高中数学演绎推理综合测试题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学演绎推理综合测试题(有答案)选修2-2 2.1.2 演绎推理
一、选择题
1.“∵四边形ABCD是矩形,四边形ABCD的对角线相等”,补充以上推理的大前提是()
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形
[答案] B
[解析]由大前提、小前提、结论三者的关系,知大前提是:矩形是对角线相等的四边形.故应选B.
2.“①一个错误的推理或者前提不成立,或者推理形式不正确,②这个错误的推理不是前提不成立,③所以这个错误的推理是推理形式不正确.”上述三段论是()
A.大前提错
B.小前提错
C.结论错
D.正确的
[答案] D
[解析]前提正确,推理形式及结论都正确.故应选D. 3.《论语学路》篇中说:“名不正,则言不顺;言不顺,则事
不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()
A.类比推理
B.归纳推理
C.演绎推理
D.一次三段论
[答案] C
[解析]这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.
4.“因对数函数y=logax(x0)是增函数(大前提),而y=log13x 是对数函数(小前提),所以y=log13x是增函数(结论)”.上面推理的错误是()
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错
[答案] A
[解析]对数函数y=logax不是增函数,只有当a1时,才是增函数,所以大前提是错误的.
5.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形”中的小前提是()
A.①
B.②
C.③
D.①②
[答案] B
[解析]由①②③的关系知,小前提应为“三角形不是平行四边形”.故应选B.
6.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的”中的小前提是()
A.①
B.②
C.①②
D.③
[答案] B
[解析]易知应为②.故应选B.
7.“10是5的倍数,15是5的倍数,所以15是10的倍数”上述推理()
A.大前提错
B.小前提错
C.推论过程错
D.正确
[答案] C
[解析]大小前提正确,结论错误,那么推论过程错.故应选C.
8.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理()
A.正确
B.推理形式正确
C.两个自然数概念不一致
D.两个整数概念不一致
[答案] A
[解析]三段论的推理是正确的.故应选A.
9.在三段论中,M,P,S的包含关系可表示为()
[答案] A
[解析]如果概念P包含了概念M,则P必包含了M中的任一概念S,这时三者的包含可表示为;
如果概念P排斥了概念M,则必排斥M中的任一概念S,这时三者的关系应为.故应选A.
10.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是() A.使用了归纳推理
B.使用了类比推理
C.使用了“三段论”,但大前提使用错误
D.使用了“三段论”,但小前提使用错误
[答案] D
[解析]应用了“三段论”推理,小前提与大前提不对应,小前提使用错误导致结论错误.
二、填空题
11.求函数y=log2x-2的定义域时,第一步推理中大前提是a有意义时,a0,小前提是log2x-2有意义,结论是
________.
[答案]log2x-20
[解析]由三段论方法知应为log2x-20.
12.以下推理过程省略的大前提为:________.
∵a2+b22ab,
2(a2+b2)a2+b2+2ab.
[答案]若ab,则a+cb+c
[解析]由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若ab,则a+cb+c. 13.(2019重庆理,15)已知函数f(x)满足:f(1)=14,4f(x)f(y)=f(x+y)+f(x-y)(x,yR),则f(2019)=________.
[答案]12
[解析]令y=1得4f(x)f(1)=f(x+1)+f(x-1)
即f(x)=f(x+1)+f(x-1)①
令x取x+1则f(x+1)=f(x+2)+f(x)②
由①②得f(x)=f(x+2)+f(x)+f(x-1),
即f(x-1)=-f(x+2)
f(x)=-f(x+3),f(x+3)=-f(x+6)
f(x)=f(x+6)
即f(x)周期为6,
f(2019)=f(6335+0)=f(0)
对4f(x)f(y)=f(x+y)+f(x-y),令x=1,y=0,得
4f(1)f(0)=2f(1),
f(0)=12即f(2019)=12.
14.四棱锥P-ABCD中,O为CD上的动点,四边形ABCD 满足条件________时,VP-AOB恒为定值(写出一个你认为正确的一个条件即可).
[答案]四边形ABCD为平行四边形或矩形或正方形等[解析]设h为P到面ABCD的距离,VP-AOB=
13S△AOBh,
又S△AOB=12|AB|d(d为O到直线AB的距离).
因为h、|AB|均为定值,所以VP-AOB恒为定值时,只有d 也为定值,这是一个开放型问题,答案为四边形ABCD为平行四边形或矩形或正方形等.
三、解答题
15.用三段论形式证明:在梯形ABCD中,AD∥BC,AB =DC,则B=C.