专题 含参函数的零点问题

合集下载

函数的含参零点问题

函数的含参零点问题

函数的含参零点问题函数的含参零点问题根据函数的零点情况,讨论参数的范围是⾼考的重点和难点.对于此类题⽬,我们常利⽤零点定理、数形结合、函数单调性与分离参数等思想⽅法来求解.[典例] (2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯⼀的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) [答案] B [思路点拨]本题的实质是函数f (x )存在唯⼀的零点x 0∈(0,+∞),因此可利⽤其代数特征转化为⽅程有唯⼀的正根来构思解析,也可以从零点本⾝的⼏何特征⼊⼿,将其转化为曲线的交点问题来突破,还可以利⽤选项的唯⼀性选取特例求解.[⽅法演⽰]法⼀单调性法:利⽤函数的单调性求解由已知得,a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈0,2a ,f ′(x )<0;x ∈2a ,+∞,f ′(x )>0.所以函数f (x )在(-∞,0)和2a ,+∞上单调递增,在0,2a 上单调递减,且f (0)=1>0,故f (x )有⼩于零的零点,不符合题意.当a <0时,x ∈-∞,2a ,f ′(x )<0;x ∈2a ,0,f ′(x )>0;x ∈(0,+∞),f ′(x )<0.所以函数f (x )在-∞,2a 和(0,+∞)上单调递减,在2a ,0上单调递增,所以要使f (x )有唯⼀的零点x 0且x 0>0,只需f 2a>0,即a 2>4,解得a <-2. 法⼆数形结合法:转化为直线与曲线的位置关系求解由ax 3-3x 2+1=0可知x ≠0,可得ax =3-1x 2,作出y =3-1x 2的图象如图所⽰,转动直线y =ax ,显然a >0时不成⽴;当a <0,直线y =ax 与左边的曲线相切时,设切点为t,3-1t 2,其中t <0,则切线⽅程为y-3-1t 2=2t 3(x -t ).⼜切线过原点,则有0-3-1t 2=2t3(0-t ),解得t =-法三数形结合法:转化为两曲线的交点问题求解令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯⼀的交点,且交点横坐标⼤于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点;当a >0时,如图(1)所⽰,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图形可知当a <-2时,满⾜题意.法四分离参数法:参变分离,演绎⾼效易知x ≠0,令f (x )=0,则a =3x -1x 3,记g (x )=3x -1x 3,g ′(x )=-3x 2+3x 4=-3(x 2-1)x 4,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数⼤致图象如图所⽰,平移直线y =a ,结合图象,可知a <-2.法五特例法:巧取特例求解取a =3,则f (x )=3x 3-3x 2+1.由于f (0)=1,f (-1)<0,从⽽f (x )在(-∞,0)上存在零点,排除A 、C. 取a =-43,则f (x )=-43x 3-3x 2+1.由于f (0)=1,f -32<0,从⽽f (x )在(-∞,0)上存在零点,排除D ,故选B.[解题师说]函数的含参零点问题是⾼考热门题型,既能很好地考查函数、导数、⽅程与不等式等基础知识,⼜能考查分类讨论、数形结合、转化与化归等思维能⼒,所以此类题往往能较好地体现试卷的区分度.由本题的五种⽅法,可知破解含参零点问题常有“三招”. 第⼀招当我们⽆法通过等价转化的思想将原问题转化为相对容易的问题时,我们带参讨论要根据题设要求直接研究函数的性质.由于函数含有参数,通常需要合理地对参数的取值进⾏分类,并逐⼀求解.(如本题解法⼀)第⼆招数形结合由两个基本初等函数组合⽽得的超越函数f (x )=g (x )-h (x )的零点个数,等价于⽅程g (x )-h (x )=0的解的个数,亦即g (x )=h (x )的解的个数,进⽽转化为基本初等函数y =g (x )与y =h (x )的图象的交点个数.(如本题解法⼆和解法三)第三招分离参数通过将原函数中的变参量进⾏分离后变形成g (x )=l (a ),则原函数的零点问题化归为与x 轴平⾏的直线y =l (a )和函数g (x )的图象的交点问题.(如本题解法四)[应⽤体验]1.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯⼀零点,则a =( )A .-12 B.13 C.12 D .1解析:选C 法⼀:由函数f (x )有零点,得x 2-2x +a (e x -)=0有解,即(x -1)2-1+a (e x -1+e-x +1)=0有解,令t =x -1,则上式可化为t 2-1+a (e t +e -t )=0,即a =1-t 2e t +e -t . 令h (t )=1-t 2e t +e -t ,易得h (t )为偶函数,⼜由f (x )有唯⼀零点得函数h (t )的图象与直线y =a 有唯⼀交点,则此交点的横坐标为0,所以a =1-02=12,故选C. 法⼆:由f (x )=0?a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”.若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯⼀零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯⼀.综上所述,a =12.2.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为( )A .2B .3D .5解析:选C 令f (x )=0,得m =2x +1010-x . ⼜m ∈N ,因此有?10-x >0,2x +10≥0,解得-5≤x <10,x∈Z ,∴0<10-x ≤15.当2x +10=0,即x =-5时,m =0;当2x +10≠0时,要使m ∈N ,则需10-x ∈N ,当10-x =1,即x =9时,m =28;当10-x =2,即x =6时,m =11;当10-x =3,即x =1时,m =4,所以符合条件的m 的个数为4.3.设函数f (x )=12x 2+2x +2,x ≤0,|log 2x |,x >0,若关于x 的⽅程f (x )=a 有4个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 1+x 2x 4+1x 23x 4的取值范围是( )A .(-3,+∞)B .(-∞,3)C .[-3,3)D .(-3,3] 解析:选D 在同⼀坐标平⾯内画出函数y =f (x )的⼤致图象如图所⽰,结合图象可知,当且仅当a ∈(0,2]时,直线y =a 与函数y =f (x )的图象有4个不同的交点,即⽅程f (x )=a 有4个不同的解,此时有x 1+x 2=-4,|log 2x 3|=|log 2x 4|(0<x 3<1<x 4≤4),即有-log 2x 3=log 2x 4,x 3x 4=1,所以x 1+x 2x 4+1x 23x 4=x 4-4x 4(1<x 4≤4),易知函数y =x 4-4x 4在区间(1,4]上是增函数,因此其值域是(-3,3].4.若函数f (x )=e x -ax 2有三个不同的零点,则实数a 的取值范围是( )A.e 24,+∞ B.e 2,+∞ C.1,e 24 D.1,e 2 解析:选A 函数f (x )=e x -ax 2有三个不同的零点等价于函数y =e x 与y =ax 2的图象有三个不同的交点,则显然有a >0,且在(-∞,0)上两函数的图象有⼀个交点.当x >0时,设两函数图象在点(x 0,e x 0)处相切,则e x 0=2ax 0,e x 0=ax 20,解得?x 0=2,a =e 2,由图易得若两函数图象有两个不同的交点,则a >e 24,即实数a 的取值范围为e24,+∞.⼀、选择题1.(2018·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞) 解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对⽅程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞). 2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,则实数a 的值是( )A .n (n ∈Z)B .2n (n ∈Z)C .2n 或2n -14(n ∈Z)D .n 或n -14(n ∈Z)解析:选C 依题意得,函数y =f (x )是周期为2的偶函数,画出函数的⼤致图象如图所⽰.在[0,2)上,由图象易得,当a =0或-14时,直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,∵函数f (x )的周期为2,∴a 的值为2n 或2n -14(n ∈Z).3.(2018·洛阳第⼀次统考)若函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( )A .(-∞,1)B .(0,1) C.-∞,1+e e 2 D.0,1+ee 2解析:选B 依题意,关于x 的⽅程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=x 2,当00,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e,当0y 0),则有a 1=1-ln x 0x 2,a 1x 0-1=ln x0x,由此解得x 0=1,a 1=1.在同⼀坐标系中画出直线y =ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的⼤致图象(图略),结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1).4.若f (x )=ln x +ax -1有且仅有⼀个零点,则实数a 的最⼩值为( )A .0B .-1e 2 C .-1 D .1解析:选B 由f (x )=0,得ln x =-ax +1,在同⼀坐标系中画出y =ln x 和y =-ax +1的图象如图所⽰,直线y =-ax +1的斜率k =-a ,且恒过(0,1)点.当k ≤0,即a ≥0时,只有⼀个交点,从⽽f (x )只有⼀个零点,当k >0,且直线y =-ax +1与y =ln x 相切于点P (x 0,ln x 0)时,切线⽅程为y -ln x 0=1x 0(x -x 0),将x =0,y =1代⼊得ln x 0=2,即x 0=e 2,k =1x 0=1e 2,所以a =-1e 2,所以当a ≥-1e 2时,直线y =-ax +1与y =ln x 的图象只有⼀个交点,即f (x )只有⼀个零点,故a 的最⼩值为-1e2.5.(2018·⽯家庄模拟)已知函数f (x )=e xx -kx (e 为⾃然对数的底数)有且只有⼀个零点,则实数k 的取值范围是( )A .(0,2) B.0,e4 C .(0,e) D .(0,+∞)解析:选B 由题意,知x ≠0,函数f (x )有且只有⼀个零点等价于⽅程e xx -kx =0只有⼀个根,即⽅程e x x 2=k 只有⼀个根,设g (x )=e x x 2,则函数g (x )=e xx2的图象与直线y =k 只有⼀个交点.因为g ′(x )=(x -2)e x x 3,由g ′(x )>0,得x >2或x <0;由g ′(x )<0,得04,且x →0时,g (x )→+∞;x →-∞时,g (x )→0;x →+∞时,g (x )→+∞,则g (x )的图象如图所⽰,由图易知04,故选B.6.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有⼀个零点,则实数λ的值是( )A.14B.18 C .-78 D .-38 解析:选C 因为函数y =f (2x 2+1)+f (λ-x )只有⼀个零点,所以⽅程f (2x 2+1)+f (λ-x )=0只有⼀个实数根.⼜函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0?f (2x 2+1)=-f (λ-x )?f (2x 2+1)=f (x -λ)?2x 2+1=x -λ,所以⽅程2x 2-x +1+λ=0只有⼀个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.7.(2018·长沙模拟)对于满⾜0a +b -ca的取值范围是( ) A .1,74 B .(1,2] C .[1,+∞) D .(2,+∞)解析:选D 依题意对⽅程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c24a ,从⽽a +b -c a >a +b -b 24a a =1+b a -14b a 2,对满⾜0a ,因为0<b ≤3a ,所以0为-14t 2+t +1∈(1,2],所以a +b -c a8.(2018·湘中名校联考)已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1关于x ⽅程[f (x )]2-2af (x )-b =0的实数根的个数不可能为( )A .2B .3C .4D .5 解析:选D 由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是⽅程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f(x)在(-∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,⼜x19.(2018·⽯家庄模拟)已知函数f(x)=e2x-ax2+bx-1,其中a,b∈R,e为⾃然对数的底数.若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是() A.(e2-3,e2+1) B.(e2-3,+∞) C.(-∞,2e2+2) D.(2e2-6,2e2+2) 解析:选A由f(1)=0,得e2-a+b-1=0,所以b=a-e2+1,⼜f′(x)=2e2x-2ax+b,令g(x)=2e2x-2ax+b,则g′(x)=4e2x-2a,因为x∈(0,1),所以4<4e2x<4e2.当a≥2e2时,g′(x)<0,函数g(x)在(0,1)内单调递减,故g(x)在(0,1)内⾄多有⼀个零点;当a≤2时,g′(x)>0,函数g(x)在(0,1)内单调递增,故g(x)在(0,1)内⾄多有⼀个零点;当212lna2,则g′(x)<0,若12lna2 0,所以函数g(x)在0,12lna2内单调递减,在?12lna2,1内单调递增,所以g(x)min=g12ln2=a-a lna2+b=2a-a lna2-e2+1.令h(x)=2x-x lnx2-e2+1=2x-x ln x+x ln 2-e2+1(20,h(x)为增函数,当x∈(2e,2e2)时,h′(x)<0,h(x)为减函数,所以h(x)max=h(2e)=2e-e2+1<0,即g(x)min<0恒成⽴,所以函数g(x)在(0,1)内有两个零点,则g(0)=2+a-e2+1>0,g(1)=2e2-2a+a-e2+1>0,解得e2-310.(2017·太原⼀模)设[x]表⽰不⼩于实数x的最⼩整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=([x])2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则实数k的取值范围是() A.-52,-1∪[2,5) B.-43,-1∪[5,10) C.-1,-23∪[5,10) D.-43,-1∪[5,10) 解析:选C由题意知,f(x)=([x])2-2[x]=0,x∈(-1,0]∪(1,2],-1,x∈(0,1],3,x∈(2,3],8,x∈(3,4].令F(x)=0,得f(x)=k(x-2)-2,作出函数y=f(x)和y=k(x-2)-2的图象如图所⽰.3,所以实数k 的取值范围是-1,-23∪[5,10).11.已知函数f (x )=2x+1,x <0,12x 2-2x +1,x ≥0.⽅程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11) 解析:选D 作出函数f (x )的图象如图所⽰,对于⽅程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么⽅程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要⼀个⽅程有4个根,另⼀个⽅程有2个根,从⽽可知关于t 的⽅程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,由根的分布得出约束条件b >0,1-a +b <0,4-2a +b >0,画出可⾏域如图所⽰,⽬标函数z =3a +b 经过?1-a +b =0,4-2a +b =0的交点A (3,2)时取得最⼤值11,经过B (1,0)时取得最⼩值3.故3a +b 的取值范围为(3,11).12.(2018·⼴东五校协作体第⼀次诊断)已知e 为⾃然对数的底数,若对任意的x 1∈[0,1],总存在唯⼀的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成⽴,则实数a 的取值范围是( ) A .[1,e] B .(1,e] C.1+1e ,e D.1+1e ,e 解析:选C 令f (x 1)=a -x 1,则f (x 1)在x 1∈[0,1]上单调递减,且f (0)=a ,f (1)=a -1.令g (x 2)=x 22e x 2,则g ′(x 2)=2x 2e x 2+x 22e x 2=x 2e x 2(x 2+2),且g (0)=0,g (-1)=1e ,g (1)=e.若对任意的x 1∈[0,1],总存在唯⼀的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成⽴,即f (x 1)=g (x 2),则f (x 1)=a -x 1的最⼤值不能⼤于g (x 2)的最⼤值,即f (0)=a ≤e ,因为g (x 2)在[-1,0]上单调递减,在(0,1]上单调递增,所以当g (x 2)∈0,1e 时,有两个x 2使得g (x 2).若存在唯⼀的x 2∈[-1,1],使得f (x 1)=g (x 2),则f (x 1)的最⼩值要⽐1e ⼤,所以f (1)=a -1>1e ,所以a >1+1e ,故实数a 的取值范围是1+1e ,e . ⼆、填空题13.若对任意的实数a ,函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,则实数b 的取值范围是________.答案:(-∞,0)解析:由f (x )=(x -1)ln x -ax +a +b =0,得(x -1)ln x =a (x -1)-b . 设g (x )=(x -1)ln x ,h (x )=a (x -1)-b ,则g ′(x )=ln x -1x +1,因为g ′(x )=ln x -1x +1在(0,+∞)上是增函数,且g ′(1)=0,所以当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以g (x )在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,⼜g (1)=0,所以函数g (x )的⼤致图象如图所⽰.易知h (x )=a (x -1)-b 的图象是恒过点(1,-b )的直线,当-b >0,即b <0时,易知对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点,即函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点;当b =0时,若a =0,则h (x )=0,其图象与函数g (x )的图象只有⼀个交点,不满⾜;当-b<0,即b >0时,由图易知,不满⾜对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点.综上可知,b <0.14.已知函数f (x )=-x x +1,-1x ,0x -1x=5a 的解为正整数,则满⾜条件的实数a 的个数为________.答案:1解析:在同⼀坐标系中作出函数f (x )与g (x )的图象如图所⽰,结合图象可知,实数a 的取值范围是0,12.由x -1x =5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0,可得a =0,不满⾜题意;当x =2时,由h (2)=4-10a -1=0,可得a =310,满⾜题意;当x =3时,由h (3)=9-15a -1=0,可得a =815,不满⾜题意.⼜函数y =x -1x 在(0,+∞)上单调递增,故满⾜条件的实数a 的个数为1.15.若函数f (x )=x 2+2x-a ln x (a >0)有唯⼀的零点x 0,且m答案:5解析:令y 1=x 2+2x ,y 2=a ln x (a >0),则y 1′=2x -2x 2,y 2′=ax(a >0).∵函数f (x )=x 2+2x -a ln x (a >0)有唯⼀的零点x 0,∴函数y 1=x 2+2x ,y 2=a ln x 的图象有公切点(x 0,y 0),则2x 0-2x 2=ax 0,x 20+2x 0=a ln xx 20+2x 0-2x 20-1x 0ln x 0=0. 构造函数g (x )=x 2+2x-2x 2-1x ln x (x >0),则g (1)=3,g (2)=4+1-2×4-12ln 2=5-7ln 2,欲⽐较5与7ln 2的⼤⼩,可⽐较e 5与27的⼤⼩,∵e 5>27,∴g (2)>0,⼜g (e)=e 2+2e -2e 2-1e =-e 2+4e <0,∴x 0∈(2,e),∴m =2,n =3,∴m +n =5.16.已知函数f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,则实数k 的取值范围为________.答案:1,910+ln 25解析:f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,即关于x 的⽅程x 2-x ln x +2=k (x +2)在12,+∞上有两个不相等的实数根.令g (x )=x 2-x ln x +2,所以当x ∈12,+∞时,直线y =k (x +2)与函数g (x )=x 2-x ln x +2的图象有两个不同的交点.设直线y =k 0(x +2)与函数g (x )=x 2-x ln x +2,x ∈12,+∞的图象相切于点(x 0,y 0),g ′(x )=2x -ln x -1,则有k 0=2x 0-ln x 0-1,k 0(x 0+2)=x 20-x 0ln x 0+2,由此解得x 0=1,k 0=1.令h (x )=g ′(x )=2x -ln x -1,则h ′(x )=2-1x ,且x ≥12,所以h ′(x )≥0,故h (x )在12,+∞上单调递增,h (x )≥h 12=ln 2>0,所以g (x )在12,+∞上单调递增,g 12=94+12ln 2,作出y =g (x )的⼤致图象,如图所⽰,当直线y =k (x +2)经过点12,94+12ln 2时,k =910+ln 25.⼜当直线y =k (x +2)与g (x )的图象相切时,k =1.结合图象可知,k 的取值范围是1,910+ln 25.。

