑ f n ( z ) 的部分和。
注意 级数在收敛圆的边界上 各点的收敛情况是不一定的。 约定 R = 0 表示级数仅在 z = 0 点收敛;
⇒ lim z n = 0 ,
n→ +∞
7
二、复数项级数
1. 基本概念
定义 设 { z n }n=1 , 2 ," 为一复数序列,
第四章 解析函数的级数表示
(1) 称 ∑ z n = z1 + z 2 + " 为复数项级数, 简记为 ∑ z n .
n =1
+∞
(2) 称 sn = ∑ z k = z1 + z 2 + " + z n 为级数的部分和;
⇒ | an z
n
n | = | a n z0 |⋅
z z0
n
z ≤ Mq , 其中 q = z , 0
n
+∞
n Mq | a z | ≤ ∑ | z | < | z | q < 1 , 当 即得 ∑ n 收敛。 0 时,
n
+∞
n= 0
n= 0
20
二、幂级数
2. 阿贝尔 ( Abel ) 定理
定理 对于幂级数 ∑ a n z ,有
n→ +∞
第四章 解析函数的级数表示
4.3泰勒级数
23
n
其收敛半径为1。
注:本题也可用逐项积分法求解. 思考:如何用逐项求导法求1/(1+z)2在z=0处的 泰勒展式.
例3、 求 (1 z)
的解析分支 e ln(z1) 在z=0的泰勒展式(其中a不
是整数).
解:已给解析分支在z=0的值为1,它在z=0的一阶
导数为a,二阶导数为a(a-1),n阶导数为
f (zk ) g(zk )(k 1,2,3,...)
那么在D内,f(z)=g(z)。
定理的证明
证明:假定定理的结论不成立。即在D内,解析 函数F(z)=f(z)-g(z)不恒等于0。显然
F(zk ) 0(k 1,2,...)
设z0是点列{zk}在D内有极限点。由于F(z)在z0 连续,可见
证明:在U内任取一点z,以z0为心,在U内作一 个圆C,使z属于其内区域。我们有
f
(z)
1
2i
C
f
(
) z
d
,
由于当 C 时,z z0 q 1
又因为 1
z0
1 2 ... n ...(| |
n0
... n (z z0 )n ...
是它的和函数f(z)在收敛圆内的泰勒展式,即
0
f (z0 ),n
f (n) (z0 ) (n 0,1,2,...). n!
解析函数幂级数展式的唯一性定理
因此,我们有解析函数的幂级数展式的唯一性 定理:
定理 在幂级数展开式定理中,幂级数的和函数
解析函数的零点
设函数f(z)在z0的邻域U内解析,并且 f (z0 ) 0
那么称z0为f(z)的零点。设f(z)在U内的泰勒展式 是:
高等数学第四册第三版数学物理方法答案(完整版)
高等数学 第四册(第三版) 数学物理方法 答案(完整版)第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。
解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。
证明:1230;zz ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。
1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。
即123z ,z ,z 是内接于单位圆的正三角形。
.17.证明:三角形内角和等于π。
证明:有复数的性质得:3213213arg;arg ;arg ;z z z z z z αβγ---=== 21z z z z -•-arg(1)2;k αβγπ∴++=-+0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。
复变函数与积分变换第4章4.1收敛数列与收敛级数
3
§4.1 复数项级数 第 一、收敛序列 四 章 2. 复数序列极限存在的充要条件 定理 设 zn xn i yn , a i , 则 lim z n a 的充要条件是 解 n P76 析 定理 lim x , lim y . n n n 函 4.1 n 数 zn 证明 必要性 “ ” 的 | zn - a | | yn - | 级 若 lim z n a , 则 e 0 , N , n 数 a | xn - | 表 当 n N 时,| zn - a | e , 示
即得级数 z n 收敛的充要条件是 x n 和 yn 都收敛。
9
§4.1 复数项级数 第 二、复数项级数 四 章 3. 复数项级数收敛的必要条件 定理 设 zn xn i yn , 则 z n 收敛的必要条件是 lim zn 0 . n 解 析 P79 函 证明 由于级数 z 收敛的充要条件是 x 和 y 都收敛, n n n 数 的 而实数项级数 x n 和 yn 收敛的必要条件是: 级 数 lim xn 0 , lim yn 0 等价于 lim zn 0 , 表 n n n 示 因此 z n 收敛的必要条件是 lim zn 0 .
