空间向量求距离PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△ABC 中, AC BC 2 , BCA 90o , E 是 AB 的中点,
求异面直线CE 与 AB1 的距离.
解:如图建立坐标系C xyz,则C(0,0,0), E(1,1,0), A(2,0,0), B1(0,2,4).
CE
设CE,
AB(11的,1,公0)垂, A线B1的方(2向,2,向4),量为n
A 13
例4
. 已 知 直 三 棱 柱 ABC─A1B1C1 的 侧 棱 AA1 4 , 底 面
△ABC 中, AC BC 2, BCA 90o , E 是 AB 的中点,
求异面直线CE 与 AB1 的距离.
z
C1
A1
B1
C
A
B
E
x
y
14
例4
. 已 知 直 三 棱 柱 ABC ─A1B1C1 的 侧 棱 AA1 4 , 底 面
上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的
绝对值.
2
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。z
G
xD F
A
E
C
B
y
3
例:1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点
平面A1DC1的距离
Z D1
A1
AD n
B1
C1 d
n
D
A X
C
Y
B
10
练习4、在边长为1的正方体ABCD-A1B1C1D1中, M、N、E、F分别是棱A1B1、A1D1、B1C1、 C1D1的中点,求平面AMN与平面EFDB的距离。
z
AB n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
y,
z
)x
D
C
Q r uuur r n EF,n
r n
(
1
,
1
uuur EG
uuur22xx24y
0 y2
,1) ,BE (2, 0, 0)
0
F A
3 3 r uuur
E
| n BE| 2 11
B
y
d r
.
n
11
答:点 B 到平面 EFG 的距离为 2
11 .
4
11
练习1: SA 平面ABCD,DAB ABC 90,
已知正方体ABCD-A1B1C1D1的棱长为1,求异面
直线DA1与AC的距离。
z
D1
C1
A1
B1
D A x
C y
B
16
练习6:如图, ABCD是正方形,SB 面ABCD,且SA与 面ABCD所成的角为45,点S到面ABCD的 距离为1,求AC与SD的距离。
CG=2,E、F分别是AB、AD的中点,求直线BD到平
面GEF的距离。
z
G
r uuur
d
|
n BE| r
2
11 .
n
11
xD
C
F
A
E
B
y
8
练习3:
正方体AC1棱长为1,求BD与平面GB1D1的距
离
D1 Z
DD1 n C1 d
A1
B1
n
GD
C
A
Y
X
B
9
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AB1C与
B 到平面 EFG 的距离. 解:如图,建立空间直角坐标系 C-xyz.
z
G
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
Duu(u4r,0,0),E(2,u4uu,r0),F(4,2,0),G(0,0,2).
EF
设平面
(2, 2, 0), EG (2, r4, 2), EFG 的一个法向量为 n ( x,
(
x,
y,
z
).则A1
C1
z
n CE 0 即 x y 0
B1
n AB1 0
2x 2 y 4z 0
C
取x=1,z则y=-1,z=1,所以 n (1,1,1)
ቤተ መጻሕፍቲ ባይዱ
A
B
在两直线上各取点C, A, CA (1,0,0).
E
x
y
CE与 AB1的距离d
|
n CA |n|
|
2
3 3
.
15
练习5
uuuur ∴ MC (
2
a,
a,
0)
,
uuuur MN
(0,
1
a,
1
a)
,
z
uuur MA (
2 a, 0, 0)
r
2
22
P
r uuuu2r r uuuur
设 n ( x, y, z) 为平面 MNC 的一个法向量, ∴ n MN , n MC
r uuuur ∴ n MC
2 ax ay 0 且
x
11
四、求异面直线的距离
A a M
n
a
N Bb
uuur r AB n d r
n
12
方法指导:①作直线a、b的方向向量a、b,求a、 b的法向量n,即此异面直线a、b的公垂线的方 向向量;②在直线a、b上各取一点A、B,作向
量AB;③求向量AB在n上的射影d,则异面直线 a、b间的距离为
B
b
na
SA AB BC a,AD 2a, 求A到平面SCD的距离。 z
S
A
D
B
y
C
x
5
练习2:
练习(用向量法求距离): 如图, ABCD 是矩形, PD 平面 ABCD ,PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
P
N
D
C
M
A
B
6
:如图,以 D 为原点建立空间直角坐标系 D-xyz
则 D(0,0,0),A( 2 a ,0,0),B( 2 a ,a ,0),C(0,a ,0),P(0,0,a )
∵ M 、N 分别是 AD 、PB 的中点,∴ M ( 2 a , 0, 0) N ( 2 a , 1 a, 1 a)
2
2 22
2
N D
C
y
r n
uuuur MN
a
y
a
z
0
M
22
解得 2 x y z ,
A
2 ur
x
B
∴可取 m ( 2,1, 1) uuur r
uuur r ∴ MA 在 n 上的射影长 d
MA n r
a 即点 A 到平面 MNC 的距离为 a .
n2
27
二、求直线与平面间距离
例2、已知正方形ABCD的边长为4,CG⊥平面ABCD,
P r
则
d=|
uuur PO
|= |
uuur PA
|
cos
APO.
n
∵
uuur PO
⊥
,
r n
,
∴
uuur PO
∥
r n
.
∴cos∠APO=|cos
uuur PA,
r n
|.
A O
∴d=|
uuur PA
||cos
uuur PA,
r n
|=
|
uuur PuAur
r n
|
.
|n|
这个结论说明,平面外一点到平面的距离等于连结此点与平面
空间向量与距离
西宁市沈那中学 段义善
1
一、求点到平面的距离
如何利用空间向量求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
r uuur r
uuur r
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.