2020高考数学热点难点微专题含参函数的零点问题(3页)

2020高考数学热点难点微专题含参函数的零点问题(3页)

2020高考数学热点难点微专题含参函数的零点问题含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.例1 已知函数f (x )=x 2+ax (a ∈R ),g (x )=⎩⎪⎨⎪⎧f (x ), x ≥0,f ′(x ), x <0.若方程g (f (x ))=0有4个不等的实根,则a 的取值范围是________.点评:例2 (1) 若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________.(2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________.点评:【思维变式题组训练】1. 已知函数f (x )=⎩⎪⎨⎪⎧ 2x -1, x ≥2,2, 1≤x <2.若方程f (x )=ax +1恰有一个解时,则实数a 的取值范围为________.2. 设函数f (x )=⎩⎨⎧ x -1e x , x ≥a ,-x -1, x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.3. 已知函数f (x )=⎝ ⎛ x -1, 1≤x <2,2f ⎝ ⎛⎭⎪⎫12x , x ≥2,如果函数g (x )=f (x )-k (x -3)恰有2个不同的零点,那么实数k 的取值范围是________.4. 已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧ x +2x +1, x ≤0,|ln x |, x >0,若关于x 的方程f (x )=kx+2有且只有4个不同解,则实数k 的取值构成的取值集合为________.。

用导数方法解决参数和函数零点技巧专题

用导数方法解决参数和函数零点技巧专题

用导数方法解决参数和函数零点技巧专题一.参变分离1. 注意分离后的函数是否严格单调2. 注意定义域上是否取遍3. 严格单调且定义域取遍用端点效应二.端点效应比较适用于恒成立问题,那么区间的端点也一定满足恒成立要求1. 优先论证函数严格单调2. 在区间左右端至少能找一点满足题干3. 不到万不得已不要取无穷远端注:一旦定义域完全为开区间,要么丢失此法,要么洛必达开始论述,要么证明函数严格单 调并证函数值大于(小于)端点值 【例1】f (x )=e x -e -x -ax ,其中V x 40,使得>(x )>0恒成立,求a 的取值范围方法1:参变分离方法2f (端点效应x 00恒成立 解:又(0)=0f (x )>0,V x 00恒成立的必要条件为f '(x )>0f '(x )=e x +e 我们可以看到函数要非负一定要增,也可能又增又减出现极小值) (这就是函数增的一个条件)充分性:f 、(x )=e x +e -x -ae x +e -x >2:.f '(x )=e x +e -x -a >0・•・f (x )>0,V x 00恒成立的充分必要条件是a <2f '(0)=2-a >0「.a <2(这就是函数值非负的必要条件,我们仅考虑的是函数严格递增的条件)(现在我们论证一下函数是否在此条件下单调增)显然我们应有此方法成立的充要条件是函数严格单调,我们考虑的端点并不是整个定义域的增减趋势,但是从0开始函数值一定要单调增,否则恒成立失效。

于是才有导函数在0处也非负,我们就得到a的一个大致范围,通过这个大致范围作为已知条件验证其充分性。

【注】:充分性验证时一旦出现导函数有小于0的情况,表示函数不单调,则在必要性的条件下研究函数的最值。

【思考1】f(x)=(ax-1)e x+ax+1,V x^0,有f(x)>0,求a的取值范围三:极值点偏移我们分析一下二次函叫x,x(x丰x)使得f(x)=f(x),x是二次函数的对称轴,1212120我们有x+x=2x120x+x。

一类含参二次函数零点问题的解法

一类含参二次函数零点问题的解法
彝者 麦 二凳三 詈
结 合 ,此解 法 与初 中知 识 的结 合 较 为 紧 密 ,学 生容 易 理 解.但 对 与仅有 一个 零 点 的情 况 ,还 需进 一 步讨 论 , 容 易 因遗 漏而 出错 .
9 z一 1
在 [一1,1]上 有解 ·
因为n>o,设 === 1=鲁 ( ≠詈),则
■■ J—
例 1 (2014年 山东卷 )对 于 函数 厂( ),若存 在 常数 a≠ 0,使 得 z 取 定 义 域 内 的 每 一 个 值 ,都 有
“对称 函数 ”为 一^( )(z∈ ),Y—h(z)满 足 :对任 意 ∈ ,2个 点 ( , ( ))、( ,g( ))关 于 点 ( .厂(z))对
解 1) 有 2 个 不 同 零 点 时 ,需 满 足
f△> O,


1)当一 n ≤一1,即 o<n≤寺时 ,,(z)在[一1,1]
递增 .因 此 ,要 使 f( )在 [一 1,1]上 有 零 点 ,只 需
』I(厂 (_ 1) 一2 a-2—3__=。≤0’解得1≤ ≤5.而o< 一 2a+ 2— 3一a≥ 0, 。 。
解得
a≥
1.注 意

n> 1


n≥ 1.
【厂(一1)≥ 0, 又 因 为 n> 0,所 以 a≥ 5.
综上 ,所 求 a的取值 范 围是 [1,+。。). 3 分离 参数 法
2)有 1个 零 点时 ,有 2种情 况 :
通过 分 离参数 的方 法 ,把 问题 转化 为 利 用 构造 出
一 < 0,即 n> 时 ,厂(z)在 [一 1,

]上递 减 ,在 (一 1,1]上递 增.因此 ,要使 ,( )在

例析含参函数相关的零点问题

例析含参函数相关的零点问题

例析含参函数相关的零点问题福建省莆田第二中学(351131)谢新华[摘要]利用导数研究函数的零点问题时,已知函数零点的个数求参数问题是一类重要的题型,常见的处理方法有分离参数法、直接构造函数法、隔离构造函数法.通过导数研究函数的图像及性质,把零点问题化归转化为图像的交点问题,数形结合求得参数的值(范围),有时还需对参数的不同取值情况进行分类讨论.通过归类分析,让学生学会运用数学思想方法解决问题,提升学生的解题效率.[关键词]导数;零点;构造;图像[中图分类号]G 633.6[文献标识码]A[文章编号]1674-6058(2021)32-0027-02[例题1]设函数f (x )=ln x +mx,m ∈R ,若函数g (x )=f ′(x )-x3没有零点,求实数m 的取值范围.解析:因为f ′(x )=1x -m x 2,所以g (x )=1x -mx 2-x 3(x >0),由g (x )=0,得m =-x 33+x ,设h (x )=-x33+x (x >0),则h ′(x )=-x 2+1,令h ′(x )=0,得x =±1,当0<x <1时,h ′(x )>0,h (x )单调递增,当x >1时,h ′(x )<0,h (x )单调递减,所以当x =1时,h (x )取得最大值,且最大值为h (1)=23,h (x )无最小值,因为函数g (x )没有零点,所以直线y =m 与函数h (x )的图像没有公共点,所以实数m 的取值范围是()23,+∞.点评:已知函数零点的个数求参数的取值范围,其常见的转化方法是分离参数法,使得构造的函数中不含参数,避免了参数的分类讨论,应用数形结合思想把函数零点问题转化为水平直线y =m 与函数h (x )图像的交点个数问题来解决.变式:若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是.解析1:(分离参数法)由f (x )=0,得a (e x -2)=x ,因为x ≠ln 2,所以a =xe x -2,设g (x )=x e x -2(x ≠ln 2),则g ′(x )=e x -2-x e x(e x -2)2,设h (x )=e x -2-x e x ,则h ′(x )=-x e x ,当x <0时,h ′(x )>0,h (x )单调递增,当x >0时,h ′(x )<0,h (x )单调递减,所以当x =0时,h (x )取得最大值,且最大值为h (0)=-1,所以h (x )<0,即g ′(x )<0,所以g (x )在(-∞,ln 2),(ln 2,+∞)上单调递减,又g (0)=0,x >ln 2时,g (x )>0,因为函数f (x )有两个零点,所以直线y =a 与函数g (x )的图像有两个公共点,所以实数a 的取值范围是(0,+∞).解析2:(直接构造函数法)因为f ′(x )=a e x -1,当a ≤0时,f ′(x )≤0,f (x )在R 上单调递减,至多一个零点,不符合题意,当a >0时,令f ′(x )<0,得x <-ln a ,令f ′(x )>0,得x >-ln a ,所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,所以f min (x )=f (-ln a )=1+ln a -2a ,令φ(a )=1+ln a -2a (a >0),φ′(a )=1a-2,令φ′(a )>0,得0<x <12;令φ′(a )<0,得x >12,所以φmax (a )=φ()12=-ln 2<0,即φ(a )<0,f (-ln a )<0,所以函数f (x )有两个零点,符号题意,综上所述,实数a 的取值范围是(0,+∞).[基金项目]本文系福建省教育科学“十三五”规划课题2020年度教育教学改革专项课题“学科素养视域下‘读思达’教学法的数学课堂应用研究”(项目编号:Fjjgzx20-077)的研究成果.数学·解题研究解析3:(隔离构造函数法)由f(x)=0,得a(e x-2)=x,因为a≠0,所以e x=1a x+2,因为函数f(x)有两个零点,所以直线y=1a x+2与函数y=e x的图像有两个公共点,结合图像易得实数a的取值范围是(0,+∞).点评:本题解析1利用分离参数法,使得构造的函数中不含参数,避免了参数的分类讨论,但构造的函数定义域改变了,函数不连续了,函数图像变得复杂了,研究时因容易忽略函数定义域或图像特征把握不准确导致错误.解析2利用直接构造函数法,通过导数研究函数的图像与性质,需要对参数的不同取值情况分类讨论,是常规思路,容易入题,但解题后半部分容易出现“卡壳”,不易得出最后结果.解析3利用隔离构造函数法,构造两个基本初等函数,比较熟悉,结合图像容易得出结论,是学生比较喜欢的方法,运用此法解答小题比较适合,在前两种方法无法求解时,也可以尝试通过此法探求结果.[参考文献][1]王文英,蒋晓东.利用导数研究函数的零点问题[J].中学数学教学参考,2019(7):49-53.[2]任冲.导数工具巧应用函数零点妙解决:以一道高考题为例[J].中学数学教学参考,2019(Z3):135-136.[3]张伟.导数与数形结合思想研究函数问题[J].数学学习与研究,2016(23):78.[4]陈蓬.导数视角下函数零点问题的多角度探究[J].中学数学,2016(13):62-64.(责任编辑陈昕)图6指数函数模型的改进可以变换底数以10为底,令z=lg y得表6,拟合结果如图7.表6温度x产卵数z210.8451231.0414251.3222271.3802291.8195322.0607352.5119图7也可以变换底数以2为底,令z=log zy得表7,拟合结果如图8.表7温度x产卵数z212.807233.459254.392274.585296.044326.845358.344图8教师可进一步延伸拓展,借助Excel添加趋势线,拟合更高次函数,如三次函数、对数函数等模型,拓宽学生的视野,体会数学源于生活又高于生活,学以致用,有效预防红铃虫,只要控制温度在20℃以下,35℃以上.数学模型没有最好,只有更好,逐步改进模型,才能更好地为我们的生活服务.[参考文献][1]周迎春.从不同视角看高中数学“线性回归分析”的两个结论[J].重庆师范大学学报(自然科学版),2019(4):131-136.[2]安国胜.探究数学核心素养的培养途径[J].课程教育研究,2019(27):129-130.[3]李思聪,张仕橙.注重建模思维引领,培养数学核心素养[J].数学教学通讯,2019(18):20-21.[4]郝晶杰.高中生数学建模素养调查研究[D].新乡:河南科技学院,2019.[5]郑叶群.如何把高中数学建模核心素养渗透于课堂教学[J].教育现代化,2019(23):253-254.[6]郭红霞.高中数学课堂中落实核心素养的培育策略[J].中学数学,2019(5):79-80.(责任编辑黄桂坚)(上接第8页)数学·解题研究。