1 n 1 zn 2 i 2 e n n
i
π n 2
§4.1 复数项级数 第 二、复数项级数 四 章 4. 复数项级数的绝对收敛与条件收敛 定义 (1) 若 | z n | 收敛,则称 z n 绝对收敛。 解 析 P79 (2) 若 | z n | 发散, z n 收敛,则称 z n 条件收敛。 函 数 的 定理 若 | z n | 收敛,则 z n 必收敛。 P80 定理4.4 级 2 2 | z | x y 证明 由 收敛, n n 收敛, n 数 表 2 2 2 2 | x | x y , | y | x y 又 示 n n n n n n,
第四章43-44泰勒级数与洛朗级数-精选文档
解 f
( n )
( 0 ) zz 1 , 0
e
) f(n ( 0 ) 1 a , n n ! n !
2 n z z z . 1 z , |z| f (z) ez ! 2 ! n ! n0 n
n
二、将函数展开为泰勒级数的方法
解 利用逐项求导性质
1 1 2 ( ) ( 1 z z ) 2 1z ( 1z)
2 n 1 2 z 3 z ( n 1 ) z ,|z| 1.
1 n a ( z i ) 例 把函数 表示成形如 的幂级数。 n (1 z ) 2 n0
( z ) ln ( 1 z ) 例 将函数 f 0 ,z 1 分别在 z 点展开为幂级数。
1 1 解 (1) f (z) (1)n zn, |z| 1. 1 ( z ) 1 z n0
三、幂级数的性质
2. 幂级数的分析性质
n 0
P87
n ( z ) a ( z z ) z z | R ,则 性质 设 f n 0 ,| 0
z | R 内解析。 (1) 函数 f ( z) 在收敛圆 |z 0
(2) 函数 f ( z) 的导数可由其幂函数逐项求导得到,即
1 1 1 解 (1) (1i) (z i) 1 z 1 i
1 1i
利用逐项求导性质
n
1 zi 1 1 i
n z i ( z i ) i| 2 . 1i (1i)n1 , |z n0 n 0
' n(z i)n1 1 1 (2) 2 (1z) 1z n1 (1i)n1
09第四章解析函数的级数表示
第四章 解析函数的级数表示§1. 复数项级数 一. 复数序列的极限定义: 设{}n z 为一个复数序列,其中n n n y i x z +=, 又设000y i x z +=为一个复定值. 若,0,0>∃>∀N ε使得,N n >∀有不等式ε<-0z z n恒成立,则称复数序列{}n z 收敛于0z ,或称{}n z 以0z 为极限,记作0l i m z z n n =∞→ 或()∞→→n z z n 0.如果对于任意复数0z ,上式均不成立,则称复数序列{}n z 不收敛或发散.定理1 设000y i x z +=,n n n y i x z +=,则⎪⎩⎪⎨⎧==⇔=∞→∞→∞→.lim ,limlim 000y y x x z z n n n n n n 定理1说明: 可将复数列的敛散性转化为判别两个实数列的敛散性.二. 复数项级数定义: 设{}n z 为一个复数序列,表达式 +++++n z z z z 321称为复数项无穷级数.如果它们的部分和序列() 2,1321=++++=n z z z z S n n有极限S S n n =∞→l i m (有限复数),则称级数是收敛的,S 称为级数的和;如果{}n S 没有极限,则称级数是发散的. 例1.当1<z 时,判断级数++++++nz z z z 321是否收敛?定理2 级数 ++++n z z z 21收敛的充分必要条件是实数项级数 ++++n x x x 21与 ++++n y y y 21都收敛.定理2说明: 可将复级数的敛散性转化为判别两 个实级数的敛散性.定理3 (级数收敛的必要条件)若级数++++n z z z 21收敛,则0lim =∞→n n z . 定理4 若级数+++++=∑∞=n n n z z z z z 3211收敛,则级数+++++=∑∞=n n nz z z z z3211一定收敛.