平面向量复习ppt

合集下载

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

6.1 平面向量的概念 课件(共21张PPT)

6.1 平面向量的概念 课件(共21张PPT)
规定: 0 和任意向量平行.
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,

EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东

6.1平面向量的概念课件共34张PPT

6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA

O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2

高三数学高考第一轮复习课件:平面向量

高三数学高考第一轮复习课件:平面向量

第33讲 │ 知识要点
第33讲 │ 双基固化 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 能力提升 能力提升
第31讲 │ 能力提升
第31讲 │ 能力提升
第31讲 │ 规律总结 规律总结
第32讲 │ 解斜三角形及应用举例
第32讲 解斜三角形及应用举例
第32讲 │ 编读互动 编读互动
第32讲 │ 知识要点 知识要点
第五单元 │ 考点解读
(6)掌握平面两点间的距离公式以及线段的定比分点 和中点坐标公式,并且能熟练运用,掌握平移公式.
(7)掌握正弦定理、余弦定理,并能初步运用它们解 斜三角形.
第五单元 │ 复习策略
复习策略
1.向量具有的几何形式和代数形式的“双重身份”,使 它成为中学数学知识的一个交汇点,成为多项内容的媒介.本 单元内容为新增知识点,在近几年的考试中所占分值比例正逐 年加大,分值在16~17分,较多情况是2小1大(一选择 一填空,解答题中一部分)或1小2大(选择或填空,解答题 以向量为背景或叙述形式). 2.本单元主要命题方式及考点: (1)主要考查向量的性质和运算法则以及基本运算技 能.要求掌握和、差、数乘和向量的数量积的运算法则,理解 其直观的几何意义.
第28讲 │ 双基固化
第28讲 │ 双基固化

高一数学平面向量 PPT课件 图文

高一数学平面向量 PPT课件 图文
解: ka+b=k(1, 2)+(-3, 2)= (k-3,2k+2)
a-3b=(1, 2)-3(-3, 2)= (10, -4)
(ka+b)∥(a-3b)
-4(k-3)-10(2k+2)=0
K=- 1
3

ka+b=


10 3
,
4 3

=-
1 3
(a-3b)
∴它们反向
例2
思考:
此题还有没有其它解法?
分析 要证A、B、D三点共线,可证 AB=λBD关键是找到λ
解: ∵BD=BC+CD= 2a + 8b+ 3(a b)=a+5b
∴AB=2 BD
AB∥ BD
且AB与BD有公共点B
∴ A、B、D 三点共线
例3
知识结构
平面向量小 复习
知识要点 例题解析 巩固练习
课外作业
练习5 已知a=(1,0),b=(1,1),c =(-1,0) 求λ和μ,使 c =λa +μb.
新课标人教版课件系列
《高中数学》
必修4
2.6《平面向量-复习》
平面向量复习
知识结构 要点复习 例题解析
巩固练习
制作:曾毅 审校:王伟
知识结构
平面向量 复习
知识要点 例题解析 巩固练习
课外作业
表示 向量的三种表示

三角形法则

向量加法与减法

平行四边形法则

向量平行的充要条件
运算 实数与向量的积
知识Байду номын сангаас点 例题解析 巩固练习
课外作业

2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,

2024版中职数学平面向量的概念ppt课件

2024版中职数学平面向量的概念ppt课件

01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。

02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。

03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。

向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。

向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。

方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。

方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。

零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。

与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。

030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。

共线向量满足$vec{a} = kvec{b}$($k$为实数)。

向量平行如果两个向量的方向相同或相反,则称这两个向量平行。

平行向量满足$vec{a} parallel vec{b}$。

共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。

加法定义两个向量相加,即将它们的对应分量相加得到新的向量。

几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。

01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。

向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。

平面向量的概念PPT课件

平面向量的概念PPT课件

04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法

6.1平面向量的概念课件共45张PPT

6.1平面向量的概念课件共45张PPT

即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不


要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写

时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,


(1)分别找出与, 相等的向量;




解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,

(2)找出与共线的向量;




解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


b a b
c
|
c||
a|

|
b|
c
a
|
c|
|
a|

|
b|
|| a | | b ||| a b || a | | b |
2020/3/3
上页 下页 返回
7、实数与向量 的积
定义:λa是一个 向量.
它的长度 |λa| = |λ| |a|;
它的方向 (1) 当λ≥0时,λa 的方向 与a方向相同; (2) 当λ<0时,λa 的方向 与a方向相反.
是 __2_0__,a b 的最小值是____4_____
2020/3/3
上页 下页 返回
3.已知点A(1,1), B(4,5),点C在直线AB上, 且CA 3 AB,求点C的坐标。
(1)a b a • b 0
(2)a b a • b
向量相等的充要条件