函数的含参零点问题

函数的含参零点问题

函数的含参零点问题根据函数的零点情况,讨论参数的范围是高考的重点和难点.对于此类题目,我们常利用零点定理、数形结合、函数单调性与分离参数等思想方法来求解.[典例] (2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) [答案] B [思路点拨]本题的实质是函数f (x )存在唯一的零点x 0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解.[方法演示]法一 单调性法:利用函数的单调性求解由已知得,a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈⎝⎛⎭⎫0,2a ,f ′(x )<0;x ∈2a ,+∞,f ′(x )>0.所以函数f (x )在(-∞,0)和2a ,+∞上单调递增,在0,2a 上单调递减,且f (0)=1>0,故f (x )有小于零的零点,不符合题意.当a <0时,x ∈-∞,2a ,f ′(x )<0;x ∈2a ,0,f ′(x )>0;x ∈(0,+∞),f ′(x )<0.所以函数f (x )在-∞,2a 和(0,+∞)上单调递减,在2a ,0上单调递增,所以要使f (x )有唯一的零点x 0且x 0>0,只需f 2a>0,即a 2>4,解得a <-2. 法二 数形结合法:转化为直线与曲线的位置关系求解由ax 3-3x 2+1=0可知x ≠0,可得ax =3-1x 2,作出y =3-1x 2的图象如图所示,转动直线y =ax ,显然a >0时不成立;当a <0,直线y =ax 与左边的曲线相切时,设切点为t,3-1t 2,其中t <0,则切线方程为y-3-1t 2=2t 3(x -t ).又切线过原点,则有0-3-1t 2=2t3(0-t ),解得t =-1(t =1舍去),此时切线的斜率为-2,由图象可知a <-2符合题意.法三 数形结合法:转化为两曲线的交点问题求解令f (x )=0,得ax 3=3x 2-1.问题转化为g (x )=ax 3的图象与h (x )=3x 2-1的图象存在唯一的交点,且交点横坐标大于零.当a =0时,函数g (x )的图象与h (x )的图象存在两个的交点; 当a >0时,如图(1)所示,不合题意;当a <0时,由图(2)知,可先求出函数g (x )=ax 3与h (x )=3x 2-1的图象有公切线时a 的值.由g ′(x )=h ′(x ),g (x )=h (x ),得a =-2.由图形可知当a <-2时,满足题意.法四 分离参数法:参变分离,演绎高效易知x ≠0,令f (x )=0,则a =3x -1x 3,记g (x )=3x -1x 3,g ′(x )=-3x 2+3x 4=-3(x 2-1)x 4,可知g (x )在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g (-1)=-2,画出函数大致图象如图所示,平移直线y =a ,结合图象,可知a <-2.法五 特例法:巧取特例求解取a =3,则f (x )=3x 3-3x 2+1.由于f (0)=1,f (-1)<0,从而f (x )在(-∞,0)上存在零点,排除A 、C. 取a =-43,则f (x )=-43x 3-3x 2+1.由于f (0)=1,f ⎝⎛⎭⎫-32<0,从而f (x )在(-∞,0)上存在零点,排除D ,故选B.[解题师说]函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数形结合、转化与化归等思维能力,所以此类题往往能较好地体现试卷的区分度.由本题的五种方法,可知破解含参零点问题常有“三招”. 第一招当我们无法通过等价转化的思想将原问题转化为相对容易的问题时,我们带参讨论要根据题设要求直接研究函数的性质.由于函数含有参数,通常需要合理地对参数的取值进行分类,并逐一求解.(如本题解法一)第二招 数形结合由两个基本初等函数组合而得的超越函数f (x )=g (x )-h (x )的零点个数,等价于方程g (x )-h (x )=0的解的个数,亦即g (x )=h (x )的解的个数,进而转化为基本初等函数y =g (x )与y =h (x )的图象的交点个数.(如本题解法二和解法三)第三招 分离参数 通过将原函数中的变参量进行分离后变形成g (x )=l (a ),则原函数的零点问题化归为与x 轴平行的直线y =l (a )和函数g (x )的图象的交点问题.(如本题解法四)[应用体验]1.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12 B.13 C.12 D .1解析:选C 法一:由函数f (x )有零点,得x 2-2x +a (e x -1+e -x +1)=0有解,即(x -1)2-1+a (e x -1+e-x +1)=0有解,令t =x -1,则上式可化为t 2-1+a (e t +e -t )=0,即a =1-t 2e t +e -t . 令h (t )=1-t 2e t +e -t ,易得h (t )为偶函数,又由f (x )有唯一零点得函数h (t )的图象与直线y =a 有唯一交点,则此交点的横坐标为0,所以a =1-02=12,故选C. 法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.2.设m ∈N ,若函数f (x )=2x -m 10-x +10存在整数零点,则符合条件的m 的个数为( )A .2B .3C .4D .5解析:选C 令f (x )=0,得m =2x +1010-x . 又m ∈N ,因此有⎩⎪⎨⎪⎧10-x >0,2x +10≥0,解得-5≤x <10,x∈Z ,∴0<10-x ≤15.当2x +10=0,即x =-5时,m =0;当2x +10≠0时,要使m ∈N ,则需10-x ∈N ,当10-x =1,即x =9时,m =28;当10-x =2,即x =6时,m =11;当10-x =3,即x =1时,m =4,所以符合条件的m 的个数为4.3.设函数f (x )=⎩⎪⎨⎪⎧12x 2+2x +2,x ≤0,|log 2x |,x >0,若关于x 的方程f (x )=a 有4个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 1+x 2x 4+1x 23x 4的取值范围是( )A .(-3,+∞)B .(-∞,3)C .[-3,3)D .(-3,3] 解析:选D 在同一坐标平面内画出函数y =f (x )的大致图象如图所示,结合图象可知,当且仅当a ∈(0,2]时,直线y =a 与函数y =f (x )的图象有4个不同的交点,即方程f (x )=a 有4个不同的解,此时有x 1+x 2=-4,|log 2x 3|=|log 2x 4|(0<x 3<1<x 4≤4),即有-log 2x 3=log 2x 4,x 3x 4=1,所以x 1+x 2x 4+1x 23x 4=x 4-4x 4(1<x 4≤4),易知函数y =x 4-4x 4在区间(1,4]上是增函数,因此其值域是(-3,3].4.若函数f (x )=e x -ax 2有三个不同的零点,则实数a 的取值范围是( )A.⎝⎛⎭⎫e 24,+∞ B.⎝⎛⎭⎫e 2,+∞ C.⎝⎛⎭⎫1,e 24 D.⎝⎛⎭⎫1,e 2 解析:选A 函数f (x )=e x -ax 2有三个不同的零点等价于函数y =e x 与y =ax 2的图象有三个不同的交点,则显然有a >0,且在(-∞,0)上两函数的图象有一个交点.当x >0时,设两函数图象在点(x 0,e x 0)处相切,则⎩⎪⎨⎪⎧e x 0=2ax 0,e x 0=ax 20,解得⎩⎪⎨⎪⎧x 0=2,a =e 24,由图易得若两函数图象有两个不同的交点,则a >e 24,即实数a 的取值范围为⎝⎛⎭⎫e24,+∞.一、选择题1.(2018·贵阳检测)已知函数f (x )=ln(x 2-4x -a ),若对任意的m ∈R ,均存在x 0使得f (x 0)=m ,则实数a 的取值范围是( )A .(-∞,-4)B .(-4,+∞)C .(-∞,-4]D .[-4,+∞) 解析:选D 依题意得,函数f (x )的值域为R ,令函数g (x )=x 2-4x -a ,其值域A 包含(0,+∞),因此对方程x 2-4x -a =0,有Δ=16+4a ≥0,解得a ≥-4,即实数a 的取值范围是[-4,+∞). 2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,则实数a 的值是( )A .n (n ∈Z)B .2n (n ∈Z)C .2n 或2n -14(n ∈Z)D .n 或n -14(n ∈Z)解析:选C 依题意得,函数y =f (x )是周期为2的偶函数,画出函数的大致图象如图所示.在[0,2)上,由图象易得,当a =0或-14时,直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,∵函数f (x )的周期为2,∴a 的值为2n 或2n -14(n ∈Z).3.(2018·洛阳第一次统考)若函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( )A .(-∞,1)B .(0,1) C.⎝⎛⎭⎫-∞,1+e e 2 D.⎝⎛⎭⎫0,1+ee 2解析:选B 依题意,关于x 的方程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=1-ln xx 2,当0<x <e 时,g ′(x )>0,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e,当0<x <1时,g (x )<0.设直线y =a 1x -1与函数g (x )的图象相切于点(x 0,y 0),则有⎩⎨⎧a 1=1-ln x 0x 2,a 1x 0-1=ln x0x,由此解得x 0=1,a 1=1.在同一坐标系中画出直线y =ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的大致图象(图略),结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1).4.若f (x )=ln x +ax -1有且仅有一个零点,则实数a 的最小值为( )A .0B .-1e 2 C .-1 D .1解析:选B 由f (x )=0,得ln x =-ax +1,在同一坐标系中画出y =ln x 和y =-ax +1的图象如图所示,直线y =-ax +1的斜率k =-a ,且恒过(0,1)点.当k ≤0,即a ≥0时,只有一个交点,从而f (x )只有一个零点,当k >0,且直线y =-ax +1与y =ln x 相切于点P (x 0,ln x 0)时,切线方程为y -ln x 0=1x 0(x -x 0),将x =0,y =1代入得ln x 0=2,即x 0=e 2,k =1x 0=1e 2,所以a =-1e 2,所以当a ≥-1e 2时,直线y =-ax +1与y =ln x 的图象只有一个交点,即f (x )只有一个零点,故a 的最小值为-1e2.5.(2018·石家庄模拟)已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( )A .(0,2) B.⎝⎛⎭⎫0,e24 C .(0,e) D .(0,+∞)解析:选B 由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=e xx2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e x x 3,由g ′(x )>0,得x >2或x <0;由g ′(x )<0,得0<x <2,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值为g (2)=e 24,且x →0时,g (x )→+∞;x →-∞时,g (x )→0;x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24,故选B.6.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18 C .-78 D .-38 解析:选C 因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根.又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.7.(2018·长沙模拟)对于满足0<b ≤3a 的任意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A .1,74 B .(1,2] C .[1,+∞) D .(2,+∞)解析:选D 依题意对方程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c <b24a ,从而a +b -c a >a +b -b 24a a =1+b a -14⎝⎛⎭⎫b a 2,对满足0<b ≤3a 的任意实数a ,b 恒成立.令t =ba ,因为0<b ≤3a ,所以0<t ≤3. 因为-14t 2+t +1∈(1,2],所以a +b -c a>2.8.(2018·湘中名校联考)已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1<f (x 1)<x 2,则关于x 方程[f (x )]2-2af (x )-b =0的实数根的个数不可能为( )A .2B .3C .4D .5 解析:选D 由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是方程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f(x)在(-∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,又x1<f(x1)<x2,依题意作出简图,如图所示,结合图形可知,方程[f(x)]2-2af(x)-b=0的实根个数不可能为5,故选D.9.(2018·石家庄模拟)已知函数f(x)=e2x-ax2+bx-1,其中a,b∈R,e为自然对数的底数.若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是() A.(e2-3,e2+1) B.(e2-3,+∞) C.(-∞,2e2+2) D.(2e2-6,2e2+2) 解析:选A由f(1)=0,得e2-a+b-1=0,所以b=a-e2+1,又f′(x)=2e2x-2ax+b,令g(x)=2e2x-2ax+b,则g′(x)=4e2x-2a,因为x∈(0,1),所以4<4e2x<4e2.当a≥2e2时,g′(x)<0,函数g(x)在(0,1)内单调递减,故g(x)在(0,1)内至多有一个零点;当a≤2时,g′(x)>0,函数g(x)在(0,1)内单调递增,故g(x)在(0,1)内至多有一个零点;当2<a<2e2时,若0<x<12lna2,则g′(x)<0,若12lna2 <x<1,则g′(x)>0,所以函数g(x)在⎝⎛⎭⎫0,12lna2内单调递减,在⎝⎛⎭⎫12lna2,1内单调递增,所以g(x)min=g12lna2=a-a lna2+b=2a-a lna2-e2+1.令h(x)=2x-x lnx2-e2+1=2x-x ln x+x ln 2-e2+1(2<x<2e2),则h′(x)=-ln x+1+ln 2,当x∈(2,2e)时,h′(x)>0,h(x)为增函数,当x∈(2e,2e2)时,h′(x)<0,h(x)为减函数,所以h(x)max=h(2e)=2e-e2+1<0,即g(x)min<0恒成立,所以函数g(x)在(0,1)内有两个零点,则⎩⎪⎨⎪⎧g(0)=2+a-e2+1>0,g(1)=2e2-2a+a-e2+1>0,解得e2-3<a<e2+1. 综上所述,a的取值范围为(e2-3,e2+1).10.(2017·太原一模)设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=([x])2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则实数k的取值范围是() A.-52,-1∪[2,5) B.-43,-1∪[5,10) C.-1,-23∪[5,10) D.-43,-1∪[5,10) 解析:选C由题意知,f(x)=([x])2-2[x]=⎩⎪⎨⎪⎧0,x∈(-1,0]∪(1,2],-1,x∈(0,1],3,x∈(2,3],8,x∈(3,4].令F(x)=0,得f(x)=k(x-2)-2,作出函数y=f(x)和y=k(x-2)-2的图象如图所示.若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则函数y =f (x )和y =k (x -2)-2的图象在(-1,4]上有2个交点,结合图象可得,k P A =5,k PB =10,k PO =-1,k PC =-23,所以实数k 的取值范围是-1,-23∪[5,10).11.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <0,⎪⎪⎪⎪12x 2-2x +1,x ≥0.方程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11) 解析:选D 作出函数f (x )的图象如图所示,对于方程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么方程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要一个方程有4个根,另一个方程有2个根,从而可知关于t 的方程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,由根的分布得出约束条件⎩⎪⎨⎪⎧b >0,1-a +b <0,4-2a +b >0,画出可行域如图所示,目标函数z =3a +b 经过⎩⎪⎨⎪⎧1-a +b =0,4-2a +b =0的交点A (3,2)时取得最大值11,经过B (1,0)时取得最小值3.故3a +b 的取值范围为(3,11).12.(2018·广东五校协作体第一次诊断)已知e 为自然对数的底数,若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,则实数a 的取值范围是( ) A .[1,e] B .(1,e] C.⎝⎛⎦⎤1+1e ,e D.⎣⎡⎦⎤1+1e ,e 解析:选C 令f (x 1)=a -x 1,则f (x 1)在x 1∈[0,1]上单调递减,且f (0)=a ,f (1)=a -1.令g (x 2)=x 22e x 2,则g ′(x 2)=2x 2e x 2+x 22e x 2=x 2e x 2(x 2+2),且g (0)=0,g (-1)=1e ,g (1)=e.若对任意的x 1∈[0,1],总存在唯一的x 2∈[-1,1],使得x 1+x 22e x 2-a =0成立,即f (x 1)=g (x 2),则f (x 1)=a -x 1的最大值不能大于g (x 2)的最大值,即f (0)=a ≤e ,因为g (x 2)在[-1,0]上单调递减,在(0,1]上单调递增,所以当g (x 2)∈⎝⎛⎦⎤0,1e 时,有两个x 2使得f (x 1)=g (x 2).若存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则f (x 1)的最小值要比1e 大,所以f (1)=a -1>1e ,所以a >1+1e ,故实数a 的取值范围是⎝⎛⎦⎤1+1e ,e . 二、填空题13.若对任意的实数a ,函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,则实数b 的取值范围是________.答案:(-∞,0)解析:由f (x )=(x -1)ln x -ax +a +b =0,得(x -1)ln x =a (x -1)-b . 设g (x )=(x -1)ln x ,h (x )=a (x -1)-b ,则g ′(x )=ln x -1x +1,因为g ′(x )=ln x -1x +1在(0,+∞)上是增函数,且g ′(1)=0,所以当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以g (x )在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,又g (1)=0,所以函数g (x )的大致图象如图所示.易知h (x )=a (x -1)-b 的图象是恒过点(1,-b )的直线,当-b >0,即b <0时,易知对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点,即函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点;当b =0时,若a =0,则h (x )=0,其图象与函数g (x )的图象只有一个交点,不满足;当-b<0,即b >0时,由图易知,不满足对任意的实数a ,直线h (x )=a (x -1)-b 与函数g (x )的图象始终有两个不同的交点.综上可知,b <0.14.已知函数f (x )=⎩⎪⎨⎪⎧-x x +1,-1<x ≤0,x ,0<x ≤1,与g (x )=a (x +1)的图象在(-1,1]上有2个交点,若方程x -1x=5a 的解为正整数,则满足条件的实数a 的个数为________. 答案:1解析:在同一坐标系中作出函数f (x )与g (x )的图象如图所示,结合图象可知,实数a 的取值范围是⎝⎛⎦⎤0,12.由x -1x =5a ,可得x 2-5ax -1=0,设h (x )=x 2-5ax -1,当x =1时,由h (1)=1-5a -1=0,可得a =0,不满足题意;当x =2时,由h (2)=4-10a -1=0,可得a =310,满足题意;当x =3时,由h (3)=9-15a -1=0,可得a =815,不满足题意.又函数y =x -1x 在(0,+∞)上单调递增,故满足条件的实数a 的个数为1.15.若函数f (x )=x 2+2x-a ln x (a >0)有唯一的零点x 0,且m <x 0<n (m ,n 为相邻整数),则m +n =________.答案:5解析:令y 1=x 2+2x ,y 2=a ln x (a >0),则y 1′=2x -2x 2,y 2′=ax(a >0).∵函数f (x )=x 2+2x -a ln x (a >0)有唯一的零点x 0,∴函数y 1=x 2+2x ,y 2=a ln x 的图象有公切点(x 0,y 0),则⎩⎨⎧2x 0-2x 2=ax 0,x 20+2x 0=a ln x⇒x 20+2x 0-2⎝⎛⎭⎫x 20-1x 0ln x 0=0. 构造函数g (x )=x 2+2x-2⎝⎛⎭⎫x 2-1x ln x (x >0),则g (1)=3,g (2)=4+1-2×⎝⎛⎭⎫4-12ln 2=5-7ln 2,欲比较5与7ln 2的大小,可比较e 5与27的大小, ∵e 5>27,∴g (2)>0,又g (e)=e 2+2e -2⎝⎛⎭⎫e 2-1e =-e 2+4e <0,∴x 0∈(2,e),∴m =2,n =3, ∴m +n =5.16.已知函数f (x )=x 2-x ln x -k (x +2)+2在12,+∞上有两个零点,则实数k 的取值范围为________.答案:⎝⎛⎦⎤1,910+ln 25解析:f (x )=x 2-x ln x -k (x +2)+2在⎣⎡⎭⎫12,+∞上有两个零点,即关于x 的方程x 2-x ln x +2=k (x +2)在⎣⎡⎭⎫12,+∞上有两个不相等的实数根.令g (x )=x 2-x ln x +2,所以当x ∈⎣⎡⎭⎫12,+∞时,直线y =k (x +2)与函数g (x )=x 2-x ln x +2的图象有两个不同的交点.设直线y =k 0(x +2)与函数g (x )=x 2-x ln x +2,x ∈⎣⎡⎭⎫12,+∞的图象相切于点(x 0,y 0),g ′(x )=2x -ln x -1,则有⎩⎪⎨⎪⎧k 0=2x 0-ln x 0-1,k 0(x 0+2)=x 20-x 0ln x 0+2,由此解得x 0=1,k 0=1.令h (x )=g ′(x )=2x -ln x -1,则h ′(x )=2-1x ,且x ≥12,所以h ′(x )≥0,故h (x )在⎣⎡⎭⎫12,+∞上单调递增,h (x )≥h ⎝⎛⎭⎫12=ln 2>0,所以g (x )在⎣⎡⎭⎫12,+∞上单调递增,g ⎝⎛⎭⎫12=94+12ln 2,作出y =g (x )的大致图象,如图所示,当直线y =k (x +2)经过点⎝⎛⎭⎫12,94+12ln 2时,k =910+ln 25.又当直线y =k (x +2)与g (x )的图象相切时,k =1.结合图象可知,k 的取值范围是⎝⎛⎦⎤1,910+ln 25.。