定义: 若级数 ++++=∑∞=n n n z z z z 211收敛, 则称级数++++=∑∞=n n nz z z z 211绝对收敛,若级数 ++++=∑∞=n n n z z z z 211发散,而级数 ++++=∑∞=n n n z z z z 211收敛,则称级数 ++++=∑∞=n n nz z z z211条件收敛.例2.判断下列级数的敛散性:(1)∑∞=⎪⎭⎫⎝⎛+121n n i n ;(2)∑∞=1n nni ;(3)∑∞=12n nn i.§2. 复变函数项级数一. 复变函数项级数定义: 设(){}() ,,n z f n 21=为区域D 内的函数序列,称以()z f n 为一般项的复级数 ()()()()+++++z f z f z f z f n 321为区域D 内的复变函数项级数.该级数的前n 项的和()()()()()z f z f z f z f z S n n ++++= 321称为该级数在D 内的部分和. 设0z 为区域D 内的一个定点,若极限()()00lim z S z S n n =∞→存在,则称该复变函数项级数在0z 点收敛,()0z S 为其和,即()()01z S z f n n=∑∞=.如果该复变函数项级数在D 内处处收敛,则称该复变函数项级数在D 内收敛,由此所定义的函数()z S 称为和函数,记作()∑∞=1n n z f .即 ()()∑∞==1n n z f z S 二. 幂级数定义: 形如()()()()+-++-+-+=-∑∞=nn n nnz z C z z C z z C C z z C 02020100的复变函数项级数称为幂级数,其中n C 与0z 均为复常数. 定理5如果幂级数()∑∞=-00n nn z z C 在点()011z z z ≠ 收敛,则该级数在圆域010z z z z -<-内绝对收敛.推论 如果幂级数()∑∞=-10n nn z z C 在点2z 发散,则在区域020z z z z ->-内发散.定义:若存在圆R z z <-0,使得幂级数()∑∞=-10n nn z z C 在此圆内绝对收敛,在此圆外发散,则称该圆为幂级数的收敛圆,称该圆的半径R 为幂级数的收敛半径. 结论:对幂级数()∑∞=-10n nn z z C 而言,一定存在某一圆R z z <-0,使得该幂级数在此圆内绝对收敛,在此圆外发散.达朗贝尔比值判别法——若 λ=+∞→n n n C C 1lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .柯西根值判别法——若 λ=∞→nnn C lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .例3. 求级数∑∑∑∞=∞=∞=1210,,n nn nn nn z nzz 的收敛半径. 例4.求级数()∑∞=-11n nnz 的收敛半径.说明:达朗贝尔比值判别法与柯西根值判别法都只是充分条件,而非必要条件. 例5. 把函数z 1表示成形如()∑∞=-02n nn z c 的幂级数. 性质 (1)幂级数()∑∞=-00n nn z z C 的和函数在收敛圆内一定解析;(2)在收敛圆内,幂级数()∑∞=-00n nn z z C 可以逐项积分或求任意阶导数,所得到的幂级数在该圆内也收敛,且相应的和函数即为对幂级数()∑∞=-00n nn z z C 的和函数进行积分或求相应阶导数所得的结果.例6 求幂级数∑∞=12n nz n 的和函数,并计算级数∑∞=122n n n 之值.§3. 泰勒级数定理6 (泰勒定理) 设函数()z f 在区域D 内解析,0z 为D 内的一点,设R 为0z 到D 的边界的距离,则当R z z <-0时,()z f 可展为幂级数()()∑∞=-=00n nn z z C z f 其中()() 2,1,0!10==n z f n C n n .称该幂级数为()z f 在区域D 内以0z 为心的泰勒级数.说明:1.复变函数展开为泰勒级数的条件要比实函数时弱得多; (想一想, 为什么?);, , )( .200z d z d D z f -=αα即之间的距离一个奇点到最近等于则内有奇点在如果4.任何解析函数在一点的泰勒级数是唯一的. 结论:函数在()z f 点0z 解析的充分必要条件是在0z 点()z f 可展成幂级数.根据结论,解析函数()z f 在点0z 可展成泰勒 级数,其展开法分别是直接展开法和间接展开法.