x1 x2

y1 y2

0
ab
2020/3/3

x1

x2且y1

y上2页
下页 返回
五、定比分点的坐标公式、
已知点
P1、P2的坐标分别是(
x1,y1)、(
x2,y

2
P是直线P1P2上一点,且P1P PP2,则点P的坐标

x

y

x1 1
y1
x2 y2
( 1)
1
特殊的

x
1
y

x1 y1

2
x2 y2

2
定比分点坐标公式 中点坐标公式
2020/3/3
上页 下页 返回
六、平面向量的基本定理
如果e1, e2是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
④乘法公式成立:
ar

r b

ar

r b

ar 2
r b2

ar
2

r b
2;
ar

r b
2

ar 2

2ar
r b

r b2

ar
2

2ar

r b

r2 b
特别注意:
( ( (123) ) )结 消ar 合 去br 律 律=0不 不成 成不立 立能:得ar 到arbrarbr=ar0rcrcr或br不=ar能0rbr得到cr
其实质就是向量的伸长或缩短!
2020/3/3
上页 下页 返回
二、向量的坐标表示
y
1.以原点O为起点的 OA a ,
a
A(x, y)
a j
a xi y j 向量的正交分解O i
x
a (x, y)
A(x1, y1)
2.已知 A(x1, y1),B(x2, y2) 求 AB
y
B(x2, y2 )
5.向量的加法:
b
a
(a b)
OB OA AB
6.向量的减法:
O
A
A
D
a
(a b)
b
B
OD OA OB
a
(a b)
O2020/3/3
b
B
BA OA OB
上页 下页 返回
[1] 加法:
a
b

c
b
c
特殊地:若 a‖ b分为同向和反向
a
(平行四边形法则)
量 a,有且只有一对实数 1, 2使,
a 1e1 2 e2
2020/3/3
上页 下页 返回
七.应用举例
1.a,b均不为零,则 a b a b 是a // b的( A )
( A)充分不必要条件 (B)必要不充分条件
(C)充要条件
(D)既不充分又不必要条件
2.向量a,b 满足 a 8, b 12则 a b 的最大值

r b
cr

2020/3/3
上页 下页 返回
四、平面向量之间关系
向量r 平行r (r共线r)充要条r 件的r两种形式:
(1)a / /b(b 0) a b;
r rr
r
rr
(2)a / /b(a (x1, y1),b (x2, y2),b 0)
向量 垂直x1充y2要条x2件y1的两种形式:
AB (x2 x1, y2 y1)
O
x
2020/3/3
上页 下页 返回
向量的模(长度)
3. 设 a = ( x , y ), 则 a x2 y2
4. 若表示向量 a 的起点和终点的坐标分别 为A(x1,y1)、B (x2,y2) ,则
a AB x1 x2 2 y1 y2 2

r
xr1x2

yr1
y2
r
a , b成锐角的充要条件是 a b 0且a不平行于b
rr
rr r
r
a , b成钝角的充要条件是 a b 0且a不平行于b
rr
rr
a,b rr
垂直的充要条件是
ab rr

0 r
x1
xr2

y1 y2

0
a , b 平行的充要条件是 | a b || a || b |
一、向量的初步
1.定义:
既有大小又有方向的量叫向量
2.向量的表示:
向量的几何表示 : 用有向线段表示 uuur r
向量的符号表示 : AB 或 a
3.特殊向量:零向量 : 单位向量: a0 a |a|
4.向量之间的关系:
平行向量(: 共线向量) 相反向量 : 相等向量:
2020/3/3
上页 下页 返回
2020/3/3
上页 下页 返回
向量的坐标运算
设向量 a (x1,y1),b (x2,y2)则
a b (x1 x2, y1 y2 )
说明:两个向量和 与差的坐标分别等
a b (x1 x2, y1 y2 )
于这两个向量相应 坐标的和与差。
a (x1
,
y1)
上页 下页 返回
平面向量数量积的运算律:
① ② ③交 对 分换 实 配律 数 律成 的 成立 结 立: 合 :律arar成br br立brcr:arararcrbrbr
cr
ar cr
r b ar

arr b

r b
R
2020/3/3
பைடு நூலகம்
x1 y2 x2 y1 上页 下页 返回
rr
a在b方向上的投r 影r
r
| a | cos
arb
r2 a
|
r a
|2
rr
|b|
a , b 的夹角r 公r式
cos ra br
x1x2 y1 y2
| a || b | x12 y12 x22 y22
2020/3/3
说明:实数与向量的积的坐标 等于用这个实数乘原来向量的
相应坐标。
ab

x1x2

y1 y2
说明:两个向量的数量积等 于它们对应坐标的乘积的和。
2020/3/3
上页 下页 返回
三.向量r 的r 数量积
设向量 a ,b 的夹角为 则 rr r r
ra br | a || b | cos
相关文档
最新文档