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。

例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。

数形结合法破解含参函数的零点问题

数形结合法破解含参函数的零点问题
'(
1)
可初步做 出 判 断,严 格 的 证 明 需 借 助 于 二 阶
导数。
(
责任编辑
徐利杰)
+∞ 上
2
单调 递 增,当 x→ - ∞ 时,
图4
x)
→+∞ ,其 图 像 如 图
g(
4 所示。 依 题 意 知,直 线 y =a (
x -1)与
几何意 义 是 过 点 (
1,
0)的 动
函 数 y =2
l
nx 的 图 像 在
例 3
x)→0,当 x → + ∞ 时,
g(
1
该 方 程 在 0,
上 无 解,其
x)的 图
g(
像有唯一的公共
对数的底数,
若 f(
1)=0,函 数 f (
x)在 区 间
点。因 为 两 条 函 数
解析:
由 f(
1)=e-a-b-1=0,得 b=
好 相 反,所 以 由 数
(
内有零点,
求 a 的取值范围。
0,
1)
e-a -1。 当 x ∈ (
0,
1)时,
x )=e f(
x
ax - (
e-a-1)
解题篇 经典题突破方法
高二数学 2022 年 7-8 月
数形结合法破解含参函数的零点问题
■ 河南省郑州中原一中实验学校
含参函数的零点问题 是 高 中 数 学 的 重 要
题型,
在考 试 中 常 常 处 于 小 题 甚 至 是 大 题 的
压轴位置,
其 一 般 形 式 为:
已 知 函 数 y=f(
x,
在区间I 上有 ※ 个(

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

函数与导数重点题型01:含参函数单调性、极值、零点问题研究

重点题型一:含参函数的单调性、极值、最值及零点问题【问题分析】含参函数的单调性、极值点及零点问题,在高考中考查频次非常高,主要考查利用分类讨论来研究函数单调性和由函数极值、最值及零点求解参数范围。

此类问题难度较大,经常出现在试卷T20或T21,属于高考压轴题型。

该题型主要考查考生的分类讨论思想、等价转化思想。

解决此类问题的本质就是确定函数定义域上的单调性,基本思想就是“分类讨论”,解题的关键就是参数“分界点”的确定。

所以,要解决好此类问题,首先要明确参数“分界点”,其次确定在参数不同的分段区间上函数的单调性,进而可以确定函数的极值点、最值及零点,达到解题目的。

图1-1 含参函数问题解题思路【知识回顾】图1-2 函数f (x )单调性、极值、最值及零点关系图特别提醒:1.函数f (x )单调性、极值、最值及零点必须在函数定义域内研究,所以解决问题之前,必须先确定函数的定义域。

2.函数f (x )的极值点为其导函数变号的点,亦即导函数f ′(x )的变号零点。

3.函数f (x )的极值点为函数单调区间的“分界点”,经过极大值点函数由增变减,经过极小值点函数由减变增。

函数f(x)的单调性函数f(x)的极值点导函数f ′(x)的变号零点函数f(x)的最值确定分界点有影响分类讨论函数单调性参数导函数f ′(x)值/f ′(x )=0的根函数f(x)4. 函数f (x )单调区间不能写成并集,也不能用“或”连接,只能用逗号“,”或“和”连接。

【“分界点”确认】参数对导函数f ′(x )的值符号有影响,就必须根据参数对导函数的影响确定参数“分界点”,然后在进行分类讨论函数的单调性。

常见的“分界点”确认方法如下: 1.观察法:解决问题的过程中,我们会发现导函数形式比较简单的情况下,我们可以通过观察直接确定参数的“分界点”,例如:当导函数f ′(x )的值与y =x 2+a 函数有关,可以直接观察得到:当a ≥0时,y ≥0;当a <0时,y =0有两个根x 1=−√−a,x 2=√−a,当x ∈(−∞,−√−a)∪(√−a,+∞)时,y >0,当x ∈(−√−a,√−a)时,y <0.所以我们可以根据常见函数的性质及其之间的不等关系,通过直接观察确定“分界点”,常见函数性质及其之间的关系如下: ①x 2≥0 (x ∈R ), 完全平方式不小于0 ②tanx >x >sinx (0<x <π2)③e x ≥x +1 (x ∈R ),仅当x =0时,等号成立e x =x +1 ④lnx ≤x −1 (x >0),仅当x =1时,等号成立lnx =x −1 ⑤lnx <x <e x (x >0) ⑥a x >0 (x ∈R )2.由二次函数引发的“分界点”当函数f (x )求导后,导函数f ′(x )值符号由一个含参的二次函数(二次三项式)决定,一般可以从两个方面进行“分界点”的确定:(1)通过二次函数(一元二次方程)的∆判别式进行“分界点”的确定. 对于一个二次函数y =ax 2+bx +c (a ≠0): ① {a >0∆≤0⟹y ≥0或{a <0∆≤0⟹y ≤0.② {a >0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数大于0,两根之内函数小于0.③ {a <0∆>0⟹二次函数有两个零点(或二次方程y =0有两个不同实根)x 1,x 2(x 1<x 2),x 在两根之外函数小于0,两根之内函数大于0. 特别提醒:当二次函数有两个零点时,需要确定两个零点是否在函数定义域之内,若不在需要舍弃. (2)由二次函数零点分布(一元二次方程实根分布)进行“分界点”确定设x 1,x 2(x 1<x 2)是二次函数y =ax 2+bx +c (a >0)的两个零点(一元二次方程ax 2+bx +c =0(a >0)的两个根),则x 1,x 2的分布情况与二次函数系数之间的关系如下(k,k 1,k 2∈R,k 1<k 2):零点分布函数图像等价条件x 1<x 2<k{∆>0f (k )>0−b 2a<kk <x 1<x 2{∆>0f (k )>0−b 2a>kx 1<k <x 2f (k )<0k 1<x 1<x 2<k 2{∆>0f (k 1)>0f (k 2)>0k 1<−b 2a<k2 x 1,x 2中仅有一个在(k 1,k 2)内\f (k 1)∙f (k 2)<0或f (k 1)=0,k 1<−b2a <k 1+k 22或f (k 2)=0,k 1+k 22<−b2a <k 2或{∆=0k 1<−b 2a<k 2当二次函数定义域受限,可以根据上表情况进行“分界点”确认,进而进行分类讨论。

专题14 利用导数研究函数零点问题(解析版)

专题14 利用导数研究函数零点问题(解析版)