直接展开法是指由泰勒展开定理计算系数间接展开法是指借助于一些已知函数的展开式 , 结合解析函数的性质, 幂级数运算性质 (逐项求导, 积分等)和其它数学技巧 (代换等) , 求函数的泰勒展开式.例7.将()0==z e z f z在处展开为泰勒级数.例8. 将()0sin ==z z z f 在处展开为泰勒级数.;,0.30级数级数也可称为麦克劳林时当=z,2,1,0,)(!10)(==n z f n c n n .)( 0展开成幂级数在将函数z z f例9.将()z z f -=11在z =0的邻域展开.例10. 求函数()0112=+=z zz f 在的邻域内的泰勒 展开式.例11. 例12. 求函数()21-=z z f 在1-=z 的邻域内的泰勒展开式.例13.将函数()()211z z f -=展开为i z -的幂级数.例14.求对数函数ln (1+z )在z =0处的泰勒展开式.例15. 将函数()ze zf -=11展开为z 的幂级数.§4. 洛朗级数引例 求函数()122-+-=z zz z f 的展开式..0arctan 的幂级数展开式在求=z z定理7 设函数()z f 在环域201R z z R <-<内解析,则()z f 在此环域内一定可以展成()()∑∞-∞=-=n n n z z C z f 0, 其中()()() 2,1,02110±±=-=⎰+n d z f i C C n n ςςςπ.C 为此环域内绕0z 的任意一条简单闭曲线. 称此级数为环域内的解析函数的洛朗级数. 说明:环域201R z z R <-<内的解析函数则()z f 在此环域内一定可以展成惟一的洛朗级数. 例16. 将函数 ()()()211--=z z z f分别在圆环域(1)10<<z ;(2)21<<z ;(3)+∞<<z 2内展开为洛朗级数.例17. 将函数()2z shz z f =在+∞<<z 0内展开为洛朗级数.例18. 试求()211z z f +=以z =i 为中心的洛朗级数.。
第四章-幂级数
因此 z 2k (k 0, 1,...) 都是 f ( z) sin z 1 的二阶零点
2
解析函数零点的孤立性,唯一性定理
• 定理:设函数 f ( z ) 在 z a R 解析,且不恒 为零,a为其零点,则必有a的一个邻域, 使得 f ( z ) 在其中没有a之外的零点。
的系数
cn
满足
cn 1 l cn
(2)
lim n cn l
n
(3) 则幂级数 c ( z a) 的收敛半径
n
lim n cn l
n
n 0
n
1 l , l 0, l R 0, l , l 0
cos(in)( z 1) 例.
1、幂级数 各项均为幂函数的复变项级数
(*)
其中 ,都是复常数,这样的 级数叫做以 z0 为中心的幂级数。 2、幂级数的收敛性,收敛半径 先看由上级数各项的模所组成的正项级数
应用正项级数的比值判别法可知,如果
则级数收敛,即原级数绝对收敛,可引入记 号
即,如果 果 ,则
则原级数绝对收敛,如
即级数后面的项的模越来越大,不满足级数
eiz eiz 2i
(eiz i)2 0, eiz i
2
2 k
(k 0, 1,...)
这是 f ( z) sin z 1 的全部零点 注意到
(sin z 1) ' z 2 k cos z z 2 k 0
2 2
(sin z 1) '' z 2k sin z z 2k 1
n z 2 z3 z 4 z f 0 ( z ) (ln( z 1))0 z ... (1) n1 ... 2 3 4 n
解析函数的级数表示PPT课件
k 0
k 0
数学物理方法
性质 3
若级数 wk (z)在区域D(边界 L)上一致收敛,且各项wk (z) k 0
在区域 D 上解析,则
(1)级数和S(z) wk (z)在 D 内解析 k 0
(2)在 D 内级数可逐项求导任意多次:
S (m) (z) w(m)k (z) k 0
数学物理方法
证明:(1).设:z——边界 L 上任意一点,z ——D 中任意
若 zk 收敛而 zk 发散,则称 zk 为条件收敛级数。
k 0
k 0
k 0
数学物理方法
例1 下列级数是否收敛?是否绝对收敛?