专题14利用导数研究函数零点问题一.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.二.利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.三.利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解;(2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.专项突破一判断函数零点的个数一、单选题1.函数()23322f x x x =-+-所有零点的个数为()A .1B .2C .3D .4【解析】由题可知,2x ≠±,且233()()()22f x x f x x -=--+=--,故函数()f x 为定义域上的偶函数,且(0)0f =,当0x >,且2x ≠时,233()22f x x x =-+-,23()2(2)f x x x '=---当02x <<时,()0f x '<,函数()f x 单调递减,且(0)0f =,故函数()f x 在区间(0,2)上无零点,当2x >时,()0f x '<,函数()f x 单调递减,当2x →时,()f x →+∞,当x →-∞时,()f x →-∞,故函数()f x 在区间(2,)+∞上必存在一点0x ,使得0()0f x =,所以函数()f x 在区间(2,)+∞上有1个零点,又函数()f x 为定义域上的偶函数,则函数()f x 在区间(,2)-∞-上有1个零点,又(0)0f =,所以函数()f x 共有3个零点.故选:C.2.已知函数()31ln 01203x x x f x x x +>⎧⎪=⎨+≤⎪⎩,则函数()()1g x f x x =--的零点个数为()A .1B .0C .3D .2【解析】当0x >时,1ln 10x x x +--=,得ln 1x =,即e x =,成立,当0x ≤时,312103x x +--=,得31103x x -+=,设()3113g x x x =-+,()0x ≤,()()()21110g x x x x '=-=+-=,得1x =-或1x =(舍),当(),1x ∈-∞-时,()0g x ¢>,函数()g x 单调递增,当()1,0x ∈-时,()0g x ¢<,函数()g x 单调递减,所以1x =-时,函数取得最大值,()5103g -=>,()010g =>,()350g -=-<,根据零点存在性定理可知,()3,1x ∈--,存在1个零点,综上可知,函数有2个零点.故选:D3.函数()e ln 1xf x x x x =---的零点个数为()A .0B .1C .2D .3【解析】()()()()()1e 1111e e 1e 11e x xxx x x x x f x x x x x x x x+-+⎛⎫'=+--=+-+-= ⎪⎝⎭,令()e 1x h x x =-,,()0x ∈+∞,则()e e 0x xh x x =+>',故h (x )在(0,)+∞上单调递增,∵()010h =-<,()1e 10h =->,∴存在唯一的()00,1x ∈,使得()0 0h x =,即00 e 10xx -=,即001e x x =,00ln x x =-,∴当00x x <<时,()00h x <,()0f x '<,()f x 单调递减,当0x x >时,()00h x >,()0f x '>,()f x 单调递增,∴()0min 000000()e ln 1011xf x f x x x x x x ==--=+---=,∴函数()e ln 1xf x x x x =---的零点个数为1.故选:B .4.已知()e,a ∈+∞,则函数()ln e x f x a x ax x =+-的零点个数为()A .0B .1C .2D .3【解析】函数()ln e x f x a x ax x =+-定义域为(0,)+∞,求导得:()(1)(e )xa f x x x'=+-,令()e xa g x x=-,0x >,显然()g x 在(0,)+∞上单调递减,而e a >,()1e 0a g a =-<,(1)e>0g a =-,则存在0(1,)x a ∈,使得0()0g x =,即00e x ax =,当00x x <<时,()0>g x ,()0f x '>,当0x x >时,()0g x <,()0f x '<,因此,()f x 在0(0,)x 上单调递增,在0(,)x +∞上单调递减,0max 000000()()ln e (ln 1)0x f x f x a x ax x a x x ==+-=+->,而11111e e e (ln 1ln 110aaaf a a a a a a a a a=+-=-+-<-+-<,则存在101(,)x x a ∈使得1()0f x =,即()f x 在0(0,)x 上存在唯一零点,又()(ln e )a f a a a a =+-,令()ln e ,e x h x x x x =+->,1()1e 0x h x x'=+-<,则()h x 在(e,)+∞上单调递减,e x ∀>,e 2()(e)1e e 1e e 0h x h <=+-<+-<,于是得()0f a <,则存在20(,)x x a ∈使得2()0f x =,即()f x 在0(,)x +∞上存在唯一零点,综上得:函数()ln e x f x a x ax x =+-的零点个数为2.故选:C 5.已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为()A .1B .2C .3D .与a 有关【解析】令()()321103f x x a x x =-++=,得()3231x a x x =++.令()3231x y x x =++,2y a =,只需看两个图像的交点的个数.()()()()()22232222223121121103311x x x x x x x x y x x x x ++-+++'=⨯=⨯>++++所以()3231x y x x =++在R 上单调递增.当x →-∞时,y →-∞;当x →+∞时,y →+∞;所以2y a =与()3231x y x x =++有且只有一个交点.故选:A6.已知()f x 为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为()A .0B .1C .2D .0或2【解析】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+,当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x.当0x <时,()()()0g x f x xf x =+'<',此时,函数()g x 单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()g x 单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x +=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()F x 的零点个数为0.故选:A.二、填空题7.设函数()f x 满足()()3229f x f x x x +-=-,则函数()()()3g x f f x =+的零点个数为______.【解析】因为()()3229f x f x x x +-=-①,所以()()3229f x f x x x -+=--②,①×2-②,得()32339f x x x =-,即()323f x x x =-,则()()23632'=-=-f x x x x x ,当2x >,或0x <时()0f x '>,)f x 单调递增,当02x <<时()0f x '<,()f x 单调递减,所以()f x 的极小值为()24f =-,极大值为()00f =,因为()323f x x x =-的零点为0或3,所以由()()()30g x f f x =+=,得()30f x +=或()33f x +=,即()3f x =-或()0f x =,因为()f x 的极小值为()24f =-,极大值为()00f =,所以方程()3f x =-有3个不同的实数解,又()0f x =有2个不同的实数解,所以()()()3g x f f x =+的零点个数为5.8.已知函数1e ,0,()2e ln ,0,x x x f x x x x +⎧≤=⎨⎩>则函数()()1g x f x =-零点的个数为___________【解析】0x ≤时,1()(1)x f x x e +¢=+,1x <-时,()0f x '<,()f x 递减;10-<≤x 时,()0f x '>,()f x 递增;则1x =-时,()f x 取极小值也是最小值(1)1f -=-;0x >时,()2(1ln )f x e x ¢=+,10x e<<时,()0f x '<,()f x 递减;1x e >时,()0f x '>,()f x 递增;则1=x e 时,()f x 取极小值也是最小值12f e 骣琪=-琪桫,综上所述,可作出()f x 图象,在作两条直线1y =±,结合图象可知,()f x 与1y =±有4个交点.三、解答题9.已知函数()1e 1xx f x x +=--.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)判断函数f (x )的零点的个数,并说明理由.【解析】(1)由()()()212e e 031(1)x x x f x f x f x x +''=-⇒=+⇒=--,而()02f =,所以该函数在点(0,f (0))处的切线方程为:23(0)320y x x y -=-⇒-+=;(2)函数()f x 的定义域为(,1)(1,)-∞⋃+∞,由(1)可知:()22e (1)xf x x '=+-,当(,1)x ∞∈-时,()0,()f x f x '>单调递增,因为22111(2)(0)(e )22(03e 3f f --=-⋅=-<,所以函数在(,1)x ∞∈-时有唯一零点;当(1,)x ∈+∞时,()0,()f x f x '>单调递增,因为5245(2)()(e 3)(e 9)04f f =-⋅-<,所以函数在(,1)x ∞∈-时有唯一零点,所以函数f (x )有2个零点.10.设函数()2(21)(21)ln(),f x a x a x a R =-++-∈.(1)讨论()f x 在定义域上的单调性;(2)当0a ≥时,判断()f x 在[1-,1]2-上的零点个数.【解析】(1)由题意,函数()2(21)(21)ln()f x a x a x =-++-的定义域为(,0)-∞,可得221()2a f x a x+'=+,①当0a ≤时,()0f x '<,则()f x 在(,0)-∞上是减函数;②当0a >时,22212()212()2a a x a af x a x x+++'=+=,则当221(,2a x a+∈-∞-时,()0f x '>,()f x 单调递增;当221(2a x a+∈-时,()0f x '<,()f x 单调递减,所以函数()f x 在221(,)2a a +-∞-上单调递增,在221(,0)2a a+-上单调递减;(2)①当0a =时,函数()ln()f x x =-,令ln()0x -=,解得1x =-,故()f x 在[211,]--上有一个零点;②当0a >时,因为22112()21221022a a a a-++-=>,则2121[1,](,0)22a a +--⊆-,即()f x 在[1-,1]2-上单调递减,又(1)30f a -=-<,21()2(21)202f a a ln -=--+<,所以函数()f x 在[211,]--上没有零点.11.已知函数()sin f x x ax =+,其中[]0,x π∈.(1)当12a =-时,求()f x 的极值;(2)当1a ≥时,求()f x 的零点个数.【解析】(1)当12a =-时,()1sin 2f x x x =-,[]0,x π∈,求导得()1cos 2f x x '=-,[]0,x π∈,令()0f x '=,得3x π=,当0,3x π⎡⎫∈⎪⎢⎣⎭时,()0f x '>;当,3x ππ⎛⎤∈ ⎥⎝⎦时,()0f x '<.∴()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,3ππ⎛⎤⎥⎝⎦上单调递减,∴当3x π=时,()f x 取得极大值36f ππ⎛⎫=⎪⎝⎭,无极小值;(2)()cos f x x a '=+,[]0,x π∈,当1a ≥时,∵1cos 1x -≤≤,∴()0f x '≥,∴()f x 在区间[]0,π上单调递增,∴()()00f x f ≥=,故()f x 只有一个零点0.12.已知函数()22ln f x x a x =-,()222ln 2g x x x =-+-.(1)讨论函数()f x 的单调性;(2)当1a =时,判断()()g x f x -的零点个数.【解析】(1)()22a f x x x '=-()22x a x-=,故当0a ≤时,()0f x '≥,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,得x >所以函数()f x 在)+∞上单调递增,令()0f x '<,得x <所以函数()f x 在(上单调递减,综上,当0a ≤时,函数()f x 在()0,∞+上单调递增,当0a >时,函数()f x 在)+∞上单调递增,在(上单调递减.(2)设()()()F x g x f x =-=2ln 22ln 2x x -+-,则()21F x x'=-,令()0F x '=,解得2x =,当()0,2x ∈时,()0F x '>;当()2,x ∈+∞时,()0F x '<;故()F x 最大值为()20F =,所以()()g x f x -有且只有一个零点2.13.已知()()2e 2ln xf x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【解析】(1)因为e a =,0x >,()()2e e 2ln xf x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x xx x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e x g x x x =-,()()2e 1e 0xg x x x'=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0xg x x x =-<,当()1,x ∈+∞时()ee 0x g x x x=->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增(2)因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 的零点转化为()()2ln e2ln e 0x xt f x a x x at +=-+=-=即e t at =,R t ∈,设()e t g t at =-,则()e t g t a '=-,当0a =时,()e tg t =无零点;当0a <时,()e 0tg t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或0a <时,1个零点;e a >时,2个零点;14.已知函数()[]21sin cos ,0,2f x x x x ax x π=++∈.(1)当0a =时,求()f x 的单调区间;(2)当0a >时,讨论()f x 的零点个数.【解析】(1)当0a =时,函数()[]sin cos ,0,f x x x x x π=+∈,可得()sin cos sin cos f x x x x x x x =+-='.当x 在区间[]0π,上变化时,()f x ',f (x )的变化如下表:x 00,2π⎛⎫ ⎪⎝⎭2π,2ππ⎛⎫ ⎪⎝⎭π()f x '0+0-f (x )极小值1极大值2π -1所以()f x 的单调增区间为0,2π⎛⎫ ⎪⎝⎭;()f x 的单调减区间为,2ππ⎛⎫⎪⎝⎭.(2)由题意,函数()[]21sin cos ,0,2f x x x x ax x π=++∈,可得()()cos cos f x ax x x x a x =+=+'当1a ≥时,cos 0a x +≥在[0,]π上恒成立,所以[0,]x π∈时,()0f x '≥,所以()f x 在[0,]π上单调递增.又因为()01f =,所以f (x )在[0,]π上有0个零点.当01a <<时,令()0f x '=,可得cos x a =-.由10a -<-<可知存在唯一的0,2x ππ⎛⎫∈ ⎪⎝⎭使得0cos x a =-,所以当0[0,)x x ∈时,()0f x '≥,()f x 单调递增;当()0,x x π∈时,()0f x '<,()f x 单调递减,因为()01f =,0()1f x >,()2112f a ππ=-,①当21102a π->,即221a π<<时,()f x 在[0,]π上有0个零点.②当21102a π-≤,即220a π<≤时,()f x 在[0,]π上有1个零点.综上可得,当220a π<≤时,()f x 有2个零点;当22a π>时,()f x 有0个零点.15.已知函数()()()e 12e xxaf x a x a =+---∈R (1)求函数()f x 的单调区间.(2)若(,2]a ∈-∞,求函数()f x 在区间(,2]-∞上的零点个数.【解析】(1)由题意,得()()()()e 1e e 1,e e x x xx xa a f x a x +-=---='∈R当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增.当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.综上所述,当0a ≤时,()f x 的单调递增区间为R ,无单调递减区间,当0a >时,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞;(2)由(1)可知当0a ≤时,()0f x '>在(,2]-∞上恒成立,所以()f x 在(,2]-∞上单调递增.因为()()22221010,2e 2e 20e e a f a f a a ⎛⎫=-=+-=+- ⎪⎝⎭,所以由零点存在性定理知,函数f 在(,2]-∞上有1个零点,当02a <≤时,若(,ln )x a ∈-∞,则()0f x '<,若(ln ,2]x a ∈,则()0f x '>,所以()f x 在(,ln )a -∞上单调递减,在(ln ,2]a 上单调递增,可得()()()()min ln 11ln f x f a a a ==--,①当1a =时,min ()0f x =,此时()f x 在(,2]-∞上有1个零点②当01a <<时min ()0f x <,因为当x →-∞时()()22,2e 20e af x f a ∞→+=+->,所以此时()f x 在(,2]-∞上有2个零点③当12a <≤时,min ()0f x >,此时()f x 在(,2]-∞上无零点.综上,当0a ≤或1a =时,()f x 在(,2]-∞上有1个零点,当01a <<时()f x 在(,2]-∞上有2个零点,当12a <≤时()f x 在(,2]-∞上无零点.16.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数.【解析】(1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减;当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增,当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减.综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减.(2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-,故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点;当01a <≤时,ln 0a <,故()f x 在)0,+∞单调递减,同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ;若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点;下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20xx-=<,即2ln y x x =-在()e,∞+单调递减,故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<>故()()2ln 2ln 0,e f a a a a a =-.故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ;e a >时,()f x 有两个零点.专项突破二由函数零点个数求参数一、单选题1.若函数()2ln 2,02,0x x x f x x x a x ->⎧=⎨++≤⎩有且只有2个零点,则实数a 的取值范围为()A .01a <<B .01a <≤C .01a ≤≤D .01a ≤<【解析】根据题意,0x >时,()ln 2(0)f x x x x =->,此时()12f x x'=-()120f x x -'=>时,102x <<;()120f x x -'=<时,12x >,所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减0x >时,()1ln 2102max f x f ⎛⎫==--< ⎪⎝⎭,所以()f x 在()0,+∞上无零点从而0x ≤时,()f x 有2个零点,根据二次函数的性质可得()4400100a a f ∆=->⎧∴≤<⎨≥⎩,故选:D.2.若函数3()12f x x x a =-+有三个不同的零点,则实数a 的取值范围是()A .(,8)-∞-B .(,8)-∞C .[16,16]-D .(16,16)-【解析】3()12f x x x a =-+,2()3123(2)(2)f x x x x '=-=+-.令()0f x '=,解得12x =-,22x =.(,2)x ∈-∞-,()0f x '>,()f x 为增函数,(2,2)x ∈-,()0f x '<,()f x 为减函数,(2,)x ∈+∞,()0f x '>,()f x 为增函数.所以()(2)16f x f a =-=+极大值,()(2)16f x f a ==-+极小值.因为函数3()12f x x x a =-+有三个不同的零点,等价于方程()0f x =有三个不同的根.所以160160a a +>⎧⎨-+<⎩,解得1616a -<<.故选:D3.若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是()A .1(,e-∞B .1(,)e -∞C .1(0,]e D .1(0,e【解析】由ln 0x ax -=,得ln x a x=(0x >),令ln ()(0)xf x x x =>,所以关于x 的方程ln 0x ax -=有且只有2个零点,等价于函数()f x 的图像与直线y a =有两个交点,由ln ()(0)x f x x x =>,得'21ln ()(0)xf x x x -=>,当0x e <<时,'()0f x >,当x e >,'()0f x <,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以max ln 1()()e f x f e e e===,当x e >时,()0f x >,所以当10a e<<时,函数()f x 的图像与直线y a =有两个交点,所以a 的取值范围是1(0,)e,故选:D4.若函数()ln x f x a x e a =++有两个零点,则实数a 的取值范围为()A .(,)e +∞B .(,2)e -∞-C .(,)e -∞-D .(2,)e +∞【解析】因为函数()ln xf x a x e a =++有两个零点,定义域为()0,∞+;所以方程ln 0x a x e a ++=在()0,∞+上有两不等实根,显然0a ≠即方程ln 11x x a e +-=在()0,∞+上有两不等实根,令()ln 1xx g x e +=,则直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点;因为()()211ln 1ln 1x x x xe x e x x x g x e e -+--'==,令()1ln 1h x x x=--,则()2110h x x x '=--<在()0,∞+上显然恒成立,因此()1ln 1h x x x=--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()0g x '>,所以()ln 1xx g x e +=单调递增;当()1,x ∈+∞时,()0h x <,即()0g x '<,所以()ln 1xx g x e +=单调递减;因此()()max 11g x g e ==,又当1x e >时,()ln 10x x g x e +=>;当10x e <<时,()ln 10xx g x e +=<,所以为使直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点,只需110a e<-<,解得a e <-.故选:C.5.设函数()()ln ,0e 1,0xx x f x x x >⎧=⎨+≤⎩,若函数()y f x b =-有两个零点,则实数b 的取值范围是()A .()0,1B .[)0,1C .[]0,1D .[]{}20,1e-⋃-【解析】当0x >时,函数()ln f x x =单调递增;当0x ≤时,()()e 1xf x x =+,则()()e 20x f x x ='+=时,2x =-,所以当2x <-时,()0f x '<,20x -<≤时,()0f x '>,故当0x ≤时,()f x 在(),2-∞-上单调递减,在()2,0-上单调递增,所以()f x 在2x =-处取极小值,极小值为()22e f --=-,作出函数()f x的图象如图:因为函数()y f x b =-有两个零点,所以函数()y f x =与y b =有两个交点,所以当[]{}20,1e b -∈⋃-时函数()y f x =与y b =有两个交点,所以实数b 的取值范围为[]{}20,1e -⋃-.故选:D.6.已知函数()1e xf x x a -=+-有两个零点,则实数a 的取值范围为()A .21,0e ⎛⎫- ⎪⎝⎭B .21,e ⎛⎫-+∞ ⎪⎝⎭C .()2e ,0-D .()2e ,-+∞【解析】由题意,函数()1e xf x x a -=+-的定义域为R ,令()0f x =,即1e 0x x a -+-=,即()1e xa x =+⋅,设()()1e x g x x =+⋅,可得()()()e 1e 2e x x xg x x x '=++⋅=+⋅,当2x <-时,()0g x '<,当2x >-时,()0g x '>,所以()g x 在(,2)-∞-上单调递减,在(2,)-+∞上单调递增.又()212e g -=-,作出简图,如图所示,要使得函数()1e xf x x a -=+-有两个零点,只需y a =与()()1e xg x x =+⋅的图像有两个交点,所以210e a -<<,即实数a 的取值范围是210ea -<<.故选:A.7.已知函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是()A .10,2e ⎛⎫ ⎪⎝⎭B .1,e 2e ⎛⎫ ⎪⎝⎭C .(,2e)-∞D .10,e ⎛⎫ ⎪⎝⎭【解析】因为函数()2e ln x f x a x =-有两个极值点,所以()()2e ln 1xf x a x '=-+有两个相异的零点,即ln 12e xx a +=有两个交点,令()()ln 1,0,ex x g x x +=∈+∞,则()()()1ln 1,0,e xx x g x x -+'=∈+∞,令()()()1ln 1,0,h x x x x =-+∈+∞,则()2110h x x x'=--<恒成立,所以()h x 在()0,x ∈+∞上递减,且()()11ln1101h =-+=,所以()0,1x ∈时,()0h x >;()1,x ∈+∞时,()0h x <;所以()0,1x ∈时,()0g x '>;()1,x ∈+∞时,()0g x '<;所以()0,1x ∈时,()g x 单调递增;()1,x ∈+∞时,()g x 单调递减;()()max ln1111e e g x g +===,又当x →+∞时,()ln 10e x x g x +=→;0x →时,()ln 1e xx g x +=→-∞;所以当ln 12e xx a +=有两个交点时,则有102a e<<,即102e a <<,所以函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是102ea <<,故选:A 8.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是()A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )【解析】令()()()22e e 0=--=x xf x x x a ,所以22e 0-=x x 或e 0x x a -=,令()22e =-xg x x ,则()()2e '=-x g x x ,令()2(e )=-x h x x ,则()2(1)e '=-xh x ,当(,0)x ∈-∞时,()0h x '>,h (x )在(-∞,0)上单调递增;当,()0x ∈+∞时,()0h x '<,h (x )在(0,+∞)上单调递减,所以()(0)20h x h ≤=-<,即()0g x '<,所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-<,所以存在0(1,0)x ∈-使得()00g x =,所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e =,令()x x k x e =,则()1xx e xk -=',当(,1)x ∞∈-时,()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时,()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e ≤=,所以()x xk x e=与y a =的部分图象大致如图所示,由图知10a e<<,故选:A .9.函数()()()1e 21xf x a x x =---有两个零点,则a 的取值范围为()A .()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U B .321,4e ⎛⎫ ⎪⎝⎭C .()320,14e ,⎛⎫⋃+∞ ⎪⎝⎭D .324e ,⎛⎫+∞ ⎪⎝⎭【解析】令()0f x =得(21)(1)e x x a x -=-,令()e (21)x g x x =-,则()e (21)x g x x '=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>,()g x ∴在1(,)2-∞-上单调递减,在1(2-,)∞+上单调递增,作出()g x 与(1)y a x =-的函数图象如图所示:设直线(1)y a x =-与()g x 的图象相切,切点为00(,)x y ,则()()()00000001e 1e 21xx y a x y x a x ⎧=-⎪=-⎨⎪=+⎩,解得00x =,01y =-,1a =,或032x =,3202e y =,324e a =,()f x 有两个不同的零点,()g x ∴(1)a x =-的函数图象有两个交点,01a ∴<<或324e a >,即()320,14e ,a ⎛⎫∈⋃+∞ ⎪⎝⎭.故选:C .10.已知()()()212()12e 1ex x f x x a x a --=-+++恰有三个不同的零点,则实数a 的范围为()A .()0,1B .()1,1-C .()0,e D .()1,0-【解析】由()()()()21212e 1e 0x x f x x a x a --=-+++=,得()()2111e e e x x x a x x ----=-,即()()11e1e0x x x x a --⎡⎤--+=⎣⎦.令()1e x g x x -=-,则()11e x g x -'=-,令()11e 0x g x -'=-=可得1x =,当(),1x ∈-∞时,()0g x '>,当()1,+∈∞x 时,()0g x '<,∴()g x 在(),1-∞单调递增,在()1,+∞单调递减,所以()()g 10x g ≤=,即()1e 0x g x x -=-=仅有唯一的解1x =.依题意,方程()11e 0x x a --+=有两个不同的解,即1y a =+与1ex x y -=有两个不同的交点,令()1ex x h x -=,则()11e x xh x --'=,易得()h x 在(),1-∞单调递增,在()1,+∞单调速减,()()11h x h ≤=,画出()h x 的草图观察图象可得01110a a <+<⇒-<<,故选:D .二、多选题11.已知()e xf x x ax b -=--()A .若24eb >,则()0,a ∞∃∈+,使函数()y f x =有2个零点B .若24e b >,则(),0a ∃∈-∞,使函数()y f x =有2个零点C .若240e b <<,则()0,a ∞∃∈+,使函数()y f x =有2个零点D .若240e b <<,则(),0a ∃∈-∞,使函数()y f x =有2个零点【解析】令()0f x =,则e xx ax b =+,所以设()e x x g x =,则()1e x xg x ='-当1x <时,()0g x '>,()g x 单调递增;当1x >时,()0g x '<,()g x 单调递减()g x 在1x =处取得极大值()11eg =当x 趋向于-∞时,()g x 趋向于-∞;当x 趋向于+∞时,()g x 趋向于0又()2ex x g x -''=,()20g ''=且当2x <时,()0g x ''<;当2x >时,()0g x ''>所以,2x =是函数()g x 的拐点,()222e g =,()212e g '=-所以()g x 在2x =处的切线方程为()2122ey x -=--,即2214e e y x =-+如图所示,ACD 正确,B 错误,故选:ACD12.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是().A .1a >B .121x x >C .121x x <D .122x x +>【解析】由()0f x =可得ln a x x =-,令()ln g x x x =-,其中0x >,所以,直线y a =与曲线()y g x =的图象有两个交点,()111x g x x x-'=-=,令()0gx '=,可得1x =,列表如下:x()0,11()1,+∞()g x '-+()g x 减极小值1增作出函数y a =与()y g x =的图象如下图所示:由图可知,当1a >时,函数y a =与()y g x =的图象有两个交点,A 对;121212ln ln 2x x x xx x -+<<-,其中12x x ≠,且1x 、2x 均为正数.先证明121212ln ln 2x x x x x x -+<-,其中120x x >>,即证()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令121x t x =>,()()21ln 1t p t t t -=-+,其中1t >,则()()()()222114011t p t t t t t -'=-=>++,所以,函数()p t 在()1,+∞上为增函数,当1t >时,()()10p t p >=,所以,当120x x >>时,121212ln ln 2x x x xx x -+<-,接下来证明:1212ln ln x x x x --120x x >>,即证12ln x x <=,令1t =>,即证12ln t t t <-,令()12ln h t t t t ⎛⎫=-- ⎪⎝⎭,其中1t >,则()222212110t t h t t t t -+'=--=-<,所以,函数()h t 在()1,+∞上为减函数,当1t >时,()()10h t h <=,所以,当120x x >>时,1212ln ln x x x x ->-由已知可得1122ln ln x x ax x a -=⎧⎨-=⎩,两式作差可得1212ln ln x x x x -=-,所以,12121ln ln x x x x -=-,1212121ln ln 2x x x xx x -+<=<-,故121x x <,122x x +>,B 错,CD 都对.故选:ACD.13.已知函数35,0()2ln ,0x x x f x x x ⎧-≤=⎨>⎩,若函数()()2g x f x x a =+-有3个零点,则实数a 可能的取值有()A .3B .2C .1D .0【解析】函数()()2g x f x x a =+-有3个零点,即方程()2f x x a +=有3个不同的实根,即函数()2y f x x =+与y a =的图象有3个不同的交点,令()()2h x f x x =+=33,02ln 2,0x x x x x x ⎧-≤⎨+>⎩,当0x ≤时,()()()233311h x x x x '=-=+-,当10x -<<时,()0h x '<,当1x <-时,()0h x '>,所以函数()h x 在(),1-∞-上递增,在()1,0-上递减,故当0x ≤时,()()max 12h x h =-=,又()00h =,当x →-∞时,()h x →-∞,当0x >时,()2ln 2h x x x =+在()0,∞+上递增,又1220e e h ⎛⎫=-+< ⎪⎝⎭,当x →+∞时,()h x →+∞,如图,作出函数()h x 的大致图像,结合图像可知,要使函数()2y f x x =+与y a =的图象有3个不同的交点,则a 的范图为02a ≤<.故选:CD.14.已知函数()()ln 1f x x x a x x =+-+在区间(1,+∞)内没有零点,则实数a 的取值可以为()A .-1B .2C .3D .4【解析】()()ln 1ln 1a f x x x a x x x x a x ⎛⎫=+-+=+-+ ⎪⎝⎭,设()ln 1a g x x a x =+-+则在1x >上,()y f x =与()y g x =有相同的零点.故函数()f x 在区间()1,+∞内没有零点,即()g x 在区间()1,+∞内没有零点,()221a x ag x x x x-'=-=,当1a ≤时,()20x ag x x -'=>在区间)1,+∞上恒成立,则()g x 在区间()1,+∞上单调递增.所以()()110g x g >=>,显然()g x 在区间()1,+∞内没有零点.当1a >时,令()0g x '>,得x a >,令()0g x '<,得1x a <<所以()g x 在区间()1,a 上单调递减增.在区间(),a +∞上单调递增.所以()()ln 2g x g a a a ≥=+-设()()ln 21h a a a a =+->,则()()11101a h a a a a-=-=<>所以()h a 在()1,+∞上单调递减,且()()3ln 310,4ln 420g g =->=-<所以存在()03,4a ∈,使得()00h a =,要使得()g x 在区间()1,+∞内没有零点,则()ln 20g a a a =+->,所以()013,4a a <<∈,综上所述,满足条件的a 的范围是()03,4a a <∈由选项可知:选项ABC 可使得()g x 在区间()1,+∞内没有零点,即满足题意.故选:ABC15.已知函数()()()1e 21xf x a x x =---在(,1)-∞上有两个不同的零点,则实数a 可能取到的值为()A .1-B .14C .12D .1【解析】令()0f x =,即()()1e 210xa x x ---=,所以()e 211x x a x -=-,因为函数()f x 在(,1)-∞上有两个不同的零点,设()()e 211x x g x x -=-,则y a =与()y g x =在(,1)-∞上有两个不同的交点,因为()()()()()()()222e 23e 21e 21e 2111x x x xx x x x x g x x x ⎡⎤--+⋅---⎣⎦'==--,令()0g x '=,则10x =,232x =,因为在(,1)-∞上,e 0x >,()210x ->,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,所以()()max 01g x g ==,且当0x <时,()0g x >;当1x →时,()g x →-∞,因为y a =与()y g x =在(,1)-∞上有两个不同的交点,所以01a <<,根据选项,符合条件的为B ,C ,故选:BC 三、填空题16.已知函数()2e e xf x x a =-有三个零点,则实数a 的取值范围是___________.【解析】由2e e 0x x a -=,得21e x a x -=.设()21e xg x x -=,则()()1e 2xg x x x -'=-.当(),0x ∈-∞时,()0g x '<,当()0,2x ∈时,()0g x '>,当()2,x ∈+∞时,()0g x '<,所以函数()g x 在区间(),0∞-上单调递减,在区间()0,2上单调递增,在区间()2,+∞上单调递减,又()()400,2eg g ==,故函数()21e xg x x -=的图象如图所示:故当40e a <<时,函数()2e e xf x a =-有三个零点,即40,e a ⎛⎫∈ ⎪⎝⎭.17.已知函数(2),1()ln(1)2,1x x x f x x x x +≤⎧=⎨--+>⎩,若函数()()g x f x a =-有四个零点,则实数a 的取值范围是______________.【解析】因为函数()()g x f x a =-有四个零点,所以方程()()0g x f x a =-=有4个不同的解,所以函数()f x 的图象与直线y a =有4个不同的交点,①当1x >时,()ln(1)2f x x x =--+,则1112()1111x xf x x x x -+-'=-==---,当12x <<时,()0f x '>,当2x >时,()0f x '<,所以()f x 在(1,2)上递增,在(2,)+∞上递减,所以当1x >时,()f x 有最大值(2)ln1220f =-+=,当1x →时,()f x →-∞,当x →+∞时,()f x →-∞②当1x ≤时,2()(2)(1)1f x x x x =+=+-,当1x =-时,()f x 有最小值1-所以()f x 的图象如图所示由图可知,当10a -<<时,函数()f x 的图象与直线y a =有4个不同的交点,所以实数a 的取值范围是(1,0)-18.已知函数()()e sin 0xf x a x x =->有两个零点,则正实数a 的取值范围为______.【解析】因为函数()()e sin 0,0xf x a x x a =->>有两个零点,所以方程()e sin 00,0xa x x a -=>>有两个根,所以()2,2Nx k k k πππ∈+∈,所以方程e sin xa x =其中()2,2N x k k k πππ∈+∈,有两个根,设e ()sin xg x x=,()2,2N x k k k πππ∈+∈,,所以2e sin cos e ()sin x xx x g x x-'=,令()0g x '=可得e sin cos e 0x x x x -=,化简可得24x k ππ=+,N k ∈,所以当22,N 4k x k k πππ<<+∈时,()0g x '<,函数()g x 单调递减,当22,N 4k x k k ππππ+<<+∈时,()0g x '>,函数()g x 单调递增,作函数()g x 的图象可得,由图象可得,当9((44g a g ππ<<时,直线y a =与函数e()sin xg x x=,()2,2N x k k k πππ∈+∈,,的图象有且仅有两个交点,944a ππ<<时,函数()()e sin 0xf x a x x =->()0a >有两个零点,故答案为:944e e )ππ.19.若函数()ln e 1xf x x ax =--+不存在零点,则实数a 的取值范围是______.【解析】因为函数()ln e 1xf x x ax =--+不存在零点,所以方程ln e 10x x ax --+=无实数根,所以方程ln e ln e xx ax -+=无实数根,即方程ln e 1x x a x-+=无实数根,故令()()'2ln e 1e e ln ,x x x x x xg x g x x x -+-+-==,令()e e ln ,0x x h x x x x =-+->,故()'1e 0xh x x x=--<恒成立,所以,()h x 在()0,∞+上单调递减,由于()10h =,所以,当()0,1x ∈时,()0h x >,即()'0g x >,当()1,x ∈+∞时,()0h x <,即()'0g x <,所以函数()g x 在()0,1x ∈上单调递增,在()1,x ∈+∞上单调递减,所以()()max 11e g x g ==-,所以,当方程ln e 1x x a x-+=无实数根时,1e a >-即可.所以,实数a 的取值范围是()1e,+-∞四、解答题20.已知函数()ln 1xf x m x =-+.(1)求()f x 的导函数;(2)若()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,求m 的取值范围.【解析】(1)因为()ln 1xf x m x =-+,所以()()()()221111l ln 1n 1x x x x x f x x x ++-'==++-(2)由(1)知()()211ln 1x x f x x +-'=+,因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以ln 0x -≥,所以()()211ln 01x x f x x +-'=>+,从而()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以()min 12ln 223f x f m ⎛⎫==-- ⎪⎝⎭,()()max 1f x f m ==-.因为()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,所以02ln203m m -≥⎧⎪⎨--≤⎪⎩,解得2ln 203m -≤≤.21.已知函数()ln R kf x x k k x=--∈,(1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e)内无零点,求k 的取值范围.【解析】(1)()ln k f x x k k R x =--∈ ,,(1,e)x ∈,221()k x k f x x x x+'∴=--=-(Ⅰ)当1k -≤,即1k ≥-时,10x k x +≥->()0f x '∴<,()f x ∴在(1,e)单调递减(Ⅱ)当e k -≥,即e k ≤-时,e 0x k x +≤-<()0f x '∴>,()f x ∴在(1,e)单调递增(Ⅲ)当1e k <-<,即e 1k -<<时,当1x k <<-时,()0f x '>,()f x 单调递增;当e k x -<<时,()0f x '<,()f x 单调递减综上所述,(Ⅰ)当1k ≥-时,()f x 在(1,e)单调递减(Ⅱ)当e k ≤-时,()f x 在(1,e)单调递增(Ⅲ)当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减(2)由(1)知:当1k ≥-时,()()10f x f <=即()0f x <,()f x ∴在(1,e)无零点,当e k ≤-时,()(1)0f x f >=即()0f x >,()f x ∴在(1,e)无零点当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减()(1)0,(1,)f x f x k ∴>=∈-,()(e)1,(,e)ekf x f k x k >=--∈-∴只需(e)10e k f k =--≥即可,即1(11e k -≤-,1e11e 1ek ∴≤=--,ee 1ek ∴-<≤-综上所述,e(,][1,)1ek ∈-∞-+∞- 22.已知函数()3226185=--+f x x x x .(1)求函数()f x 的单调区间;(2)若函数()()g x f x a =+至多有两个零点,求实数a 的取值范围.【解析】(1)依题意:()()()261218631'=--=-+f x x x x x ,故当(),1x ∈-∞-时,()0f x '>,当()1,3x ∈-时,()0f x '<,当()3,x ∈+∞时,()0f x '>,∴()f x 的单调增区间为(),1-∞-,()3,+∞,单调减区间为()1,3-;(2)令()0g x =,得()a f x -=.∵()115f -=,()349=-f ,结合f (x )单调性,作出f (x )图像:。