1
i
(8i)n
(1)n i
(1) (1 ) (2)
n1 n
n
n0 n!
(3) (
n1
n
2n )
解
(1)
n1
1 n
发散,
n1
1 n2
收敛,
n1
1 n
数学物理方法
四、一致收敛级数的性质
性质 1
若级数 wk (z)在 D 内一致收敛于S(z),且其各项均为 D k 0
内的连续函数,则S(z)也是 D 内的连续函数。
性质 2
若级数 wk (z)在曲线 L 上一致收敛于S(z),且各项均为 L k 0
上的连续函数,则级数可沿 L 逐项积分:
L s(z)dz L wk (z)dz L wk (z)dz
实质:1.找一个收敛的正项级数 mk(收敛性比较容易判断) k 0
2.将 wk (z) 与mk 比较
(在 D 上所有点)
数学物理方法
判别法 2
已知u(z)在 D(或 L)上是个有界函数,若 wk (z)在 D(或 k 0
复变函数-总结
18
例2 问 f (z) = x +2yi 是否可导?
f (z +∆z) − f (z) 解:这里 lim ∆z→0 ∆z ( x + ∆x) + 2( y + ∆y )i − x − 2 yi ∆x + 2∆yi = lim = lim ∆z → 0 ∆x + ∆yi ∆z → 0 ∆x + ∆yi
∂u ∂v ∂v ∂u = , =− ∂x ∂y ∂x ∂y
解析 ( 可导) ⇔ u , v 可微且满足C-R方程
若 推论 : u, v在( x, y )处一阶偏导数连续且满足C − R
方程,则f ( z ) = u + iv在 z = x + iy 处可导.
22
§2.2 解析函数与调和函数的关系
y
由 C − R 方程知:
u x = v y = − 2 y u y = − v x = −2 x
u( x 1 y ) =
0
( x, y )
(x,0)
x
∫
( x, y)
∆x + 2∆yi ∆x = lim =1. 取∆z = ∆x → 0 , lim ∆z→0 ∆ +∆ x yi ∆z→0 ∆x ∆x + 2∆yi 2∆y 取∆z = i∆y → 0, lim = lim = 2. ∆z→0 ∆ +∆ x yi ∆z→0 ∆y 所以 f (z) = x + 2yi 的导数不存在.
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 , 则
lim u(x, y) = u0 x→x0 y→y0 lim f (z) = A ⇔ . z→z0 lim x→x0 v(x, y) = v0 y→y0 运算性质:
4.4洛朗级数
n ( z z0 ) n 及 n ( z z0 ) n ,
都收敛时,我们说原级数收敛,并且它的和等 于上式中两个级数的和函数相加。 设上式中第一个级数在 | z z0 | R2 内绝 对收敛并且内闭一致收敛;
n 0 n 1
解析函数的洛朗展式:
第二个级数在 | 内闭一致收敛。
f ( z)
n
n
( z z0 ) ,
n
其中,定理的证明:
1 f ( ) n 2' ( z0 )n1 d , (n 0,1,2,...) 2i 1 f ( ) n 1' ( z0 )n1 d , (n 1,2,...) 2i
小结
第四章 级 数
4.3 洛朗级数
解析函数的洛朗展式:
我们称级数
n
n
( z z0 )
n
பைடு நூலகம்
为洛朗级数。 收敛?和函数?收敛域?解析部分?主要部分? 洛朗级数的和函数是圆环D内的解析函数, 反之,圆环内的解析函数必可展开为洛朗级数 即有
洛朗定理:
洛朗定理 设函数f(z)在圆环: D : R1 | z z0 | R2 (0 R1 R2 ) 内解析,那么在D内
:| z z0 | ( R1 R2 )
然后沿 求积分。由于所讨论的级数在 上一 致收敛,在求积分时,对有关级数可以逐项积 分,于是我们有
1 g ( z) 1 n k 1 ( z z0 )k 1 dz k 2i ( z z0 ) dz k 2i
1 z
1 1 1 1 1 e 1 ... ... 2 n z 2! z n! z
第4章 级数
实数项级数的审敛问题
1)
a ,b
n 1 n n 1
n
分别收敛于a及b.