2021年高考数学重难点复习:破解含参零点问题

2021年高考数学重难点复习:破解含参零点问题

2021年高考数学重难点复习轻松破解含参零点问题一.方法综述函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数的性质,特别是函数单调性(可借助于导数)探寻解题思路,或利用数形结合思想、分离参数方法来求解.具体的,(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存在的判定定理构建不等式形结合、转化与化归等思想方法,所以此类题往往能较好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点情况,讨论参数的范围成为高考的难点.对于此类题目,我们常利用零点存在定理、函数求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.二.解题策略类型一 “第一招”带参讨论【例1】【2020·福建福州期末】已知函数()()2224x x f x x x a e e --+=--+有唯一零点,则a =( )A .12-B .-2C .12D .2 【答案】B【解析】因为函数()()2224x x f x x x a e e --+=--+有唯一零点,等价于方程()2224x x x x a e e --+-=+有唯一解,等价于函数24y x x =-的图像与()22x x y a ee --+=+的图像只有一个交点. 当0a =时,()224244y x x x =-=--≥-,此时有两个零点,矛盾;当0a >时,由于()22424y x x x =-=--在(),2-∞单调递减,在()2,+∞单调递增, 且()22x x y a e e --+=+在(),2-∞单调递减,在()2,+∞单调递增,所以函数24y x x =-的图像最低点为()2,4-,()22x x y a e e --+=+的图像的最低点为()2,2a ,由于204a >>-,故两函数图像有两个交点,矛盾,当0a <时,由于()22424y x x x =-=--在(),2-∞单调递减,在()2,+∞单调递增, 且()22x x y a e e --+=+在(),2-∞单调递增,在()2,+∞单调递减,所以函数24y x x =-的图像最低点为()2,4-,()22x x y a e e --+=+的图像的最高点为()2,2a ,若两函数只有一个交点,则24a =-,即2a =-.故选B【指点迷津】1.根据题设要求研究函数的性质,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;2.由于函数含有参数,通常需要合理地对参数的取值进行分类讨论,并逐一求解.【举一反三】【2020河北邯郸期末】已知函数()2x f x me x m --=有两个零点,则m 的取值范围是( ) A .(0,)+∞B .(,0)-∞C .(0,1)D .1(0,)e 【答案】A【解析】由题知,()1x f x me '=-,当0m …时,()0f x '<,所以()f x 在R 上单调递减,函数()f x 不可能有两个零点,故0m …不成立;当0m >时,令()0f x '=,∴1x e m=,∴1x ln m = ∴函数()f x 在1(,)ln m -∞上单调递减,在1(,)ln m+∞上单调递增, ∴函数()f x 的最小值111()21()2min f ln m ln m ln m m m m m==--=+-g 令()1()2g m ln m m =+-,其中0m >,∴121()2m g m m m -+'=-= ()g m ∴在1(0,)2上单调递增,在1(,)2+∞上单调递增,∴11()()022max g m g ln ==< ()0g m ∴<,()f x ∴的最小值1()0f ln m< 且x 趋向于-∞时,()f x 趋向于+∞;当x 趋向于+∞时,()f x 趋向于+∞∴此时()f x 有两个零点,符合题意,(0,)m ∴∈+∞故选A .类型二 “第二招”数形结合【例2】【2020•河南一模】已知关于x 的方程2[()]()10f x kf x -+=恰有四个不同的实数根,则当函数。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

例谈含参数函数的零点个数问题

例谈含参数函数的零点个数问题
关 键 词 :函 数 的 零 点 ;方 程 的 解 ;图 像 交 点 ;导 数
关于函数零点个数的讨论是高考数学的重要内容之一, 函数零点问题就是对应方程的根的问题,若 求 函 数 零 点 的 个
数,一般要将函数零 点 转 化 为 方 程 的 解,再 由 方 程 的 解 转 化
为两个新函数的图像的交点,掌握函数零 点 个 数 问 题 的 解 决
数 f(x)有两个零点。 解法二:(1)(2)略 (3)求函数 f(x)在 (1,e2)上 零 点 个
数求方程 f(x)=0(2a2lnx-x2=0)在(1,e2)上 根 的 个 数 求函数y=2a2(a>0)与y=x2/lnx 图像交点的问题。
令 g(x)=x2/lnx,则 g′(x)=x(2lnx-1)/(lnx)2,令
方法,对于解决这类题目有一定的帮助,本 文 将 从 一 道 题(临
夏中学高三年级2018~2019学年度 第 一 学 期 期 中 考 试 理 科 卷21题)出发,给出 两 种 解 法,通 过 分 析 比 较 得 出 最 容 易 掌 握的方法。
题目:已知函数 f(x)=2a2lnx-x2(a>0)。(1)当a= 1时,求曲线 f(x)在 点 (1,f(1))处 的 切 线 方 程;(2)求 函 数 f(x)的 单 调 区;(3)讨 论 函 数 f(x)在 区 间 (1,e2)上 零 点 的 个 数 (e≈2.718… )。
方程根的问题,进而转化为一个常函数与 一 个 不 含 参 数 的 函 数图像的交点问题,接下来的解题过程就 变 成 画 函 数 图 像 的 问题。
2.在画函数 g(x)图 像 时,在 考 虑 开 区 间 的 端 点 处 时 用 了逼近的思想。
3.数形结合,直观判断。根据参数范围确定两个 函 数 图 像 的 交 点 个 数 ,进 而 确 定 函 数 的 零 点 个 数 。

含参函数求零点个数问题

含参函数求零点个数问题

所以这种方式先在演草纸上试一下,看硬分离出的函数是否简洁,再决定是否应用该方 式。当然,这种方式还经常会碰到端点出极值不可求问题,这样就要借助罗必塔法则来就极 值最值了。
(二) 分离成两个函数,其中一个含参一个不含参(软分离)
y = f (x)(含参数m)
令原函数等于
0,对函数进行化简,分离成两个函数,
形式)
Ⅰ 证明:
;(对 lnx 来说,我们需要记住几个特殊的切线,并且要求会证明,方便
我们在后面做题的时候实现快速做题或者提供灵感和答案)
Ⅱ 若 ,讨论函数 的零点个数.
【参考答案】 Ⅰ 证明:设函数
,
,,

,得 ,当
时,
;当 时,
,
所以函数在区间 内是增函数,在区间
内是减函数,所以
,即

Ⅱ 解法一:借助已知的结论: x2 − x ≥ x −1 ≥ ln x ,可以得到,当 a=1 时有一个交点,a>1

y
= g(x)
,其中一个
要含参数,一个不含参数,讨论两个函数在参数的作用下有交点个数的情况。
软分离的好处就是分离出的两个函数可以根据需要进行选择,能够选择出相对熟悉,易求 导、求解的函数来处理问题,难点就是两个函数的切点很多时候是方程好列解难求。
在这种分离函数的时候,含参的函数最好是直线(含参的话就是平行线或过定点的旋转直 线),这样就可以通过求切线的方式找出边界值。
(一) 直接分离出参数(硬分离)
y = m(参数)
这种分离是把参数完完全全的分离出来,变成

y
=
f
(x)
的形式。由于 y=m 是一条平行
于 x 轴的直线,所以对 f (x) 图像的要求就不是很高(只要求单调性和渐进线,不要求函数图

谈含参函数零点问题的解题策略

谈含参函数零点问题的解题策略

谈含参函数零点问题的解题策略摘要:含参函数零点问题一直是高考热点和难点,全国卷中常常均导数压轴题形式出现,对大部分学生而言有一定的难度。

本文主要针对此类问题举例说明两种方法:直接法和参变分离法,让学生有迹可循,进而达到落实数学核心素养的目的。

关键词:直接法参变分离法导数零点问题含参函数导数及其应用一直是高考的重点与难点,尤其是含参函数的零点问题[1-3],一般以基本初等函数为载体,考察函数的单调性,函数的零点存在性定理及指数函数、幂函数、对数函数的增长速度,难度较大,解题时要熟练运用导数与函数单调性的关系,注重函数与方程化归、分类讨论及数形结合等思想方法的应用。

针对导数压轴题中的含参函数零点问题,本文将用两道例题来说明两种常用方法:直接法和参变分离法,例一是已知零点情形求参数范围,例二是直接求解函数零点个数,其中例一选自2018年全国卷理科Ⅱ卷21题第二问,例二选自2018年广一模理科21题第一问。

直接法是通过对参量进行分类讨论直接分析所求函数的单调性、极值、最值和极限,大致确定函数的图象进而分析函数的零点个数。

参变分离法则是利用函数与方程思想把参数和变量进行分离,得到一个不含参的函数和常函数,通过分析不含参函数的大概走势,进而确定不含参函数与常函数交点个数,从而解决原函数的零点问题。

在采用这两种方法求解时,我们利用极限思想降低计算复杂度。

虽然在高中数学没有涉及极限的计算方法,但是人教A版选修2-2中提到了极限的思想,所以我们根据指数函数、幂函数、对数函数增长速度来求一些简单函数的极限来确保函数在某些区间满足零点存在性定理。

本文将通过对这两道例题讨论分析说明两种求解方法,让学生有迹可循,进而达到落实数学核心素养的目的。

例1(2018全国理科Ⅱ卷21)已知函数.若在只有一个零点,求.方法一:直接法解析:当时,不满足题意.当时,,令令 .当时,即当,单调递增,又即在单调递增,又不满足题意.当时,即当,当时,单调递减;当时,单调递增.当时,即单调递增,不满足题意.当时,即又时,增长速度远远大于增长速度,所以,又使得又增长速度远远大于增长速度,所以在只有一个零点,又,解得方法二:参变分离法解析:在只有一个零点,即方程在只有一个解,即方程在只有一个解.即函数和函数在只有一个交点.当时,单调递减;当时,单调递增. ,又时,增长速度远远大于增长速度,所以,所以函数和函数在只有一个交点, =例2(2018广一模理科21)已知函数 .讨论的导函数零点的个数;解析:定义域为方法一:直接法令,故在上单调递增,,又当时,有且只有一个零点,所以当时,即时,只有一个零点;当时,即时,有两个零点.当时,没有零点,只有一个零点.所以当或时,只有一个零点;当或时,有两个零点.方法二:参变分离法方程在解的个数,即方程在解的个数,即函数和函数在交点个数.在单调递增,,又当时,和有且只有一个交点,故当时,即时,只有一个零点;当时,即时,有两个零点.当时,和没有交点,只有一个零点.所以当或时,只有一个零点;当或时,有两个零点.通过上述两个例题的详细解析,我们可以直观感受到两种方法的特点。

函数零点问题讲义(主要是含参函数)高三数学二轮专题复习

函数零点问题讲义(主要是含参函数)高三数学二轮专题复习

函数的零点问题(主要是含参函数)一、函数的零点 1、函数零点的概念对于函数(),y f x x D =∈,我们把使()0f x =成立的实数x 叫做函数(),y f x x D =∈的零点.2、函数的零点与方程的根之间的联系1)函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.2)函数()()()F x f x g x =-有零点⇔方程()0F x =有实数根⇔函数()y f x =与()y g x =的图象有交点;3)函数()()F x f x a =-有零点⇔方程F (x )=0有实数根⇔函数()y f x =与y a =的图象有交点⇔{|()}a y y f x ∈=,其中a 为常数. 3、二次函数2)( 0y ax bx c a =++>的零点)0二、零点存在性定理如果函数()y f x =在区间[a ,b ]上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点,即存在c ∈(a ,b ),使得()0f c =,这个c 也就是方程()0f x =的根. 【注】上述定理只能判断出零点存在,不能确定零点个数.(1)若,则“一定”存在零点,但“不一定”只有一个零点.要分析的性质与图象,如果单调,则“一定”只有一个零点(2)若,则“不一定”存在零点,也“不一定”没有零点。