2)
a , b 至少一个发散
n 1 n n 1 n
1 i 课堂练习 级数 (1 ) 是否收敛? n n1 n 解 因为 a 1 发散; n n n1 n1 1 bn n2 收敛. n1 n1 1 i (2)级数 2 (1 ) 是否收敛? n n 1 n
记作
lim z n z0 .
n
此时也称复数列{zn } 收敛于 z0 .
复数列收敛的条件
lim an a ,
n
lim bn b .
n
该定理说明: 可将复数列的敛散性转化为判别两 个实数列的敛散性.
复数项级数
• 定义: 复数项级数就是
z
n 1
n
z1 z2 zn
n 0
n ( z z0 ) n
z1 z2
a
2.幂级数的敛散性讨论
其敛散性有以下三种情况: (1) 所有正实轴上的点都发散.
此时, 级数在复平面内除原点外处处发散.
例如,级数 1 z 22 z 2 nn z n
当 z 0 时, 通项不趋于零,
故级数发散.
定理 4.1.4 复级数(4.1)收敛的一个充分条件 为级数 | z n |收敛.
n 1
| z |收敛,则原级数 z 称 若级数 为绝对收敛;非绝对收敛的级数,称为条件收敛.
n 1 n
n 1
n
例1 下列数列是否收敛, 如果收敛, 求出其极限.
1 in (1) n (1 )e ; n
解析函数的级数展开
定理 4.1.2 (比较判别法) 假设存在自然数N, 使得当 j > N 时
若(实正项)级数
∑M
j =0
∞
| c j |≤ M j .
j
收敛, 则复级数
∑ c 也收敛.
j =0 j
∞
1 + 2i 例 4.1.1 证明级数 ∑ j 收敛. j = 0 ( j + 1)
∞
证明:
1 + 2i 1 + 2i 1 + 2i 1 + 2i ∑ ( j + 1) j = (1 + 2i) + 2 + 9 + 64 + L j =0
称为 f (z ) 在点 z0 处的泰勒级数. 当 z0 = 0 时称其为 f (z ) 的 马克劳林 (Maclaurin) 级数. 由高阶导数的柯西积分公式, 泰勒级数的系数可表示为 z0 点 的邻域内某一简单闭曲线 Γ 上的积分表示. f ( j ) ( z0 ) f (ς ) 1 = ∫Γ (ς − z0 ) j +1 dς j! 2πi
为 S n , 即 S n = ∑ c j . 若部分和序列 {S n }∞=1有极限S, 则称级 n 数收敛于S, 记为 S = ∑ c j . 一个级数若不收敛则称为发散.
j =1
∞ ∞ ∞
n∑ c = ∑ (a源自j =1 j j =1j
+ ib j ) = S = a + ib ⇔ ∑ a j = a, ∑ b j = b.
z → z0
lim ∑ f n ( z ) = f ( z0 ) = ∑ f n ( z0 ) = ∑ ( lim f n ( z )).
n =1 n =1 n =1 z → z0
复变函数第四章
使级数对一 切Mzn∈收E敛,有,则|f复n(z函)|≤数M项n (级n=数1,2,…fn)(,z而)在且点正集项E上
n1
绝对收敛且一致收敛.
n1
这样的正项级数
M
称为函数项级数
n
fn
(z)
的优级数.
n 1
n1
定理4.6 设级数 fn(z)的各项在点集E上连续,并
ቤተ መጻሕፍቲ ባይዱ
且一致收敛于f(z)n,则1 和函数 f (z) fn(z)也在E
上连续.
n1
定理4.7 设级数 fn(z)的各项在曲线C上连续,并 n1
且在C上一致收敛于f(z),则沿C可以逐项积分:
C f (z)dz C fn(z)dz n1
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若 级数(4.2)在D内任一有界闭集上一致收敛,则称此 级数在D内内闭一致收敛.