如果单调,那么“一定”没有零点(3)如果在区间中存在零点,则的符号是“不确定”的,受函数性质与图象影响。

如果单调,则一定小于0. 三、二分法 1、二分法的概念对于在区间[a ,b ]上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2、用二分法求函数()f x 零点近似值的步骤给定精确度ε,用二分法求函数()f x 零点近似值的步骤如下: ①确定区间[a ,b ],验证()()0f a f b ⋅<,给定精确度ε; ②求区间(a ,b )的中点c ; ③计算f (c );a .若f (c )=0,则c 就是函数的零点;b .若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); c .若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).④判断是否达到精确度ε:即若|a −b |<ε,则得到零点近似值a (或b );否则重复②③④. 【速记口诀】定区间,找中点;中值计算两边看, 同号丢,异号算,零点落在异号间.()()0f a f b ⋅<()f x ()f x ()f x ()()0f a f b ⋅>()f x ()f x ()f x (),a b ()()f a f b ⋅()f x ()()f a f b ⋅重复做,何时止,精确度来把关口. 四、函数零点的判定方法1、定义法(定理法):使用零点存在性定理,函数()y f x =必须在区间[a ,b ]上是连续的,当()()f a f b ⋅0<时,函数在区间(a ,b )内至少有一个零点.2、方程法:判断方程()0f x =是否有实数解.3、图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如()()()f x g x h x -=,作出()y g x =和()y h x =的图象,其交点的横坐标即为函数f (x )的零点.五、判断函数零点个数的方法1、解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.2、零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.3、数形结合法:转化为两个函数的图象的交点个数问题,先画出两个函数的图象,看其交点个数,其中交点的横坐标有几个不同的值,就有几个不同的零点. 六、函数零点的应用问题1、已知函数零点所在区间求参数或参数的取值范围根据函数零点或方程的根求解参数的关键是结合条件给出参数的限制条件,此时应分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.在求解时,注意函数图象的应用. 2、已知函数零点的个数求参数或参数的取值范围一般情况下,常利用数形结合法,把此问题转化为求两函数图象的交点问题. 3、借助函数零点比较大小或直接比较函数零点的大小关系要比较f (a )与f (b )的大小,通常先比较f (a )、f (b )与0的大小.若直接比较函数零点的大小,方法如下:①求出零点,直接比较大小; ②确定零点所在区间;③同一坐标系内画出函数图象,由零点位置关系确定大小. 七、二次函数y =ax 2+bx +c (a >0)有关的零点分布设方程ax 2+bx +c =0(a >0)的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点横坐标,它们的分布情况见下面各表(每种情况对应的均是充要条件)八、一元三次方程根与系数的关系设方程ax 3+bx 2+cx +d =0(a ≠0)的三个根分别为x 1、x 2、x 3.原方程化为320b c dx x x a a a+++=.∵ x 1、x 2、x 3是方程的三个根, ∴32123()()()b c dx x x x x x x x x aaa +++=---. 整理,得:3232123121323123()()b c dx x x x x x x x x x x x x x x x x x a a a+++=-+++++-,比较左右同类项的系数,得一元三次方程根与系数的关系是:123121323123,,b c dx x x x x x x x x x x x a a a++=-++==- .【题模1】:定义法解决函数零点问题 【讲透例题】1、已知函数()f x 的图象是不间断的,并有如下的对应值表:那么函数在区间(1,6)上的零点至少有( )个A .5B .4C .3D .2 2、设函数⎩⎨⎧-∈-+∞∈-=)1,1(,2),1[,22)(2x x x x x x f ,求函数41)(-=x f y 的零点3、函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.4、已知函数(1)若是的极值点且的图像过原点,求的极值; (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。

高考常考题-函数的零点问题(含解析)

高考常考题-函数的零点问题(含解析)

函数的零点问题一、题型选讲 题型一、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,英中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要 注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)立义在R 上的奇函数金)满足Λx+4)=Λx),且在区间[2, 4)上例3、【2018年高考全国III 卷理数】函数/(x) = COS^3Λ + ^ ∣^[0,π]的零点个数为 ______ 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范囤.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将 函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便 地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画岀函数的图像,然后数形结合求解.1∏Λ∖X≥ 1例4. (2020届山东省枣庄.滕州市髙三上期末)已知/(X) = {…、f ,若函数y = ∕(x)-l 恰有f(2-x) + k,x<∖一个零点,则实数A ∙的取值范围是( )A. (l,4∙s) B ・ ILC. (YU)D ・(Y M]Z、21og^ x,x≥∖. Z 、例5、(2020全国高三专题练习(文))函数/(M = [f(w]) JI yl ,若方程f(x) = ~2x + m 有且只有两个不相等的实数根,则实数加的取值范围是()A. (-oo,4)B. (Y ,4]C. (-2,4)D. (-2,4]2-x,2≤x<3x-4,3≤x<4则函数y=∕ω-iog s H 的零点的个数为 ____________x<b例2、(2017苏锡常镇调研)若函数Λx)=≤ IInx<x>l, )则函数y=^χ)∣~∣的零点个数为 ______若函数F(X) =/(x)-g(x)在[0,2)上只有两个零点,则实数R 的值不可能为A.丄 3 3 C.——4例6、[2020年高考天津】已知函数f(x) = < Λ j'0,若函数g(γ) =γ,(j).∣AΛ^2点,则k 的取值范围是A. (→>,-∣)U(2√2,+oo)B ∙ U(0,2√Σ)c ・(Y,0)U(0,2√Σ) D ・ YO)U(2√Σ,S例7. [2019年髙考浙江】已知t 函数f(x) = < 1x,x < O1 c ・若函数一F --(α + l)f +ax.x≥O 13 2y = f(x)-cιx -b 恰有3个零点,则A. Λ<-L b<0B. αv -l, b>0C. α>-l, XoD ・ α>-l, b>Q例8. (2020浙江学军中学髙三3月月考)已知函数/(X)=(A -÷4)V5≤X <-3J 若函数 /(x-2),x≥-3g(x) = ∕α)-W(X+ 1)1有9个零点,则实数M 的取值范围是()A.[科丿B.1 1)匕'FD.1 1 <55例9.(2020届浙江省杭州市第二中学髙三3月月考)已知函数/(X)=2/V 『心2'B- 4D ・-1-2彳伙WR)恰有4个零二、达标训练1、(2019 IlJ 东师范大学附中高三月考)函数/(x) = √-W 的零点所在区间为()A- (一 1'O)B- [θ,^j C - (Al D- (1'2)e 丫 X V 02、 【2018年髙考全国I 卷理数】已知函数/(X)=g(χ) = f(χ) + x + a •若g(x)存在2个lnx, x>O,零点,则α的取值范用是A. [一 1, 0)B. [0, +∞)C. [-1, +oo)D. [1, +∞)3、 (2020届浙江省“山水联盟"髙三下学期开学)已知αbwR,函数f(x) = <(A+(l)e +αr "≤°,若函x,x>0数y = f{x)-ax-b 恰有3个零点,则()A. a>∖J)>OB. d>l,D<0C. a<tb>OD. a<^b<O4. (2020届山东实验中学髙三上期中)设定义在/?上的函数/(X)满足/(→) + /(X) = X 2,K 当X WO 时,__________ ・若函数沧)恰有2个零点,则2的取值范圉是 _____________≥∕(1~x ))2}且★为函数 g(x) = e λ-y[ex-aZR 疋为自然对数的底数)的一个零点,则实数α的取值可能是()A. 1√E 2D ・√72√7(0<x≤l)5、(2020届山东师范大学附中髙三月考)已知函数fW = ∖2—(X > DIX若方程/(兀)=一力+ α有三个不同的实根,则实数α的取值范围是 _______6、[2018年髙考浙江】已知z∈R.函数沧)=<X - 4, % ≥ Λ X 2-4x + 3,x<2,当z=2时,不等式√(x)vθ的解集是广(X)Vx .己知存在如Λ 2+2ax + a,x ≤ O 74202O届江苏省南通市如皋市高三下学期二模】已知函数f(x) = \e x_ex I ,,若存在实数+-a2,x>O X 3使得函数y = f(χ)-k有6个零点,则实数。

高考数学难点突破--隐零点专题(有答案)

高考数学难点突破--隐零点专题(有答案)

专题三 . 隐零点专题知识点一、不含参函数的隐零点问题已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,②注意确定0x 的合适范围.二、含参函数的隐零点问题已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 例1.已知函数)2ln()(+-=x e x g x ,证明)(x g >0.例2.(2017052001)已知函数x a e x f x ln )(-=.(I )讨论)(x f 的导函数)('x f 的零点的个数;(II )证明:当0>a 时,)ln 2()(a a x f -≥.例3.(2017.全国II.21)已知函数x x ax ax x f ln )(2--=,且()0f x ≥.(I )求a ;(II )证明:)(x f 存在唯一的极大值点0x ,且2022)(--<<x f e . 例 4.(2016.全国甲.21)(I )讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II )证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.例 5.(2013.湖北.10)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则 A.21)(,0)(21->>x f x f B.21)(,0)(21-<<x f x fC.21)(,0)(21-<>x f x fD.21)(,0)(21-><x f x f 例6.(2017022802)已知函数)ln 1()(x x x f +=.(I )求函数)(x f 的单调区间及其图象在点1=x 处的切线方程;(II )若Z ∈k ,且)()1(x f x k <-对任意1>x 恒成立,求k 的最大值.例1例4导数压轴题中的“隐零点”问题之专项训练题1、设函数()2xf x e ax =--. (Ι)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.变式训练: 已知函数()()ln ,f x x x ax a R =+∈.(Ⅰ)若函数()f x 在)2,e ⎡+∞⎣上为增函数,求a 的取值范围; (Ⅱ)若()()()1,,1x f x k x ax x ∀∈+∞>-+-恒成立,求正整数k 的值.2、已知函数()()ln xf x e x m =-+. (Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.变式训练: 已知函数()32213f x x x ax =+++在()1,0-上有两个极值点1x 、2x ,且12x x <.(Ι)求实数a 的取值范围; (Ⅱ)证明:()21112f x >.3、已知a R ∈,函数()2x f x e ax =+;()g x 是()f x 的导函数. (Ⅰ)当12a =-时,求函数()f x 的单调区间; (Ⅱ)当0a >时,求证:存在唯一的01,02x a ⎛⎫∈-⎪⎝⎭,使得()00g x =; (Ⅲ)若存在实数,a b ,使得()f x b ≥恒成立,求a b -的最小值.变式训练:已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间; (Ⅱ)若21()2f x x ax b ≥++,求(1)a b +的最大值.4、已知函数()()222ln 22=-++--+f x x a x x ax a a ,其中0>a . (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在()0,1∈a ,使得()0≥f x 在区间()1,+∞内恒成立,且()0=f x 在区间()1,+∞内有唯一解.变式训练 ,已知函数()222ln 2f x x x ax a =-+-+,其中0>a ,设()g x 是()f x 的导函数.(Ⅰ)讨论()g x 的单调性;(Ⅱ)证明:存在()0,1∈a ,使得()0≥f x 恒成立,且()0=f x 在区间()1,+∞内有唯一解.变式训练,已知函数()2ln 12a f x x x x =-++,()21x a g x ae ax a x=++--,其中a R ∈. (Ⅰ)若2a =,求()f x 的极值点;(Ⅱ)试讨论()f x 的单调性;(Ⅲ)若0a >,()0,x ∀∈+∞,恒有()()g x f x '≥(()f x '为()f x 的导函数),求a 的最小值.变式训练 ,已知函数()21ln 2f x x ax x =-+,a R ∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.。

专题含参函数的零点问题

专题含参函数的零点问题

专题含参函数的零点问题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--含参函数的零点问题含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.例1已知函数f (x )=x 2+ax (a ∈R),g (x )=⎩⎨⎧f ?x ?, x ≥0,f ′?x ?, x <0.若方程g (f (x ))=0有4个不等的实根,则a 的取值范围是________.例2(1) 若关于x 的方程|x 4-x 3|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________.(2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________.思维变式题组训练1. 已知函数f (x )=⎩⎨⎧ 2x -1, x ≥2,2, 1≤x <2.若方程f (x )=ax +1恰有一个解时,则实数a 的取值范围为________.2. 设函数f (x )=⎩⎪⎨⎪⎧ x -1e x , x ≥a ,-x -1, x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.3. 已知函数f (x )=⎝ ⎛ x -1, 1≤x <2,2f ⎝ ⎛⎭⎪⎫12x , x ≥2,如果函数g (x )=f (x )-k (x -3)恰有2个不同的零点,那么实数k 的取值范围是________.4. 已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧ x +2x +1, x ≤0,|ln x |, x >0,若关于x 的方程f (x )=kx +2有且只有4个不同解,则实数k 的取值构成的取值集合为________.强化训练1. 若方程ln x +x -4=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为________.2. 若关于x 的方程kx +1=ln x 有解,则实数k 的取值范围是________.3. 已知直线y =mx (m ∈R)与函数f (x )=⎩⎪⎨⎪⎧ 2-⎝ ⎛⎭⎪⎫12x , x ≤0,12x 2+1, x >0的图象恰有3个不同的公共点,则实数m 的取值范围是________.4. 已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.5. 已知函数f (x )满足f (x +2)=2f (x ),且当x ∈[0,2]时,f (x )=-x 2+2x ,若函数g (x )=f (x )-a |x -1|在区间[0,4]上有4个零点,则实数a 的取值范围是________.6. 已知关于x 的方程x 2+2a log 2(x 2+2)+a 2-3=0有唯一解,则实数a 的值为________.7. 若函数y =ln x +x 2的图象与函数y =3x -b 的图象有3个不同的交点,则实数b 的取值范围是________.8. 已知函数f (x )=⎩⎨⎧x 2-4, x ≤0,e x -5, x >0,若关于x 的方程|f (x )|-ax -5=0恰有三个不同的实数解,则满足条件的所有实数a 的取值集合为________.9. 已知函数f (x )=⎩⎨⎧ k x -1, x ≤0,ln x , x >0,若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数k 的取值范围为________.10. 设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=1-?x -1?2,g (x )=⎩⎨⎧ k ?x +2?,0<x ≤1,-12, 1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参函数的零点问题
含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用.
例1已知函数f (x )=x 2+ax (a ∈R),g (x )=⎩⎪⎨⎪⎧ f (x ), x ≥0,f ′(x ), x <0.若方程g (f (x ))=0有4
个不等的实根,则a 的取值范围是________.
例2(1) 若关于x 的方程|x 4-x 3
|=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________.
(2) 已知函数f (x )=x 2+|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y =g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________.
思维变式题组训练
1. 已知函数f (x )=⎩⎨⎧ 2x -1, x ≥2,2, 1≤x <
2.
若方程f (x )=ax +1恰有一个解时,则实数
a 的取值范围为________.
2. 设函数f (x )=⎩⎪⎨⎪⎧ x -1e x , x ≥a ,-x -1, x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰
有3个零点,则实数a 的取值范围为________.
3. 已知函数f (x )=⎝ ⎛ x -1, 1≤x <2,
2f ⎝ ⎛⎭⎪⎫12x , x ≥2,如果函数g (x )=f (x )-k (x -3)恰有2个不
同的零点,那么实数k 的取值范围是________.
4. 已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧ x +2x +1
, x ≤0,|ln x |, x >0,若关于x 的方程f (x )=kx +2有且只
有4个不同解,则实数k 的取值构成的取值集合为________.
强化训练
1. 若方程ln x +x -4=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为________.
2. 若关于x 的方程kx +1=ln x 有解,则实数k 的取值范围是________.
3. 已知直线y =mx (m ∈R)与函数f (x )=⎩⎪⎨⎪⎧ 2-⎝ ⎛⎭⎪⎫12x , x ≤0,12x 2+1, x >0的图象恰
有3个不同的公共点,则实数m 的取值范围是________.
4. 已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.
5. 已知函数f (x )满足f (x +2)=2f (x ),且当x ∈[0,2]时,f (x )=-x 2+2x ,若函数g (x )=f (x )-a |x -1|在区间[0,4]上有4个零点,则实数a 的取值范围是________.
6. 已知关于x 的方程x 2+2a log 2(x 2+2)+a 2-3=0有唯一解,则实数a 的值为
________.
7. 若函数y =ln x +x 2的图象与函数y =3x -b 的图象有3个不同的交点,则实数b 的取值范围是________.
8. 已知函数f (x )=⎩⎨⎧ x 2-4, x ≤0,e x -5, x >0,若关于x 的方程|f (x )|-ax -5=0恰
有三个不同的实数解,则满足条件的所有实数a 的取值集合为________.
9. 已知函数f (x )=⎩⎨⎧ k x -1, x ≤0,ln x , x >0,若关于x 的方程f (f (x ))=0有且
仅有一个实数解,则实数k 的取值范围为________.
10. 设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=1-(x -1)2,g (x )=⎩⎨⎧ k (x +2),0<x ≤1,
-12
, 1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是________.。

相关文档
最新文档