由定理4.7得 c f (z)dz c fn (z)dz 0 n1
于是,由摩勒拉定理知,f(z)在 K 内解析,即
在 z0 D 解析。由于 z0 D 的任意性,
故f(z)在区域 D 内解析。
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
n1
(z
fn(z) 一致收敛于
f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f (z) fn(z) n1
定义4.4 对于级数(4.2),如果在点集E上有一个函数
f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
一致切收的 敛于z∈f(Ez均),有记|作f(z:)-sn(z)|<fεn ,则zz称E 级f z数 (4.,2)在E上其一
解析函数零点的孤立性及唯一性定理
定理4.5’
0 0, 对任何正整数N, 整数 n0 N , 总有某个
z0 E,
及某个正整数 p0 ,有
f n0 1 z 0 f n0 2 z 0 f n0 p0 z 0 0
定理
使对一切 z E ,有
(优级数准则)若存在正数列 M n (n 1,2, )
因此按定义4.1得
2) 当
q 1 时,显然有 lim q
n
1 q 1 q n 0
n
n
,因而
1 q lim Sn lim n n 1 q
n
n q 故级数 发散。 n 0
3)当 q
1 时,显然有
Sn 1 1 1 1 n
n 1
n 1
非绝对收敛的收敛级数,称为条件收敛。 称为绝对收敛;
定理4.4
(1)一个绝对收敛的复级数的各项可以任意重
排次序,而不致改变其绝对收敛性,亦不致改
变其和。
(2)两个绝对收敛的复级数可按对角线方法得
出乘积级数。
例 判断下列级数的敛散性
1 ; 2 1 n n n 1 2 3i n 1 1 i
在 z 1 内闭一致收敛。
证明 当 z z z r 1 时,
上一致收敛于 f ( z ) ,从而
fn ( z) k 1 n 1 ( z z0 )
,根据定理4.7,我们有 k! f ( z) dz k 1 2 i Cr ( z z0 )
f ( z) 在 Cr 上一致收敛于 ( z z0 ) k 1
n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.1 复数项级数 §4.2 幂级数 §4.3 解析函数的泰勒展开 §4.4 解析函数的罗朗展开 §4.5 孤立奇点
第一节 复数项级数
1. 复数列和复数列的极限 2. 复级数
1. 复数列和复数列的极限
定义4.1 设an(n 1,2,)为一复数列,其中 an n i n .
ak
k 1
k 1
ak
,故有
lim
n
k 1
ak
ak ,
k 1
即 ak ak .
k 1
k 1
利用不等式 an
2 n
2 n
n
n 可以得到下
面的结论 .
推论4.1 设an n in , n 1,2,.则级数 an绝对 n1
收敛的充要条件是级数 n和 n都绝对收敛 .
n1
n1
例4.1 下列级数是否收敛?是否绝对收敛?
n
应
的
部
分
和
数
列S
n
收
敛
于
n1
常 数S, 即
lim
n
Sn
S,
那 么 an称 为 收 敛 的 级 数. n1
数S叫 做 该 级 数 的 和 , 记 为
an S .
n1
若
lim
n
Sn
不
存
在
,
则
称
n1
an为
发
散
的
级
数.
定理4.2 复级数 an收敛于S的充要条件是实级数 n1
n和 n分别收敛于 和,其中S i,
i 1
和 n分别收敛于 和,从而定理得证 .
定理4.3 复级数 an收敛的必要条件是 n1
lim
n
a
n
0.
证明:由上面定理, an收敛的充要条件是对应 的两个实
n1
级数 n和 n均收敛,其中 an n in (n 1,2,).
n1
n1
高等数学的结论指出: 实级数收敛的必要条件 是其通项
n1
n1
an n i n (n 1,2,).
证明:Sn a1 a2 an
(1 2 n ) i(1 2 n )
n i n ,
n
n
n
其中 n i , n i,它们分别为实级数 i,
i 1
i 1
i 1
n
i的部分和. 那么Sn收敛于S的充要条件是 n
n1
n1
不 等 式 an an 成 立.
n1
n1
证明:记 an n i n,n 1,2,,则有 an
2 n
2 n
.
n1
n1
由于 n
2 n
n2, n
2 n
n2,因此根据实级数的比
较
准则,得知 n和 n均收敛,于是 an是收敛的. 由三角
n1
n1
n1
n
n
n
不等式 ak k 1
证明:如果
lim
n
an
a,则对
0,存在正整数
N,使得当
n N时,有 an a . 从而有 n an a ,所以有
lim
n
n
.
同理有
lim
n
n
.
反之,如果
lim
n
n
,lim n
n
,对
0,存在正整数 N,
使得当n N时,有 n
2
,
n
,所以有
2
an a
n
n
,即
lim
n
an
a.
2. 复级数
设an n in (n 1,2,3,)为一复数列,表达式
an a1 a2 an
n1
称为复数域上的无穷级 数,简称复级数或级数 .
记该级数的前n项部分和为 Sn a1 a2 an , n 1,2,,
Sn 称为该级数的部分和数列.
定 义4.2
若
级
数
a
对
(1)
(3i)n ;
n1 n!
(2)
(1
1 )ei / n;
n1
n
(3)
n1
(1)n n
1 3n
i.
解:(1) (3i)n 3n ,由正项级数的比值判 别法和 (3i)n
n! n!
n1 n!
收敛,可知原级数为绝 对收敛.
(2)因为 lim(1 1 )ei / n 1 0,所以 (1 1 )ei / n发散.
的极限为零 .
于是,有limnຫໍສະໝຸດ n0,lim
n
n
0,
从而得到
lim
n
an
0.
定 义4.3 对 于 复 级 数 an ,若 an 收 敛 , 则 称 级 数 an
n1
n1
n1
绝 对 收 敛 ; 若 an 发 散 , 而 an收 敛 , 则 称 级 数 an
n1
n1
n1
条 件 收 敛.
定 理4.4 如 果 级 数 an绝 对 收 敛 , 则 an也 收 敛 , 且
a i为一确定的复数 .如果对任意的正数 ,存在正整
数N ,使得当n N时,有
an a
成立,则称 a为复数列an当n 时的极限,记作
lim
n
a
n
a .并称复数列 an 收敛于 a .
定理4.1 复数列an收敛于a的充分必要条件是:
lim
n
n
,lim n
n
.
其中an n i n,a i .
1. 幂级数的概念
解析函数最重要的性质之一是可以展成幂级数, 而幂级数在它的收敛圆内确定了一个解析函数,所以 解析函数的幂级数表示是解析函数的一种最简单的分 析表达式.
所谓幂级数,是指形如
an ( z z0 )n a0 a1( z z0 ) an ( z z0 )n
n0
的表达式,它的一般项是幂级数an( z z0 )n ,这里 an( n 0,1,)和z0是复常数,而z为复变数.
n
n
(3)因为 (1)n收敛,
n1 n
n1
n1
n
1 收敛,所以原级数收敛 3n
,但
(1)n 为条件收敛,由推论 4.1知原级数为条件收敛 .
n1 n
• 作业 P91习题四 • 2(1)(3)(5)
第二节 幂级数
1. 幂级数的概念 2. 收敛半径和收敛圆 3. 收敛半径的求法 4. 幂级数的运算及性质
给 定z的 一 个 确 定 值z, 则 级 数 为 复 数 项 级 数
an ( z1 z0 )n a0 a1( z1 z0 ) an ( z1 z0 )n
n0
若 上 式 所 表 示 的 级 数 收敛 , 则 称 幂 级 数 在z1处 收 敛 , z1称 为 级 数 的 一 个 收 敛 点, 否 则 则 称 为 发 散 点.
若D z | an (z z0 )n收 敛, 则 级 数 在D上 的 和 确 定
n1
一个函数
S(z) a0 a1(z z0 ) an (z z0 )n , z D, 称S(z)为 级 数 的 和 函 数.
为讨论简便,不妨假定 z0 0,这个级数称为
anz n a0 a1z anzn .
n0
通常只要作变化 w z z0即可.
定理4.5 如果幂级数 anz n在z z1( 0)收敛,则对 n0